
TN-16

SYSTEM SPECIFIC PROGRAMME INPUTS FOR DOCUMENTED PROGRAMMES

SATISH CHANDRA
DIRECTOR

STUDY GROUP

DEEPA KARAWADE

NATIONAL INSTITUTE OF HYDROLOGY
JAL VIGYAN BHAWAN
ROORKEE-247667(UP)

1985-86

CONTENTS

PAGE

ABSTRACT

1 . 0 INTRODUCTION
1

2.0 PROBLEM DEFINITION
3

3.0 METHODOLOGY
4

4 . 0 CONCLUSION
18

REFERENCES
19

APPENDIX-A

APPENDIX-B

ABSTRACT

FORTRAN is now used on all major computer systems. Major vers-

ions in vogue are FORTRAN, FORTRAN II and FORTRAN IV. Each new version

made a few changes in the basic instruction of FORTRAN and included

additional features. A FORTRAN program developed for a particuar com-

puter can not be executed on other type of computers. To make it exec-

utable for other computers, some statements of the FORTRAN program

are required to be modified according to the FORTRAN compiler of that

computer.

This report described various modifications, necessary for

successfully implementing a FORTRAN program on DEC-2050, PDP-11 and

UNIVAC-1100 which has been developed on VAX-11 and vice versa.

1.0 INTRODUCTION

Today computers, with their fantastic speed and accuracy, are

becoming powerful tools for problem solving in diverse fields including

scientific, research, business, medicine, school, house management

etc.

The problem of working with the computers is that they can

interpret and execute only those instructions which are written in

the machine language (low level language), which is very complex and

cumbersome to use. However,high level languages like FORTRAN, COBOL,

BASIC etc. have been developed which are much easier for humans to

use. FORTRAN, the most widely used language for scientific and research

work has been discussed here.

1.1 The FORTRAN language

FORTRAN(an acronym for FORmula TRANslation) is the most widely

used of a class of high-level languages called scientific and algebraic

languages. It is available for use on almost all computers. Although

not limited to mathematical problems, it is especially useful for

problems that can be stated in terms of formulas or arithmetic proce-

dures.

FORTRAN is a machine-independent language for instructing a

computer. In other words, the programmer using FORTRAN does not need

to know any machine-level details for the computer being used. The

language is procedure-oriented, designed for instructing the computer

in a problem-solving procedure. The language consists of a vocabulary

of symbols and words and a grammer of rules for writing procedural

instructions. The symbols, words and rules utilize many common mathe-

1

matical and English-language conventions so that the language is fairly

easy to learn and to understand. The rules are, however, precise and

must be followed with care. In other words learning FORTRAN is like

learning a special-purpose language. There are rules of construction

and vocabulary to learn, and one becomes proficient by doing rather

than by much reading.

1.2 Review of FORTRAN Development

FORTRAN was developed in 1957 by IBM in conjunction with some

major users, but it is now used on all major computer systems. FORTRAN

has changed and evolved. This evolutionary process resulted, during

the development period, in several FORTRANs of increasing complexity.

Major versions were called FORTRAN, FORTRAN II and FORTRAN IV. Each

new version made a few changes in the basic instructions and included

additional features. In 1966, a voluntary FORTRAN standard, American

National Standard(ANS) FORTRAN, was adopted. The International Stan-

dards Organisation(ISO) also defined standard FORTRAN.

A revised American National Standard (ANS) FORTRAN was adopted

in 1977. This 1977 standard adds features to the previous 1966 standard

FORTRAN, clarifies some ambiguities, and makes a few minor changes.

The teaching-oriented compilers were designed to provide excellent

error-diagnostic messages for students, do fast execution of small

student programs, and relax some error-prone features of FORTRAN.

The new 1977 FORTRAN standard adopted the most significant features

of the teaching oriented FORTRANs, so the American National Standard

FORTRAN is recommended as the basis for all FORTRAN programming, by

students as well as by professional programmers.

2

2.0 PROBLEM DEFINITION

A FORTRAN program, developed for a particular computer can

not be executed on other type of computers. To make it executable

for other computers, some statements of the FORTRAN program are requi-

red to be modified according to the FORTRAN compiler of that computer.

The objective of the present work is to discuss the various necessary

changes for successfully implementing a FORTRAN programme on DEC-20/

PDP-11/UNIVAC-1100 which has been developed on VAX-11 and vice versa.

The compatibility between VAX-11 FORTRAN and other systems

FORTRAN will be of great use to FORTRAN programmers.

The VAX-11 is a family of DIGITAL's 32 bit minicomputers. It

is a fully integrated computer system with a powerful virtual memory

operating system. VAX-11 supports a 32-bit word architecture thereby

establishing a virtual address space of 2.32 M bytes for user applicat-

ion.

The DEC-2050 is a medium scale computer and features a high

performance, virtual memory system that provides a multitasking, multi-

programming environment to support concurrency, time sharing and batch

processing. The TOPS-20 operating system supports a 36-bit word archi-

tecture and 2.4M bytes of high speed memory.

The PDP-11 computer family is a wide range of compatible proce-

ssors complemented by a variety of peripheral devices and software.

A variety of operating systems, languages and communications software

are available for the POP-11 computer family such as RT-11, DSM-11,

RSTS/E, RSX-11 etc.

The Sperry UNIVAC 1100 series computer is a time sharing, multi-

processor system which supports a 9 bit-byte and 36 bit word archite-

cture.

3

3.0 METHODOLOGY

The VAX-11 FORTRAN is based on the American National Standard

FORTRAN 77(ANSI x 3.9-1978). The DEC-2050 and PDP-11 FORTRAN is based

on the previous standard (ANSI x 3.9-1966). The UNIVAC FORTRAN has

also been written in accordance with the specification of ANSI x 3.9

71966 FORTRAN and is a superset of it. As a result there are certain

incompatibilities listed below:

3.1 Open Statement

An OPEN statement either connects an existing file to a logical

unit, or creates a new file and connects it to a logical unit. In

addition, it can specify file attributes that control file creation

and/or subsequent processing.

3.1.1 In the VAX-11 FORTRAN, the OPEN statement contains the keyword

BLANK which controls the interpretation of blanks in the numeric field.

BLANK='ZERO' specifies all blanks other than leading blanks to be

treated •as zeroes. BLANK='NULL'specifies all blanks to be treated

as blanks. If the total field is blank it is treated as zero. The

default value is 'NULL'.

There is no BLANK keyword in OPEN statement of DEC-2050 FORTRAN

and the interpretation of blanks is equivalent to BLANK=1 ZER0'.

There is no BLANK keyword in the PDP-11 FORTRAN.

There is no OPEN statement in UNIVAC FORTRAN and the unit reference

number is linked to the external file name using commands. The inter-

pretation of blanks is equivalent to BLANK=1 ZER0'.

4

3.1.2 The STATUS or TYPE keyword in the open statement in VAX-11

FORTRAN specifies the initial status of the file (1 OLD','NEW,I SCRATCH'

Or 'UNKNOWN'). The default value is 'UNKNOWN'. There is no STATUS

or TYPE keyword in the DEC-20 FORTRAN.

In PDP-11 FORTRAN the keyword TYPE is used, instead of STATUS

and it has the same values 'OLD','NEW','SCRATCH'or 'UNKNOWN'.

3.1.3 The. file is spcefied by theFILE or NAME keyword in VAX-11 FORTRAN

whereas in DEC-2050 FORTARN only FILE keyword is used and in PDP-11

FORTRAN only NAME keyword is used

3.1.4 The device on which the file exists or it is to be created is

specified by the keyword DEVICE='DSK' in DEC-20 FORTRAN. There is

no such keyword in VAX-11 or PDP-11 FORTRANs.

The general form of OPEN statemnets used in various FORTRANs

are as follows:

VAX-11: oPEN(uNIT=n, FILE=Tilespec'STATUS=I v I)

DEC-20: OPEN(UNIT=n,DEVICE&DSK I ,FILE=ifilesped)

iii)PDP-11:0PEN(UNIT=n,NAME=l filespecl ,TYPE=I NP)

where'v'='OLD' or 'NEW:

The key words and their values in the OPEN statements of the

VAX-11, DEC-2050 and PDP-11 FORTRAN are listed below: •

(i) VAX-11

Keyword Values Function Default

ACCESS 'SEQUENTIAL' Access method 'SEQUENTIAL'

'DIRECT'

'KEYED'

'APPEND'

5

ASSOCIATEVARIABLE Next direct

access record

BLANK 'NULL' Interpretation

'ZERO' of blanks

BLOCKSIZE e Physical block

Size

BUFFERCOUNT e Number of I/O

Buffers

CARRIAGECONTROL 'FORTRAN' Print

'LIST' control

'NONE'

DISPOSE or DISP 'KEEP'or'SAVE' File disposi-

'NULL'

System default

System default

'FORTRAN'

(formatted)

'NONE'

(Unformatted)

'KEEP'

'DELETE' tion at close

'PRINT'

'PRINT/DELETE'

'SUBMIT'

'SUBMIT/DELETE'

ERR s Error transfer

label

EXTENDSIZE e File allo- Volume or
System

cation default

increment

FORM 'FORMATTED' Format type Depends on
ACCESS

'UNFORMATTED' keyword

FILE ox NAME C File name

specification

INITIALSIZE e File allocation

6

105 TAT Input/output
Status

KEY el:e2(:INTEGER) Key field

(:CHARACTER) definitions

Direct access

record limit

NOSPANBLOCKS Records do not

span blocks

ORGANIZATION 'SEQUENTIAL' File structure

'RELATIVE'

'INDEXED'

READONLY Write protection

'SEQUENTIAL'

RECL or RECORD SIZE e Record length As specified at
file creation

RECORDTYPE 'FIXED'

'VARIABLE'

'SEGMENTED'

Record Depends on
ORGANIZATION,
ACCESS, and
FORM keywords

SHARED File sharing

allowed

STATUS or TYPE 'OLD' File status

'NEW' at open

'SCRATCH'

'UNKNOWN'

UNIT e Logical unit

number

USEROPEN p User program

option

'UNKNOWN'

7

Key: e is a numeric expression

v is an integer variable name

el is the first byte position of a key

e2 is the last byte position of a key

p is an external function

s is a statement label

c is a character expression, numberic array name, numeric

variable name, or numeric array element name

(ii) DEC-2050

Argument Values Required

UNIT= Integer variable or constant

MODE= Literal constant or variable

DIRECTORY= Literal or variable

FILESIZE Integer constant or variable

BUFFERCOUNT Integer constant or variable

ASSOCIATEVARIABLE Integer variable

ACCESS SEQUINOUT', 'RANDIN',

'RANDOM','APPEND'or variable

FILE= Literal constant or variable

DIALOG= Literal or array

BLOCKSIZE Integer constant or variable

VERSION= Octal constant or variable

DEVICE= Literal constant or variable

PROTECTION= An octal constant or integer variable

DISPOSE= Literal constant or variable

RECORDSIZE Integer constant or integer variable

8

PARITY= Literal constant or variable

DENSITY= Literal constant or variable

(iii) PDP-11

Keyword Function Values

UNIT logical unit number

NAME file specification

TYPE file type 'OLD'
'NEW'
'SCRATCH'
'UNKNOWN'

ACCESS access method 'SEQUENTIAL'
'DIRECT'
'APPEND'

READONLY read-only file access

FORM file format 'FORMATTED'
'UNFORMATTED'

RECORDSIZE direct access record length

ERR error condition transfer
label

BUFFERCOUNT number of buffers

INITIALSIZE file allocation size

EXTENDSIZE file extension increment

NOSPANBLOCKS unspanned records

SHARED shared file access

DISPOSE or DISP file disposition 'SAVE'
'KEEP'
'PRINT'
'DELETE'

9

'DELETE'

ASSOCIATEVARIABLE associated variable

name

CARRIAGECONTROL carriage control type 'FORTRAN'

'LIST'

'NONE'

MAXREC number of direct access
records

BLOCKSIZE physical block size

is a numeric expression.

is a variable name, array name, array

element name, or alphanumeric literal.

is an executable statement lable.

is an integer variable name.

3.2 DO STATEMENT

The DO statement controls interative porcessing. There are two

types of DO statements in VAX FORTRAN

The indexed DO

The pretested indenfinite DO or the DO WHITE statement.

The DEC-20, P1W-11 and UNIVAC-1100 support only the indexed DO state-

ments. The general form of indexed DO is:

DO s v= el, e2, e3

where s is the label of an executable statement.

v is an integer or real variable

el , e2, e3 are airthmeticexpresions

The numbers of executions of Do loop, called the interaction count

10

is given by:
(e

2
- e

1 + e3) / e3
In VAX-11 FORTRAN, if the iteration count of the DO loop is

zero or negative, the DO loop is not executed at all.

In the DEC-20, UNIVAC-1100 and PDP-11 FORTRAN, the DO loop

is always executed at least once.

In the UNIVAC FORTRAN, the DO loop index can be only an integer

variable and the DO loop parameter may be integer expressions. In

the PDP-11, DEC-20 and VAX-11 FORTRAN they may be real variable and

real expressions.

In VAX-11, PDP-11 and DEC-20 FORTRAN, the DO loop iteration

count is calculated at start of DO loop and decremented at each step.

When it count = 0, execution of DO loop is terminated.

IN UNIVAC FORTRAN, first the DO loop is executed once, then

the DO loop index,si., is incremented by e3 and if (e2-i)-e3 is nega-

tive, execution of DO loope is stopped.

The DO WHILE statement available in VAX FORTRAN has the form

DOS WHILE(e) where s is a statement label(optional) and e is a logical

expression

Example DO WHILE(I.GT J)

ARRAY(I,J)=10

I = I-1

END DO

3.3 IF statement

The IF statement conditionally transfer control, or conditionally

execute a statement or block of statements.

All the four systems support the arithmetic IF and logical

IF statements but the block IF statements are supported by the VAX-11

11

FORTRAN only. The block IF statements conditionally execute blocks

of statements. The four block IF statements are

IF THEN

ELSE IF THEN

ELSE

END IF

The block IF construct has the form:

IF(C) THEN

: block

ELSE IF (C) THEN

block

ELSE

: block

END IF

where e is a logical expression and block is a sequence of complete

Fortran statements.

A block IF construct may contain any number of IF THEN ELSE statments.

Example:

IF(A.GT.B) THEN

D=B

F= A-B

ELSE IF (A.GT.C)THEN

D=C

F=A-C

ELSE IF (A.GT.2)THEN

12

D=2

F=A - 2

ELSE

D=0.0

F=A

END IF

3.4 Array dimensions

In VAX-11 and PDP-11 , UNIVAC-1100 FORTRAN, an array can

have upto 7 dimensions, whereas in DEC-20 FORTRAN an array can have

any number of dimensions.

3.5 Symbolic Names

VAX-11 FORTRAN allows symbolic names upto 31 characters consis-

ting of letters, digits, dollar sign($) and underlineLi but the first

character must be a letter. PDP-11 and DEC-20 FORTRAN allow symbolic

names of any alphanumeric combination of one to six characters only.,

If the symbolic name consists of more than 6 characters then first

six characters are considered and the remaining are ignored.

3.6 Data Types

VAX-11 FORTRAN and UNI7AC-11 supportREAL*16,COMPLEX *16 and

CHARACTER data types. There is no CHARACTER data type and double pre-

cision COMPLEX in PDP-11 and DEC-20 FORTRAN.

3.6.1 Numeric Data

VAX-11 supports the following data types:

1.Integer *2,Integer *4, Integer *8

13

2. Real *4

3 Real*8(Double precision)

Real *16

Complex *8(a pair of Real *4 values)

Complex *16(a pair of complex *8 values)

Logical

Octal and hexadecimal

Hollorith.

The DEC-2050 and PDP-11 supports:

1.Integer

Real

Double precision

Complex

Logical

Literal

Octal

Hollerith

3.6.2 Character data:

In VAX-11 and UNIVAC-1100 FORTRAN, character data is specified

by a CHARACTER declaration statement. There can be character substrings,

character operators, character expressions, and character assignment

statements. In PDP-11 and DEC-20 FORTRAN there is no such data type.

The only character operator is the concatenation operator/which is

in VAX and UNIVAC systems.

3.7 EXTERNAL statement

In VAX-11 and UNIVAC-1100 FORTRAN, the EXTERNAL statement speci-

14

fies that the procedure is a FORTRAN supplied function. There is no

INTRINSIC statement in UNIVAC. If a FORTRAN supplied function name

appears in an EXTERNAL statement it is treated as a user supplied

function.

3.8 Format descriptors

The X format edit descriptor in VAX-11 FORTRAN does not modify

the character position skipped and length of output record is not

extended. In DEC-20 FORTRAN the X-editor writes blanks and may extend

the output record.

The VAX-11 supports the following field descriptions

Integer - Iw, Zw r Iwm,Zwm

Octal -Ow, Owm

Logical -Lw

Real and Complex - Fw.d,Ew.d,Dw.d,Gw.d,Ew.dEc,Gw.d Ec

Character -Aw

Character and -nH
Hollerith constant

Edit descriptors - nX,Tn,TLn,TRn,nP,Q,$,BN,132,S,SP,SS.

The DEC-20 supports:

Integer -Iw

Octal -Ow

Logical -Lw

Real and Complex -Fw.d,Ew.d, Dw.d, Gw.d

Alpha numeric -Aw,Rw

Hollerith and -nH, 'text'
Literal Constant

Edit descriptors -nX,Tw

15

The UNIVAC supports:

Integer -Iw,Iw.d,Jw.

Octal -Ow

Logical -Lw

Real and Complex -Fw.d, Ew.d, Ew.d Dc, Dw.d, Gw.d

Alpha Numeric -Aw,Rw

Literal and Holl- -nH,'text'
erith Constant

Edit descriptors -nX,Tw,nP,

The PDP-11 supports:

Integer Iw

Octal -Ow

Real and complex -Fw.d, Ew.d,Dw.d,Gw.d

Literal and Holl- - nH
erith constant

Alpha numeric -Aw

Edit descriptors -nX,Tw,Q,Z , nP

3.9 In UNIVAC FORTRAN comment lines can begin only with C in column

1. In line comments are preceded by @. In PDP-11, comments lines

begin with C or c in column 1. DEC system allows C, $,1, or * in

column 1, while VAX-11 FORTRAN allows C, * or ! in column 1 for lines

to be treated as comment lines. In line comments in PDP-11, DEC-20

and VAX-11 and preceded by !

3.10 Variable and Run Time formats are allowed on VAX, PDP and

UNIVAC but not on DEC-20.

3.11 In UNIVAC FORTRAN, the DIMENSION and TYPE declarator statements

16

allow initialisation of variables. This is not allowed on any of the

other systems.

3.12 Intrinsic * functions available on various systems are listed

in Appendix-A.

3.13 Library subroutines available on various system are explained

in APPENDIX-B.

17

4.0 CONCLUSION

FORTRAN language differs from computer to computer in only

minor respects. The report has illustrated a comparative study of

the FORTRAN language using the facilities of VAX-11, DEC 2050, PDP-11

and UNIVAC-1100. The compatability between VAX-11 FORTRAN and other

systems FORTRAN will be of great use to the computer programmers.

18

REFERENCES

1. DEC-2050 FORTRAN Language reference Mannual

Davis and Hoffmann, FORTRAN 77:
International Student Edition.

Maynerd, J.Computer Programming
Publications, New Delhi.

PDP-11 FORTRAN
poration, USA.

VAX-11 FORTRAN
poration, USA.

A Structured, Disciplined Style,

made simple Twentieth Century

Mannual, Digital Equipment Cor-

Mannual, Digital Equipment Cor-

Language Reference

Language Reference

19

APPENDIX -I

(i) VAX-11 Intrinsic Functions
unctions tumer oi C.enenc Speciiio

Arguments Name Name
Type of
Argument

Type of
Result

Square Root

a1/2

Natural Logan hm

logea

Common Logarithm

logloa

Exponential
ea

Sine

Sin a

Cosine

Cos a

Tangent

Tan a

Arc Sine

Arc Sin a

Arc Cosine

Arc Cos a

1 SORT SORT
DSQRT
GISORT
CSORT
COSORT

1 LOG ALOG
DLOG
QLOG
CLOG
CDLOG

1 LOGIC ALOG10
MOGI°
a0G10

EXP EXP
DEXP
OEXP
CEXP
CDEXP

SIN SIN
DS IN
QSIN
CS IN
COS IN

1 COS COS
DCOS
QCOS
CCOS
CDCOS

TAN TAN
DTAN
QTAN

ASIN ASIN
DASIN
QASIN

ACOS ACOS
DACOS
QACOS

REAL*4
REAL'S
REAL*16
COMPLEX'S
COMPLEX'16

REAL*4
REAL*8
REAL*16
COMPLEX'S
COMPLEX*16

REAL*4
REAL*S
REAL*16

REAL*4
REAL*8
REAL*16
COMPLEX'S
COMPLEX*16

REAL*4
SEAL'S
REAL*16
COMPLEX'S
COMPLEX*16

REAL*4
REAL*8
REAL*16
COMPLEX'S
COMPLEX*16

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL'16
CCV2LEX*8
COMPLEX*16

REAL*4
REAL*8
REAL'16
COMPLEX'S
COMPLEX*16

REAL*4
REAL'n
REAL416

REAL*4
REAL*8
REAL*16
COMPLEX'S
COMPLEX*16

REAL*4
REAL*6
REAL*16
COMPLEX'S
COMPLEX*16

REAL*4
REAL*8
REAL*16
COMPLEX'S
COMPLEX*16

REAL*4
RFal'S
REAL*16

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

I/1

Functions Number of Generic Specific Type of Type of

Arguments Name Name Argument Result

1 ATAN ATAN REAL*4 REAL*4
DATAN REAL*8 REAL*8

QATAN REAL*16 REAL*16

2 ATAN2 ATAN2 REAL*4 REAL*4
DATAN2 REAL*8 REAL*8

QATAN2 REAL*16 REAL*16

1 SINH SINN REAL*4 REAL*4
DSINH REAL*8 REAL*8
OSINH REAL*16 REAL*16

1 COSH COSH REAL*4 REAL*4

DCOSH REAL*8 REAL*8
QCOSH REAL*16 REAL*16

1 TANH TANN REAL*4 REAL*4
DTANH REAL*8 REAL*8

QTANH REAL*16 REAL*16

ABS HABS INTEGER*2 INTEGER*2
JIABS INTEGER*4 INTEGER*4
ABS REAL*4 REAL*4
DABS REAL*8 REAL*8
QABS REAL*16 REAL*16
CABS COMPLEX *8 REAL*4
CDABS COMPLEX*16 REAL*8

TABS HASS INTEGER*2 INTEGER*2

INT HNT REAL*4 INTEGER*2
JINT REAL*4 INTEGER*4
HDINT REAL*8 INTEGER*2
JIDINT REAL*8 INTEGER*4
HQINT REAL*16 INTEGER*2
JIQINT REAL*16 INTEGER*4

COMPLEX*8 INTEGER*2
COMPLEX *5 INTEGER*4
COMPLEX*16 INTEGER*2
COMPLEX *16 INTEGER*4

IDINT HDINT REAL*8 INTEGER*2
JIDINT REAL*8 INTEGER*4

IQINT HQINT REAL*16 INTEGER*2
JIG INT REAL*16 INTEGER*4

Arc Tangent

Arc Tan a

Arc Tangent%

Arc Tan a1/a2

Hyperbolic Sine

Sinh a

Hyperbolic Cosine

Cosh a

Hyperbolic Tangent

Tanh a

Absolute value

a I

Truncation
ial

1

1

1/2

Functions Number of
Arguments

Generic
Name

Specific
Name

Type of
Argument

Type of
Result

AINT AINT REAL*4 REAL*4
DINT REAL*8 REAL*8
GINT REAL*16 REAL*16

Nearest Integer 1 NINT ININT REAL*4 INTEGER*2
JNINT REAL*4 INTEGER*A
HDNNT REAL*8 INTEGER*2
JIDNNT REAL*8 INTEGER*4
HQNNT REAL*16 INTEGER*2
JIONNT REAL*16 INTEGER*4

IDNINT HDNNT REAL*8 INTEGER*2
JIDNNT REAL*8 INTEGER*4

IQNINT HQNNT REAL*16 INTEGER*2
JIQNNT REAL*16 INTEGER*4

ANINT ANINT REAL*4 REAL*4
DNINT REAL*8 REAL*8
QNINT REAL*16 REAL*16

Conversion to REAL*4 1 REAL FLOATI INTEGER*2 REAL*4
FLOATJ INTEGER*4 REAL*4
- REAL*4 REAL*4

SNGL REAL*8 REAL*4
SNGLQ REAL*16 REAL*4
- COMPLEX*8 REAL*4
- COMPLEX*16 REAL*4

Conversion to REAL*8 1 DBLE - INTEGER*2 REAL*8 - INTEGER*4 REAL*8
DBLE REAL*4 REAL*8
- REAL*8 REAL*8

DBLEQ REAL*16 REAL*8
- COMPLEX*8 REAL*8
- COMPLEX*16 REAL*8

Conversion to REAL*16 1 QEXT - INTEGER*2 REAL*16 - INTEGER*4 REAL*16
0EXT REAL*4 REAL*16
QEXTD REAL*8 REAL*16
- REAL*16 REAL*16
- COMPLEX*8 REAL*16
- COMPLEX*16 REAL*16

Fix 1 IFIX HFIX REAL*4 INTEGER*2
JIFIX REAL*4 INTETER*4

(REAL*4-to-integer conversion)

I/3

Functions Number of Generic Specific Type of Tyne of
Arguments Name Name Argument Result

Float 1 FLOAT FLOATI INTEGER*2 REAL*4
FLOATJ INTEGER*4 REAL*4

(integer-to-REAL*4 conversion)

REAL*8 Float 1 DFLOAT DFLOTI INTEGER*2 REAL*8
DFLOTJ INTEGER*4 REAL*8

(integer-to-REAL'8 conversion

REAL*16 Float 1 NFLOAT - INTEGER*2 REAL*16
INTEGER*4 REAL*16

(Interger to REAL*16 conversion)

Conversion to COMPLEX*8 1,2 CMPLX - INTEGER*2 COMPLEX*8
Or 1,2 - INTEGER*4 COMPLEX'S

COMPLEX'S from Two 1,2 - REAL*4 COMPLEX'S
Arguments 1,2 - REAL*8 COMPLEX*8

. 1,2 - REAL*16 COMPLEX'S
1 - COMPLEX*8 COMPLEX*8
1 - COMPLEX*16 COMPLEX'S

Conversion to COMPLEX*16 1,2 DCMPLX - - INTEGER*2 comeLans
or 1,2 - INTEGER*4 COMPLEX*16
cumPLEX*16 from Two 1,2 - REAL*4 COMPLEX*16
Arguments 1,2 - REAL*8 COMPLEX*16

1,2 - REAL*16 COMPLEX*16
1 - COMPLEX'S COMPLEX']t
1 - COMPLEX*16 COMPLEX*16

Real Part of Complex 1 REAL COMPLEX*8 REAL*4
DREAL COMPLEX*16 REAL*8

Imaginary Part of Complex 1 AINLAG COMPLEX'S REAL*4
DIMAG COMPLEX*16 REAL*8

Complex From Two (See Conversion to COMPLEX'S and
Arguments Conversion to COMPLEX*16)

Complex Conjugate 1 CONJG CONJG COMPLEX*8 COMPLEX'S
DCONJG COMPLEX*16 COMPLEX* If

RfAL*8 product of REAL*4's 2 DPROD REAL*4 REAL*8

ala2

1/4

Functions Number of Generic Specific Type of Type of Arguments Name Name Argument Result

Maximum n MAX 'MAX° INTEGER*2 INTEGER*2
JMAXO INTEGER*4 INTEGER*4 max(al,a2—an) AMAXI REAL*4

REAL*8
REAL*4

(retuns the maximum DMAXI REAL*8
QMAXI REAL*16 REAL*16 value from among the

MAX() IMAM INTEGER*2 INTEGER*2 argument list, there must be at 'IMAM INTEGER*4 INTEGER*4 least two arguments)
MAXI IMAXI REAL*4 INTEGER*2

JMAXI INTEGER*4
AMAX° AIM4X0 INTEGER*2 REAL*4

AJMAXO INTEGER*4 REAL*4

Minimum. n MIN MING INTEGER*2 INTEGER*2
JMINO INTEGER*4 INTEGER*4 min(a1,a2...an)
Of

REAL* 4 REAL*4
(returns the minimum value

QMINI REAL*16 REAL*16 among the argument list,
there must be at least two
arguments) MINO MING INTEGER*2 INTEGER*2

JMINO INTEGER*4 INTEGER*4

MINI IMINI REAL*4 INTEGER*2
JMINI REAL*4 INTEGER*4

AMINO AIMING INTEGER*2 REAL*4
AIMING INTEGER*4 REAL*4

Positive Difference 2 DIM HDIM INTEGER*2 INTEGER*
JIDIM INTEGER*4 INTEGER*4
DIM REAL*4

111t2L:: a1-(min(a1
'a2)) DDIM REAL*8

ODIN REAL*16 REAL*16 (returns the first argu-
ment minus the minimum

HDIM of the two arguments) IDIM INTEGER*2 INTEGER*2
JIDIM INTEGER*4 INTEGER*4

Remainder 2 MOD INTEGER*2 INTEGER*2
INTEGER*4 INTEGER*4 (0)117

1 I D P :8
REAL*4 ,8

+1a2 (a/a2) Z) RIt REAL*8
*

returns the remainder
when the first argu-
ment

1/5

Funations Number of
Arguments

Generic
Name

Specific
Name

Type of
Argument

Type of
Result

Transfer or Sign 2 SIGN IISIGN INTEGER*2 INTEGER*2
JISIGN INTEGER*4 INTEGER*4

I nll*Sign a2 SIGN REAL*4 REAL*4
DSIGN REAL"6 REAL*6
COIGN REAL*16 REAL*16

ISIGN IISIGN INTEGER*2 INTEGER*2
JISIGN INTEGER*4 INTEGER*4

Bitwise AND 2 IAND IIAND INTEGER*2 INTEGER*2
(performs a logical AND
on corresponding bits)

JIAND INTEGER*4 INTEGER*4

Bitwise OR 2 IOR IIOR INTEGER*2 INTEGER*2
(performs an inclusive JIOR INTEGER*4 INTEGER*4
OR on corresponding
bits)

Bitwise Exclusive OR 2 IEOR IIEOR INTEGER*2 INTEGER*2
(performs an exclusive JIEOR INTEGER*4 INTEGER*4
OR on corresponding bits)

Bitwise Complement 1 NOT INOT INTEGER*2 INTEGER*2
(complements each bit) JNOT INTEGER*4 INTEGER*4

Bitwise Shift 2 ISHFT HS= INTEGER*2 INTEGER*2

(al logically shifted
left a

2 bits)

JISHET INTEGER*4 INTEGER*4

Length

(returns length of the
character expression)

1 — LEN CHARACTER INTEGER*4

Index (C
1,2) 2

(returns the position
of the substring c2
in the character
expression cl)

INDEX CHARACTER INTEGER*a

Character

(returns a character
that has the ASCII
value specified by
the argument)

1 -CHAR LOGICAL*1
INTEGER*2
INTEGER*4

CHARACTER

I/6

Functions Number of
Arguments

Generic ' Specific Type of
Name Name Argument

Type of
Result

ASCII Value 1 ICHAR CHARACTER INTEGER*4

(returns the ASCII value
of the argument, the
argument must be a
character expression
that has a length of 1)

Character relationals
(ASCII collating
sequence)

2 — LLT CHARACTER LOGICAL*4
2 — LLE CHARACTER LOGICAL*4
2 — LGT CHARACTER LOGICAL*4
2 — LGE CHARACTER LOGICAL*4

I/7

Cu) DEC _ 20 Intrinsic Functions

Function Mnemonic Definition Number of
Arguments

Type of
Argument Function

Absolute value:

Real
Integer
Double preci—
sion Complex
to real

ABS*
IABS*
DABS*
CABS

erg
arg
ar
72+y I

2\1/2 c=x

1
1
1
1

Real
Integer
Double
Complex

Real
Integer
Double
Real

Conversion:
Integer to FLOAT*
real
Real to integer IFIX*

Sten of arg*

largest integer

1 Integer Real

<largl

Double to real SNGL
Real to double DBLE* 1 Double Real
Integer to do— DFLOAT 1 Real Double
uble 1 Integer Double
Complex to real REAL*
(obtain real
part)

1 Complex Real

Complex to real AIMAG
(obtain imagi—
nary part)

1 Complex Real

Real to complex C1APLX* c=Arg1+i*Arg2 2 Real Complex
Truncation:
Real to real AIN'T Sign of arg*

largest integer
1 Real Real

Clargl 1 Real Intecter

Real to int—
eger

INT* 1 Double Integer

Remaindering:
Real
Integer
Double pre—
cision

AMOD
MOD*
DMOD

The remainder
when Arg 1 is
divided by Arg 2

2
2
2

Real
Integer
Double

Real
Integer
Double

Maximum valuet
AMAXO
AMAX1*

>2 Integer Real

MAXO*
MAXI
DMAX1

MaX(ArgvArg2,...)
>o
>2
>2

Real
Integer
Real

Real
Inteaer
Integer

>2 Double Double

I/8

Function Mnemonic Definition Number of
Arguments

Type of
Argument Function

Minimum Volue:
AMINO >2 Integer Real
AMINI* >2 Real Real

MINO* Min(Arg1,Arg2,...) >2 Integer Integer

MINI >7 Real Integer
DMIN1 %2 Double Double

Transfer of Sign:
Real SIGN* 2 Real Real
Integer ISIGN sen(Arg2)*1 2 Integer Integer
Double precision USIGN 2 Double Double

Positive Difference:
Real DIM* Arg1—Min(Arg1tArg2) Real Real
Integer IDIM Integer Integer

Exponential:
Real EXP e

Arg 1 Real Real

Double
Complex

DEXP
CEXP

1
1

Double Double

Logarithm
Real Real

ALOG10
loge(Arg)
logio(Arg)

1
1

Real
Real

Real
Real

Double DLOG loge(%rg) 1 Double Double

Complex

DLOGIO
CLOG

login(Arg)
logeiArg)

1
1

Double
Complex

Double
Complex

Square Root:

Real
Double
Complex

SURT*
DO-ORT
CSCakT

(Arg)112 , r/2
Aro •

1
1
1

Real
Double
Complex

Real
Double
Complex

Sine:
Real(radians) SIN* 1 Real Real

Real(deprees) SIND 1 Real Real

Double(radians)
Complex

DSIN
(SIN

sin(Arg) 1
1

Double
Complex

Double
Complex

Cosine:
Real(radi ans)
Real(degrees)
Double(radians)
Complex

COS*
COSD
DCOS
CLOS

coa(Arg)

1 Real
Real
Double
Complex

Real
Real
Double
Complex

I/9

Function Mnemonic Definition Number of
Arguments

Type of
Argument Function

Hyperbolic:

Sine DINH sinh(Arg) 1 Real Real
Cosine COSH oosh(Arg) 1 Real Real
Tangent TANH tanh(Arq) 1 Real Real

Arc sine ASIN asin(Arg) 1 Real Real

Arc cosine ACOS acos(Arq) 1 Real Real

Arc tangent
Real
Double

ATAN*
SATAN

atan(Arg)
datan(.\rO)

1
1

Real
Double

Real
Dnuble

Two REAL argu-
ments

atan(Arg1/Arg2) 2 Real Reel

Tvig DOUBLE
arguments

SATAN) atan(Arg1/Arg2) 2 Double Double

Complex Conjugate CONJG Arg.=X+iY,
COUJG=X-iY

1 Complex Complex

Randos: Number RAN Result is a
random number
in the range
of 0 to 1.0.

1 Dummy
Argu-
'tent

Integer,
heal,
Double,
or

Real

Cnrplex

I/10

(iii) PDP-11 Intrinsic Functions

FORM DEFINITION ARGUMENT RESULT
TYPE TYPE

ABS(X) Real absolute value Real Real
IASS(I) Integer absolute value Integer Integer
DABS(X) Double precision absolute value Double
CABS(Z) Complex to Real,absolute value

where Z
l

xiY)„ ./A

Double

CABS(Z). x44-Yz)1/` Complex Real

FLOAT(I) Integer to Real conversion Integer Real
IFIX(X) Real to Integer conversion '

IFIX(X) is equivalent to INT(X) Real
.t retelger
Double

ENGLN Double to Real conversion
DBLE X

Double

REAL(Z)
Real to Double conversion Real
Complex to Real conversion,

Complex obtain real part
AIMAG(Z) Complex to Real conversion,

obtain imaginary part Complex Real
CMPLX(X,Y) Real to Complex conversion

CMPLX(X,Y)=X+i*Y Real Complex

AINT(X)
INT(X)
ICINT(X)

AMOD(X Y)
MOD(I 3)
DMOD(A,Y)

Truncation functions return the
sign of the argument * largest
integer < largi

Real to Real truncation
Real to Integer truncation
Double to Integer truncation

Remainder functions return the
remainder when the first argument
is divided by the second

Real remainder
Integer remainder
Double precision remainder

Real
Real
Double

Real
Integer
Double

Real
Integer
Integer

Real
Integer
Double

Maximum value functions return the
largest value from among the
argument list, >2 arguments.

AMAXO(I,J,...) Real maximum from Integer list Integer Real
AMAX1(X,Y,...) Real maXimum of Real list Real Real
MAXO(I.J....) Integer maximum of Integer list Integer Integer
MAXI(X,Y ..e) Integer maximum of Real list Real Integer
DIAX1 (X ,/ , ...) Double maximum 4 Double list Double Double

FORM DEFINITION ARGU:ENT RESULT
TYPE TYPE

Minimum value functions return the
smallest value from among the
argument list, >2 arguments.

AMINO(I J,...) Real minimum of Integer list
AMIN1(X:Y,...) Real minimum of Real list
MINT,J,...) Integer minimum of Integer list
ia N1 X,Y,...) Integer minimum of Real list
DMIN1(X,Y,...) Double minimum of Double list

The transfer of sign functions
return (sign of the second argument)
* (absolute value of first argument),

SIGN(X,Y) Real transfer of sign
ISIGN(I,J) Integer transfer of sign
DSIGN(X,Y) Double precision transfer of sign

Integer
Real
Integer
Real
Double

Real
Integer
Double

Real
Real
Integer
Integer
Double

Real
Integer
Double

DIM(X Y)

Positive difference functions return
the first argument minus the minimum
of the two arguments.

Real positive difference
Integer positive difference

Exponential functions return the
value of e raised to argument power.

Real
Integer

Real
Integer

EXP(X)
DEXP(X)
CEXP(Z)

ALOG(X
ALOG1(dX)
DLOG(X)
DLOGIp(X)
CLOG(Z)

SORT(X)
D:;,RT(X)

CS1F1T(Z)

ex Real Real
ex Double
ex Complex Complex nex

Returns loge(X)
Returns loglm(X)
Returns lociel(X)
Returns log10(X)
Returns loge of complex argument

Square root of Real argument Real Real
Square root of Double precision Double Double
argument
Square toot of complex argument Complex Complex

Real Real
Real Real
Double Double
Double Double

Complex Complex

1/12

FORM DEFINITION ARGUMENT
TYPE

RESULT
TY?E.

COS(X) Real cosine Real Real
0003 X) Double precision cosine Double Double
0003(1) Complex cosine Complex Complex

TANH(X) Hyperbolic tangent Real Real

ATA1.(X) Real arc tangent Real Real
DATAh(X) Double precision arc tangent Double Double
ATAR2(X,Y) Real arc tangent of (X/Y) Real Feel
o\TANs(X,Y) Double precision arc tangent of (X/Y) Double Double

cpt130(z) Complex conjugate, if Z=X.1.5.Y Complex Complex

RAN(I,J) Returns a random number of uniform
distributinn over the rangc 0 to 1.

Integer Real

I and J must be integer variables
and should be set initially to p
regenerates the random number sequ-
ence. Alternate starting values for
I and J will generate different
random number seguonces. 5ee also
Aopendix 0.3.

1/13

APPENDIX -II

(i) VAX-11 Library Subroutines

DATE

The DATE subroutines obtains the current date as set within the

system. The call to DATE has the form

CALL DATE(buf)

where:

buf

is a 9-byte variable, array, array element, or character substring. The

ing. The date is returned as a 9-byte ASCII character string of the

form.

dd-mm-yy

where:

dd

is the 2-digit date.

111MM

is the 3-letter month specification.

is the last two digits of the year.

IDATE

The IDATE subroutine returns three integer values representing

the current month, day, and year. The call to IDATE has the form

CALL IDATE(i,j,k)

If the current date were October 9, 1984, the values of the integer

variables upon return would be:

i = 10

j =9

j = 84

ERRSNS
The ERRSNS subroutine returns information about the most recent error

that has occurred during program execution.The cal to ERRSNS has the form

CALL ERRSNS(fnum,rmssts,rmsstv,iunit,condval)

where:

fnum

is an integer variable or array element into which is stored

the most recent FORTRAN error number.

A zero is returned if no error has occurred since the last call

to ERRSNS, or if no error has occurred since the start of execution.

rmssts

is an integer variable or array element into which is stored

the RMS completion status code(STS),if the last error was an RMS

I/O error

rmmstv

is an integer variable or array element into which is stored the

logical unit number, if the last error was an I/O error.

iunit

is an integer variable or array element into which is stored

the logical unit number,if the last error was an I/O error.

condval

is an integer variable or array element in which is stored the

actual VAX-11 condition value.

Any of the arguments may be null. If the arguments are of INTEGER*2 type,

only the low-order 16 bits of information are returned. The saved error

information is set to zero after each call to ERRSNS

EXIT

The EXIT subroutine causes program termination, closes all files, and

returns control to the operation system. A call to EXIT has the form

CALL EXIT[exit-status)]

11/2

where:

(exit-status)

is an optional integer argument which can be used to specify the

image exit-status value.

(E) SECNDS

The SECNDS function subprogram returns the system time in seconds as

a single-precision. floating -Point value less the value of its single-

precision, floating-point argument. The call to SECNDS has the form

y= SECNDS(x)

where:

is set equal to the time in seconds since midnight, minus the

user-supplied value of x.

The SECNDS function can be used to perform elapsed-time computations.

For example:

C START OF TIMED SEQUENCE

TI= SECNDS(0.0)

C CODE TO BE TIMED

DELTA = SECNDS(T1)

where:

DELTA

will give the elapsed time.

The voalue of SECNDS is accurate to 0.01 seconds, which is the resolu.-

tion of the system clock.

NOTES

1. The time is computed from midnight.

11/3

SECNDS also produces correct results

for time intervals that span midnight.

2. The 24 bits of precision provides accuracy

to the resolution of the system clock for

about one day. However, loss of significance

can occur if an attempt is made to compute very

small elapsed times late in the day. More

precise timing information can be obtained

using Run Time Library procedures:

LIBSINIT_TIMER
LIS$SHOW TIMER
LIE$STAT TIMER

(F) TIME

The TIME subroutine returns the current system time as an ASCII string.

The call to TIME has the form

CALL TIME(buf)

where buf is an 8-byte variable, array, array element, or character

substring.

The TIME call returns the time as an 8-byte ASCII character string

of the form

hh: mm: ss

where:

hh

is the 2-digit hour indication.

HIM

is the 2-digit minute indication.

SS

is the 2-digit second indication.

11/4

For example:

10:45:23

A 24 hour clock is used.

(G) RAN

The RAN function is a general random number generator of the multi-

plicative congruential type. The result is a floating-point number

that is uniformly distributed in the range between 0.0 (inclusive)

and 1.0 (exclusive). The call to RAN has the form:

y= RAN(i)

where:

is set equal to the value associated, by the function, with the

argument i. The argument i must be an INTEGER*4 variable or INTEGER*4

array element.

The' argument should initially be set to a large, odd integer value.

The RAN function stores a value in the argument that it later uses

to calculate the next random number.

There are no restrictions on the seed, although it should be initialized

with different values on separate runs in order to obtain different

random numbers, the seed is updated automatically. RAN uses the follow-

ing algorithm to update the seed passed as the parameter:

SEED = 69069 * SEED + 1 (MOD 2**32)

The value of SEED is a 32-bit number whose high-order 24 bits are con-

verted to floating point and returned as the result.

(ii) DEC-20 Library Subroutines

(A) DATE

Places today's date as left-justified ASCII characters into a

11/5

dimensioned 2-word array.

CALL DATE(array)

where array is the 2-word array. The date is in the form dd-mm-yy

where dd is a 2-digit day(if the first digit is 0, it is converted

to a blank), mmm is a 3-letter month(e.g.Mar.) and yy is a 2-digit

year. The data is stored in ASCII code, left-justified, in the

two words.

(B) DEFINEFILE

A DEFINEFILE call can be used to establish and define the struc-

ture of each file to be used for random access I/O operations.

The format of a DEFINEFILE may be

CALL DEFINEFILE (u,s,v,f,proj,prog)

where

u= logical FORTRAN device numbers.

s = the size of the records which comprise the file being defined.

The argument s may be an integer constant or variable.

v= an associated variable. The associated varilable is an integer

variable that is set to a value that points to the record that

immediately follows the last record transferred. This variable

is used by the FIND statement.

At the end of each FIND operation the variable is

set to a value that points to the record found. The variable

v can not appear in the I/O list of any I/O statement that

accesses the file 'et up by the DEFINEFILE statement

f = file name to be given to the file being defined.

proj= user's project number.

prog= user's programmer number

11/6

Example

The statement

CALL DEFINEFILE (1,10,ASCAR,I FORTEL.DAT',0.0)

Establishes a file named. PORTEL.DAT on device 01(i.e.,disk) which con-

tains word records. The associated variable is ASCVAR, and the file

is in the user's area.

(c) DUMP

Causes particular portions of core to be dumped and is referred

to in the form:

CALL DUMP (L1 1U1 1F1,....,L
n,Un

,F
n
)

where L
1 and U

1 are the variable names which give the limits of

core memory to be dumped. Either L1 or U
1 may be upper or lower

limits. F
1 is a number indicating the format in which the dump

is to be performed: 0=octal, 1=rea1,2=integer, and 3=ASCII.

If F is not 0,1,2,3, the dump is in octal. If F
n is missing, the

last section is dumped in octal. If U
n and Pn are missing, an

octal dump is made from L to the end of the job area. If L
n, Un

,

and F
n are missing, the entire job area is dumped in octal.

The dump is terminated by a call to EXIT.

(13) ERRSET

Allows the user to control the typeout of execution-time arithmetic

error messages, ERRSET is called with one argument in integer

mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed after N occu-

rrences of that error message. If ERRSET is not called, default

value of N is 2.

(E) EXIT

11/7

Returns control to the Monitor and, therefore, terminates the

execution of the program.

ILL

Sets the ILLEG flag. If the flag is set and an illegal character

is encountered in floating point/double precision input, the corres-

ponding word is set to zero.

CALL ILL

LEGAL

Clears the ILLEG flag. If the flag is set and an illegal character

is encountered in the floating point/double precision input, the

corresponding word is set to zero.

CALL LEGAL

PDUMP

CALL PDUMP(1,11U1 ,F1 , , L
n
,U

n
,F

n
)

The arguments are the same as those for DUMP.PDUMP is the same

as DUMP except that control returns to the calling program after

the dump has been executed.

RELEAS

CALL RELEAS(unit)

Closes out I/O on a device initialized by the FORTRAN Compiler

returns it to the uninitialized state.

SAVRAN

SAVRAN is called with one argument in integer mode. SAVRAN sets

its argument to the last random number(interpreted as an integer)

that has been generated by the function RAN.

SETABL

CALL SETABL(I,J)

Specifies a character set where I is an integer which gives the

11/8

the number of the desired character set. If a character set has

been defined by I, the value of J is set to 0; if not, J is set

to -1. The desired ASCII character set is defined as 1.

SETRAN

SETRAN has one argument which must be a non-negative integer

2
31. The starting value of the function RAN is set to one value

of this argument, unless the argument is zero. In this case, RAN

uses its normal starting value.

TIME

Returns the current time in its argument(s) in left-justified

ASCII characters. If TIME is called with One argument.

CALL TIME(X)

the time is in the form

hh:mm

where hh is the hours(24 hour time) and mm is the minutes.

If a second argument is requested,

CALL TIMS(X,Y)

the first argument is returned as before and the second has the

form

bss.t

where ss is the seconds, t is the tenths of a second, and b is

a blank.

11/9

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	2018-07-27 (1).pdf
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006

