TN-16

SYSTEM SPECIFIC PROGRAMME INPUTS FOR DOCUMENTED PROGRAMMES

A state

SATISH CHANDRA DIRECTOR

STUDY GROUP

DEEPA KARAWADE

NATIONAL INSTITUTE OF HYDROLOGY JAL VIGYAN BHAWAN ROORKEE-247667(UP)

1985-86

CONTENTS

		PAGE
	ABSTRACT	i
1.0	INTRODUCTION	1
2.0	PROBLEM DEFINITION	3
3.0	METHODOLOGY	4
4.0	CONCLUSION	18
	REFERENCES	19
	APPENDIX-A	

APPENDIX-B

ABSTRACT

FORTRAN is now used on all major computer systems. Major versions in vogue are FORTRAN, FORTRAN II and FORTRAN IV. Each new version made a few changes in the basic instruction of FORTRAN and included additional features. A FORTRAN program developed for a particuar computer can not be executed on other type of computers. To make it executable for other computers, some statements of the FORTRAN program are required to be mødified according to the FORTRAN compiler of that computer.

This report described various modifications, necessary for successfully implementing a FORTRAN program on DEC-2050, PDP-11 and UNIVAC-1100 which has been developed on VAX-11 and vice versa.

1.0 INTRODUCTION

Today computers, with their fantastic speed and accuracy, are becoming powerful tools for problem solving in diverse fields including scientific, research, business, medicine, school, house management etc.

The problem of working with the computers is that they can interpret and execute only those instructions which are written in the machine language (low level language), which is very complex and cumbersome to use. However, high level languages like FORTRAN, COBOL, BASIC etc. have been developed which are much easier for humans to use. FORTRAN, the most widely used language for scientific and research work has been discussed here.

1.1 The FORTRAN language

FORTRAN(an acronym for FORmula TRANslation) is the most widely used of a class of high-level languages called scientific and algebraic languages. It is available for use on almost all computers. Although not limited to mathematical problems, it is especially useful for problems that can be stated in terms of formulas or arithmetic procedures.

FORTRAN is a machine-independent language for instructing a computer. In other words, the programmer using FORTRAN does not need to know any machine-level details for the computer being used. The language is procedure-oriented, designed for instructing the computer in a problem-solving procedure. The language consists of a vocabulary of symbols and words and a grammer of rules for writing procedural instructions. The symbols, words and rules utilize many common mathe-

matical and English-language conventions so that the language is fairly easy to learn and to understand. The rules are, however, precise and must be followed with care. In other words learning FORTRAN is like learning a special-purpose language. There are rules of construction and vocabulary to learn, and one becomes proficient by doing rather than by much reading.

1.2 Review of FORTRAN Development

FORTRAN was developed in 1957 by IBM in conjunction with some major users, but it is now used on all major computer systems. FORTRAN has changed and evolved. This evolutionary process resulted, during the development period, in several FORTRANs of increasing complexity. Major versions were called FORTRAN, FORTRAN II and FORTRAN IV. Each new version made a few changes in the basic instructions and included additional features. In 1966, a voluntary FORTRAN standard, American National Standard(ANS) FORTRAN, was adopted. The International Standards Organisation(ISO) also defined standard FORTRAN.

A revised American National Standard (ANS) FORTRAN was adopted in 1977. This 1977 standard adds features to the previous 1966 standard FORTRAN, clarifies some ambiguities, and makes a few minor changes. The teaching-oriented compilers were designed to provide excellent error-diagnostic messages for students, do fast execution of small student programs, and relax some error-prone features of FORTRAN. The new 1977 FORTRAN standard adopted the most significant features of the teaching oriented FORTRANs, so the American National Standard FORTRAN is recommended as the basis for all FORTRAN programming, by students as well as by professional programmers.

2.0 PROBLEM DEFINITION

A FORTRAN program, developed for a particular computer can not be executed on other type of computers. To make it executable for other computers, some statements of the FORTRAN program are required to be modified according to the FORTRAN compiler of that computer. The objective of the present work is to discuss the various necessary changes for successfully implementing a FORTRAN programme on DEC-20/ PDP-11/UNIVAC-1100 which has been developed on VAX-11 and vice versa.

The compatibility between VAX-11 FORTRAN and other systems FORTRAN will be of great use to FORTRAN programmers.

The VAX-11 is a family of DIGITAL'S 32 bit minicomputers. It is a fully integrated computer system with a powerful virtual memory operating system. VAX-11 supports a 32-bit word architecture thereby establishing a virtual address space of 2.32 M bytes for user application.

The DEC-2050 is a medium scale computer and features a high performance, virtual memory system that provides a multitasking, multiprogramming environment to support concurrency, time sharing and batch processing. The TOPS-20 operating system supports a 36-bit word architecture and 2.4M bytes of high speed memory.

The PDP-11 computer family is a wide range of compatible processors complemented by a variety of peripheral devices and software. A variety of operating systems, languages and communications software are available for the PDP-11 computer family such as RT-11, DSM-11, RSTS/E, RSX-11 etc.

The Sperry UNIVAC 1100 series computer is a time sharing, multiprocessor system which supports a 9 bit-byte and 36 bit word architecture.

3.0 METHODOLOGY

The VAX-11 FORTRAN is based on the American National Standard FORTRAN 77(ANSI x 3.9-1978). The DEC-2050 and PDP-11 FORTRAN is based on the previous standard (ANSI x 3.9-1966). The UNIVAC FORTRAN has also been written in accordance with the specification of ANSI x 3.9 -1966 FORTRAN and is a superset of it. As a result there are certain incompatibilities listed below:

3.1 Open Statement

An OPEN statement either connects an existing file to a logical unit, or creates a new file and connects it to a logical unit. In addition, it can specify file attributes that control file creation and/or subsequent processing.

3.1.1 In the VAX-11 FORTRAN, the OPEN statement contains the keyword BLANK which controls the interpretation of blanks in the numeric field. BLANK='ZERO' specifies all blanks other than leading blanks to be treated as zeroes. BLANK='NULL'specifies all blanks to be treated as blanks. If the total field is blank it is treated as zero. The default value is 'NULL'.

There is no BLANK keyword in OPEN statement of DEC-2050 FORTRAN and the interpretation of blanks is equivalent to BLANK='ZERO'.

There is no BLANK keyword in the PDP-11 FORTRAN.

There is no OPEN statement in UNIVAC FORTRAN and the unit reference number is linked to the external file name using commands. The interpretation of blanks is equivalent to BLANK='ZERO'. 3.1.2 The STATUS or TYPE keyword in the open statement in VAX-11 FORTRAN specifies the initial status of the file ('OLD','NEW','SCRATCH' or 'UNKNOWN'). The default value is 'UNKNOWN'. There is no STATUS or TYPE keyword in the DEC-20 FORTRAN.

In PDP-11 FORTRAN the keyword TYPE is used, instead of STATUS and it has the same values 'OLD', 'NEW', 'SCRATCH'or 'UNKNOWN'.

3.1.3 The file is specified by the FILE or NAME keyword in VAX-11 FORTRAN where as in DEC-2050 FORTARN only FILE keyword is used and in PDP-11 FORTRAN only NAME keyword is used

3.1.4 The device on which the file exists or it is to be created is specified by the keyword DEVICE='DSK' in DEC-20 FORTRAN. There is no such keyword in VAX-11 or PDP-11 FORTRANS.

The general form of OPEN statemnets used in various FORTRANs are as follows:

i) VAX-11: OPEN(UNIT=n, FILE='filespec 'STATUS='v')
ii) DEC-20: OPEN(UNIT=n,DEVICE='DSK',FILE='filespec')
iii)PDP-11:OPEN(UNIT=n,NAME='filespec',TYPE='v')
where'v'='OLD' or 'NEW.'

The key words and their values in the OPEN statements of the VAX -11, DEC-2050 and PDP-11 FORTRAN are listed below:

(i) VAX-11

Keyword	Values	Function	Default
ACCESS	'SEQUENTIAL' 'DIRECT'	Access method	'SEQUENTIAL'
	'KEYED' 'APPEND'		

ASSOCIATEVARIABLE	v	Next direct	
		access record	
BLANK	'NULL'	Interpretation	'NULL'
	'ZERO'	of blanks	
BLOCKSIZE	е	Physical block	System default
		Size	
BUFFERCOUNT	e	Number of I/O	System default
		Buffers	
CARRIAGECONTROL	'FORTRAN'	Print	'FORTRAN'
	'LIST'	control	(formatted)
	'NONE'		'NONE'
			(Unformatted)
DISPOSE or DISP	'KEEP'or'SAVE'	File disposi-	'KEEP'
	'DELETE'	tion at close	
	'PRINT'		
	'PRINT/DELETE'		
	'SUBMIT'		
	'SUBMIT/DELETE		
ERR	s	Error transfer	
		label	
EXTENDSIZE	е	File allo-	Volume or
		cation	System default
		increment	
FORM	'FORMATTED'	Format type	Depends on
	'UNFORMATTED'		ACCESS keyword
FILE OF NAME	c	File name	
		specification	
INITIALSIZE	е	File allocation	

IOSTAT		Input/output	
KEY	el:e2(:INTEGER)	Status) Key field	
	(:CHARACTER)	definitions	
	e	Direct access	
		record limit	
NOSPANBLOCKS	Sec. Sec. Sec.	Records do not	
NOBFANDLOCKS		span blocks	
	LODOUDNELAL		
ORGANIZATION	'SEQUENTIAL'	File structure	'SEQUENTIAL'
	'RELATIVE'		
	'INDEXED'	4	
READONLY		Write protection	
RECL OF RECORD SIZE	e	Record length	As specified at file creation
RECORDTYPE	'FIXED'	Record	Depends on ORGANIZATION,
	'VARIABLE'	· · · · · · · · · · · · · · · · · · ·	ACCESS, and FORM keywords
	'SEGMENTED'		
SHARED	-	File sharing	
		allowed	
STATUS OF TYPE	'OLD'	File status	'UNKNOWN '
	'NEW'	at open	
	'SCRATCH'		
	'UNKNOWN '		
UNIT	e	Logical unit	
		number	
USEROPEN	р	User program	
		option	

Key: e is a numeric expression

v is an integer variable name

el is the first byte position of a key

e2 is the last byte position of a key

- p is an external function
- s is a statement label
- c is a character expression, numberic array name, numeric variable name, or numeric array element name

(ii) DEC-2050

Argument	Values Required
UNIT=	Integer variable or constant
MODE=	Literal constant or variable
DIRECTORY=	Literal or variable
FILESIZE	Integer constant or variable
BUFFERCOUNT	Integer constant or variable
ASSOCIATEVARIABLE	Integer variable
ACCESS	'SEQIN', 'SEQOUT', 'SEQUINOUT', 'RANDIN',
	'RANDOM', 'APPEND'or variable
FILE=	Literal constant or variable
DIALOG=	Literal or array
BLOCKSIZE	Integer constant or variable
VERSION=	Octal constant or variable
DEVICE=	Literal constant or variable
PROTECTION=	An octal constant or integer variable
DISPOSE=	Literal constant or variable
RECORDSIZE	Integer constant or integer variable

PARITY=

DENSITY=

Literal constant or variable Literal constant or variable

(iii) PDP-11

		and the second second second
Keyword	Function	Values
UNIT	logical unit number	e
NAME	file specification	n
ΤΥΡΕ	file type	'OLD' 'NEW' 'SCRATCH' 'UNKNOWN'
ACCESS	access method	'SEQUENTIAL' 'DIRECT' 'APPEND'
READONLY	read-only file access	
FORM	file format	'FORMATTED' 'UNFORMATTED'
RECORDSIZE	direct access record length	е
ERR	error condition transfer label	S
BUFFERCOUNT	number of buffers	е
INITIALSIZE	file allocation size	е
EXTENDSIZE	file extension increment	е
NOSPANBLOCKS	unspanned records	
SHARED	shared file access	
DISPOSE or DISP	file disposition	'SAVE' 'KEEP' 'PRINT' 'DELETE'

ASSOCIATEVARIABLE associated variable v name CARRIAGECONTROL carriage control type 'FORTRAN' 'LIST' 'NONE' MAXREC number of direct access е records BLOCKSIZE physical block size e e is a numeric expression. n is a variable name, array name, array element name, or alphanumeric literal. S is an executable statement lable.

'DELETE'

is an integer variable name.

3.2 DO STATEMENT

v

The DO statement controls interative porcessing. There are two types of DO statements in VAX FORTRAN

1) The indexed DO

2) The pretested indenfinite DO or the DO WHITE statement. The DEC-20, PDP-11 and UNIVAC-1100 support only the indexed DO statements. The general form of indexed DO is:

DO s v= e_1, e_2, e_3

where s is the label of an executable statement.

v is an integer or real variable

e₁, e₂, e₃ are airthmetic expresions

The numbers of executions of Do loop, called the interaction count

is given by:

 $(e_2 - e_1 + e_3) / e_3$ In VAX-11 FORTRAN, if the iteration count of the DO loop is zero or negative, the DO loop is not executed at all.

In the DEC-20, UNIVAC-1100 and PDP-11 FORTRAN, the DO loop is always executed at least once.

In the UNIVAC FORTRAN, the DO loop index can be only an integer variable and the DO loop parameter may be integer expressions. In the PDP-11, DEC-20 and VAX-11 FORTRAN they may be real variable and real expressions.

In VAX-11, PDP-11 and DEC-20 FORTRAN, the DO loop iteration count is calculated at start of DO loop and decremented at each step. When it count = 0, execution of DO loop is terminated.

IN UNIVAC FORTRAN, first the DO loop is executed once, then the DO loop index, 'i', is incremented by e3 and if (e2-i)-e3 is negative, execution of DO loope is stopped.

The DO WHILE statement available in VAX FORTRAN has the form DOSWHILE(e) where s is a statement label(optional) and e is a logical expression

Example DO WHILE(I.GT J)

ARRAY(I, J) = 10

I = I - 1

END DO

3.3 IF statement

The IF statement conditionally transfer control, or conditionally execute a statement or block of statements.

All the four systems support the arithmetic IF and logical IF statements but the block IF statements are supported by the VAX-11

FORTRAN only. The block IF statements conditionally execute blocks of statements. The four block IF statements are

1) IF THEN

- 2) ELSE IF THEN
- 3) ELSE
- 4) END IF

The block IF construct has the form:

IF(C) THEN

: block

ELSE IF (C) THEN

10 1.....

block

:

ELSE

: block

END IF

where e is a logical expression and block is a sequence of complete Fortran statements.

A block IF construct may contain any number of IF THEN ELSE statments.

Example:

IF(A.GT.B) THEN

D=B

F= A-B

```
ELSE IF (A.GT.C)THEN
```

D=C

F=A-C

ELSE IF (A.GT.2)THEN

D=2

F=A - 2

ELSE

D=0.0

F=A

END IF

3.4 Array dimensions

In VAX-11 and PDP-11 , UNIVAC-1100 FORTRAN, an array can have upto 7 dimensions, whereas in DEC-20 FORTRAN an array can have any number of dimensions.

3.5 Symbolic Names

VAX-11 FORTRAN allows symbolic names upto 31 characters consisting of letters, digits, dollar sign(\$) and underline(_, but the first character must be a letter. PDP-11 and DEC-20 FORTRAN allow symbolic names of any alphanumeric combination of one to six characters only. If the symbolic name consists of more than 6 characters then first six characters are considered and the remaining are ignored.

3.6 Data Types

VAX-11 FORTRAN and UNIVAC-11 support REAL*16, COMPLEX *16 and CHARACTER data types. There is no CHARACTER data type and double precision COMPLEX in PDP-11 and DEC-20 FORTRAN.

3.6.1 Numeric Data

VAX-11 supports the following data types: 1.Integer *2,Integer *4, Integer *8

- 2. Real *4
- 3. Real*8(Double precision)

4. Real *16

- 5. Complex *8(a pair of Real *4 values)
- 6. Complex *16(a pair of complex *8 values)
- 7. Logical
- 8. Octal and hexadecimal

9. Hollorith.

The DEC-2050 and PDP-11 supports:

1. Integer

2. Real

- 3. Double precision
- 4. Complex
- 5. Logical
- 6. Literal
- 7. Octal
- 8. Hollerith

3.6.2 Character data:

In VAX-11 and UNIVAC-1100 FORTRAN, character data is specified by a CHARACTER declaration statement. There can be character substrings, character operators, character expressions, and character assignment statements. In PDP-11 and DEC-20 FORTRAN there is no such data type. The only character operator is the concatenation operator//which is in VAX and UNIVAC systems.

3.7 EXTERNAL statement

In VAX-11 and UNIVAC-1100 FORTRAN, the EXTERNAL statement speci-

fies that the procedure is a FORTRAN supplied function. There is no INTRINSIC statement in UNIVAC. If a FORTRAN supplied function name appears in an EXTERNAL statement it is treated as a user supplied function.

3.8 Format descriptors

The X format edit descriptor in VAX-11 FORTRAN does not modify the character position skipped and length of output record is not extended. In DEC-20 FORTRAN the X-editor writes blanks and may extend the output record.

The VAX-11 supports the following field descriptions

	Integer	- Iw, Zw, Iwm, Zwm
	Octal	-Ow, Owm
	Logical	-Lw
	Real and Complex	- Fw.d, Ew.d, Dw.d, Gw.d, Ew.dEc, Gw.d Ec
	Character	-Aw
	Character and Hollerith constant	-nH
	Edit descriptors	- nX, Tn, TLn, TRn, nP, Q, \$, BN, BZ, S, SP, SS.
The DE	C-20 supports:	
	Integer	-Iw
	Octal	-Ow
	Logical	-Lw
	Real and Complex	-Fw.d, Ew.d, Dw.d, Gw.d
	Alpha numeric	-Aw, Rw
	Hollerith and Literal Constant	-nH, 'text'
	Edit descriptors	-nX,Tw

The UNIVAC supports:

Integer	-Iw, Iw.d, Jw.
Octal	-Ow
Logical	-Lw
Real and Complex	-Fw.d, Ew.d, Ew.d Dc, Dw.d, Gw.d
Alpha Numeric	-Aw,Rw
Literal and Holl- erith Constant	-nH,'text'
Edit descriptors	-nX,Tw,nP, \$

The PDP-11 supports:

Integer	- Iw
Octal	-Ow
Real and complex	-Fw.d, Ew.d, Dw.d, Gw.d
Literal and Holl- erith constant	- nH
Alpha numeric	-Aw
Edit descriptors	−nX,Tw,Q,\$, nP

3.9 In UNIVAC FORTRAN comment lines can begin only with C in column 1. In line comments are preceded by @. In PDP-11, comments lines begin with C or c in column 1. DEC system allows C, \$,1, or * in column 1, while VAX-11 FORTRAN allows C, * or ! in column 1 for lines to be treated as comment lines. In line comments in PDP-11, DEC-20 and VAX-11 and preceded by !

3.10 Variable and Run Time formats are allowed on VAX, PDP and UNIVAC but not on DEC-20.

3.11 IN UNIVAC FORTRAN, the DIMENSION and TYPE declarator statements

allow initialisation of variables. This is not allowed on any of the other systems.

3.12 Intrinsic functions available on various systems are listed in Appendix-A.

3.13 Library subroutines available on various system are explained in APPENDIX-B.

4.0 CONCLUSION

FORTRAN language differs from computer to computer in only minor respects. The report has illustrated a comparative study of the FORTRAN language using the facilities of VAX-11, DEC 2050, PDP-11 and UNIVAC-1100. The compatability between VAX-11 FORTRAN and other systems FORTRAN will be of great use to the computer programmers.

REFERENCES

- 1. DEC-2050 FORTRAN Language reference Mannual
- 2. Davis and Hoffmann, FORTRAN 77: A Structured, Disciplined Style, International Student Edition.
- 3. Maynerd, J.Computer Programming made simple Twentieth Century Publications, New Delhi.
- 4. PDP-11 FORTRAN Language Reference Mannual, Digital Equipment Corporation, USA.
- 5. VAX-11 FORTRAN Language Reference Mannual, Digital Equipment Corporation, USA.

(i) VAX-11 1 Functions	Intrinsic Fund	Generic	Specific	Type of	Type of
A dire di citis	Arguments	Name	Name	Argument	Result
Square Root	1	SQRT	SQRT DSQRT QSQRT	REAL*4 REAL*8 REAL*16	REAL*4 REAL*8 REAL*16
a ^{1/2}			CSQRT CDSQRT	COMPLEX*8 CCMPLEX*16	COMPLEX*8 COMPLEX*16
Natural Logarithm	1	LOG	ALOG DLOG QLOG	REAL*4 REAL*8 REAL*16	REAL* 4 REAL*8 REAL*16
logea			CLOG CDLOG	COMPLEX*8 COMPLEX*16	CCMPLEX*8 COMPLEX*16
Common Logarithm	1	LOGIO	ALOGIO DLOGIO	REAL*4 REAL*8	REAL*4 REAL*9
log ₁₀ a			QLOCIO	REAL*16	REAL* 16
Exponential e ^a	1	EXP	EXP DEXP QEXP	REAL*4 REAL*8 REAL*16	REAL*4 REAL*8 REAL*16
			CEXP CDEXP	COMPLEX*8 COMPLEX*16	COMPLEX*8 COMPLEX*16
Sine	1	SIN	SIN DSIN QSIN	REAL*4 REAL*8 REAL*16 COMPLEX*0	REAL*4 REAL*8 REAL*16 COMPLEX*8
Sin a			CSIN CDSIN	COMPLEX*8 COMPLEX*16	COMPLEX*8 COMPLEX*16
Cosine	1	COS	COS DCOS QCOS	REAL*4 REAL*8 REAL*16	REAL*4 REAL*8 REAL*16
Cos a			CCOS CDCOS	COMPLEX*8 COMPLEX*16	COMPLEX*8 COMPLEX*16
Tangent	1	TAN	TAN DTAN	REAL*4 REAL*8	REAL*4 REAL*8
Tan a			QTAN	REAL*16	REAL*16
Arc Sine	1	ASIN	ASIN DASIN	REAL*4 REAL*8	REAL*4 REAL*8
Arc Sin a			QASIN	REAL*16	REAL*16
Arc Cosine	1	ACOS	ACOS DACOS	REAL*4 REAL*8	REAL*4 REAL*8
Arc Cos a			QACOS	REAL*16	REAL*16

Functions	Number of Arguments	Generic Name	Specific Name	Type of Argument	Type of Result
Arc Tangent	1	ATAN	ATAN DATAN	REAL*4 REAL*8	REAL*4 REAL*8
Arc Tan a			QATAN	REAL*16	REAL*16
Arc Tangent	2	ATAN2	ATAN2 DATAN2	REAL*4 REAL*8	REAL*4 REAL*8
Arc Tan a1/a2			QATAN2	REAL*16	REAL*16
Hyperbolic Sine Sinh a	1	SINH	SINH DSINH QSINH	REAL*4 REAL*8 REAL*16	REAL*4 REAL*8 REAL*16
Hyperbolic Cosine	1	COSH	COSH DCOSH QCOSH	REAL*4 REAL*8 REAL*16	REAL*4 REAL*8 REAL*16
Hyperbolic Tangent Tanh a	l	TANH	TANH DTANH QTANH	REAL*4 REAL*8 REAL*16	REAL*4 REAL*8 REAL*16
Absolute value [a]	l	ABS	HABS JIABS ABS DABS QABS CABS CDABS	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16 COMPLEX*8 COMPLEX*16	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16 REAL*4 REAL*8
		IABS	HABS	INTEGER*2	INTEGER*2
Truncation a	1	INT	HNT JINT HDINT JIDINT HQINT JIQINT	REAL*4 REAL*4 REAL*8 REAL*16 REAL*16 COMPLEX*8 COMPLEX*8 COMPLEX*16 COMPLEX*16	INTEGER*: INTEGER*: INTEGER*: INTEGER*: INTEGER*: INTEGER*: INTEGER*: INTEGER*: INTEGER*:
		IDINT	HDINT JIDINT	REAL*8 REAL*8	INTEGER*
		IQINT	HQINT JIQINT	REAL*16 REAL*16	INTEGER*

Functions	Number of Arguments	Ceneric Name	Specific Name	Type of Argument	Type of Result
		AINT	AINT DINT QINT	REAL*4 REAL*8 REAL*16	REAL*4 REAL*8 REAL*16
Nearest Integer	1	NINT	IN INT JN INT HDNNT JIDNNT HQNNT JIQNNT	REAL*4 REAL*4 REAL*8 REAL*8 REAL*16 REAL*16	INTEGER*2 INTEGER*4 INTEGER*2 INTEGER*4 INTEGER*2 INTEGER*4
		IDNINT	HDNNT JIDNNT	REAL*8 REAL*8	INTEGER*2 INTEGER*4
		IQNINT	HQNNT JIQNNT	REAL*16 REAL*16	INTEGER*2 INTEGER*4
		ANINT	AN INT DN INT QN INT	REAL*4 REAL*8 REAL*16	REAL*4 REAL*8 REAL*16
Conversion to REAL*4	1	REAL	FLOATI FLOATJ SNGL SNGLQ	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16 CCMPLEX*8 COMPLEX*16	REAL*4 REAL*4 REAL*4 REAL*4 REAL*4 REAL*4 REAL*4
Conversion to REAL*8	1	DBLE	DBLE DBLEQ	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16 COMPLEX*8 COMPLEX*16	REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8 REAL*8
Conversion to REAL*16	l	QEXT	QEXT QEXTD - -	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16 COMPLEX*8 COMPLEX*16	REAL*16 REAL*16 REAL*16 REAL*16 REAL*16 REAL*16 REAL*16
ix	ı	IFIX	HFIX JIFIX	REAL*4	INTEGER*2

(REAL*4-to-integer conversion)

		1		1			
Functions	Number of Arguments	Generic Name	Specific Name	Type of Argument	Type of Result		
Float	1	FLOAT	FLOATI FLOATJ	INTEGER*2 INTEGER*4	REAL*4 REAL*4		
(integer-to_REAL *4 convers	ion)						
REAL*8 Float	1	DFLOAT	DFLCTI DFLCTJ	INTEGER*2 INTEGER*4	REAL*8 REAL*8		
(integer-to-REAL*8 conversion							
REAL*16 Float	l	QFLOAT		INTEGER*2 INTEGER*4	REAL*16 REAL*16		
(Interger to REAL*16 conve	rsion)						
Conversion to COMPLEX*8	1,2 1,2	CMPLX	-	INTEGER*2 INTEGER*4	COMPLEX*8 COMPLEX*8		
COMPLEX*8 from Two Arguments	1,2 1,2 1,2 1,2 1			REAL*4 REAL*8 REAL*16 COMPLEX*8 COMPLEX*16	COMPLEX*8 COMPLEX*8 COMPLEX*8 CCMPLEX*8 COMPLEX*8		
Conversion to COMPLEX*16 or COMPLEX*16 from Two Arguments	1,2 1,2 1,2 1,2 1,2 1,2 1,2 1	DCMPLX		INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16 COMPLEX*8 COMPLEX*16	COMPLEX* M COMPLEX* M COMPLEX* M COMPLEX* M COMPLEX* M COMPLEX* M		
Real Part of Complex	1	- 50	REAL	COMPLEX*8 COMPLEX*16	REAL*4 REAL*8		
Imaginary Part of Complex	l	-	AIMAG DIMAG	COMPLEX*8 COMPLEX*16	REAL*4 REAL*8		
Complex From Two Arguments	(See Con Convers	nversion to sion to COMP	COMPLEX*8 and LEX*16)				
Complex Conjugate (if $a=(X,Y)$ CONJG $(a)=(X,-Y)$	l	CONJG	CONJG DCONJG	COMPLEX*8 COMPLEX*16	COMPLEX*8 COMPLEX*16		
REAL*8 product of REAL*4's a1a2	2		DPROD	REAL*4	REAL*8		

Functions	Number of Arguments	Ceneric Name	Specific Name	Type of Argument	Type of Result
Maximum max(a _l ,a ₂ a _n) (retuns the maximum	n	MAX	IMAXO JMAXO AMAXI DMAXI QMAXI	INTEGER*2 INTEGER*4 REAL*4 REAL*8	INTEGER*2 INTEGER*4 REAL*4 REAL*8
value from among the argument list, there mu least two arguments)	st be at	MAXO	IMAXO JMAXO	REAL*16 INTEGER*2 INTEGER*4	REAL*16 INTEGER*2 INTEGER*4
rease two arguments)		MAXI	IMAXI JMAXI	REAL*4 REAL*4	INTEGER*2 INTEGER*4
		AMAXO	AIMAXO AJMAXO	INTEGER*2 INTEGER*4	REAL*4 REAL*4
Minimum [.] min(a ₁ ,a ₂ a _n) (returns the minimum va among the argument list		MIN	IMINO JMINO AMINI DMINI QMINI	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16
there must be at least farguments)	two	MINO	IMINO JMINO	INTEGER*2 INTEGER*4	INTEGER*2 INTEGER*4
		MINI	IMINI JMINI	REAL*4 REAL*4	INTEGER*2 INTEGER*4
		AMINO	AIMINO AJMINO	INTEGER*2 INTEGER*4	REAL*4 REAL*4
Positive Difference a ₁ -(min(a ₁ ,a ₂)) returns the first argu- ment minus the minimum	2	DIM	HDIM JIDIM DIM DDIM QDIM	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16	INTEGER* INTEGER*4 REAL*4 REAL*8 REAL*16
of the two arguments)		IDIM	HDIM JIDIM	INTEGER*2 INTEGER*4	INTEGER*2 INTEGER*4
Remainder 1,a ₂ (a ₁ /a ₂) returns the remainder when the first argu- ment	2	MOD	IMOD JMOD AMOD DMOD QMOD	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16

Functions	Number of Arguments	G e neric Name	Specific Name	Type of Argument	Type of Result
Transfer or Sign a _l *Sign a ₂	2	SIGN	IISICN JISICN SIGN DSIGN QSIGN	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16	INTEGER*2 INTEGER*4 REAL*4 REAL*8 REAL*16
		ISIGN	IISIGN JISIGN	INTEGER*2 INTEGER*4	INTEGER*2 INTEGER*4
Bitwise AND (performs a logical AND on corresponding bits)	2	IAND	IIAND JIAND	INTEGER*2 INTEGER*4	INTEGER*2 INTEGER*4
Bitwise OR (performs an inclusive OR on corresponding bits)	2	IOR	IIOR JIOR	INTEGER*2 INTEGER*4	INTEGER*2 INTEGER*4
Bitwise Exclusive OR (performs an exclusive OR on corresponding bit	2 s)	IEOR	IIEOR JIEOR	INTEGER*2 INTEGER*4	INTEGER*2 INTEGER*4
Bitwise Complement (complements each bit)	1	NOT	INOT JNOT	INTEGER*2 INTEGER*4	INTEGER*2 INTEGER*4
Bitwise Shift (a ₁ logically shifted left a ₂ bits)	2	ISHFT	IISHFT JISHFT	INTEGER*2 INTEGER*4	INTEGER*2 INTEGER*4
Length (returns length of the character expression)	l	-	LEN	CHARACTER	INTEGER*4
<pre>Index (C₁,C₂) (returns the position of the substring c₂ in the character expression c₁)</pre>	2	-	INDEX	CHARACTER	INTEGER*⊿
Character (returns a character that has the ASCII value specified by the argument)	1	-	-CHAR	LOGICAL*1 INTEGER*2 INTEGER*4	CHARACTER

Functions	Number of Arguments	Generic Name	Specific N _a me	Type of Argument	Type of Result
ASCII Value (returns the ASCII value of the argument, the argument must be a character expression that has a length of 1)		-	ICHAR	CHARACTER	INTEGER*4
Character relationals (ASCII collating sequence)	2 2 2 2 2	Ē	LLT LLE LGT LGE	CHARACTER CHARACTER CHARACTER CHARACTER	LOGICAL*4

Function	Mnemonic	Definition	Number of Arguments	Type Argument	of Function
Absolute value:				к. Т	
Real Integer Double preci- sion Complex to real	ABS* IABS* DABS* CABS	argargargc=(x2+y2)1/2	1 1 1 1	Real Integer Double Complex	Real Integer Double Real
Conversion: Integer to real Real to integer	FLOAT*	Sign of arg*	1	Integer	Real
Double to real Real to double Integer to do- uble	SNGL DBLE* DFLOAT	<u>≤</u> [arg]	1 1 1	Double R _{eal} Integer	R _e al Double Double
Complex to real (obtain real part)	. REAL*		1	Complex	R _{eal}
Complex to real (obtain imagi- nary part)	AIMAG		1	Complex	Real
Real to complex Truncation:	CMPLX*	c=Arg1+i*Arg2	2	R _{eal}	Complex
Real to real	AINT	Sign of arg* largest integer	1	Real	Real
		<u>≺</u> arg	1	Real	I _n teger
Real to int- eger	INT*		1	Double	Integer
Remaindering: Real Integer Double pre- cision	AMOD MOD* DMOD	The remainder when Arg 1 is divi ded by Arg 2	2 2 2	R _{eal} I _n teger Double	Real Integer D _o uble
M _a ximum value:	AMAXO AMAX1* MAXO* MAX1 DMAX1	Max(Arg ₁ ,Arg ₂ ,)	22 22 22 22 22 22	I _n teger Real I _n teger Real D _o uble	Real Real Integer Integer Double

(ii) DEC _ 20 Intrinsic Functions

Function	Mnemonic	Definition	Number of Arguments	Type Argument	of Function
Minimum Value:			20	T	D - 1
	AMINO AMINI*		22 22 22 22 22 22	Integer Real	Real Real
	MINO*	Min(Arg,,Arg,)	$\overline{2}^{2}$	Integer	Integer
	MINI	1 2	<u>2</u> 2	Real	Integer
	DMIN1		22	Double	Double
Transfer of Sign:					
Real Integer	SIGN* ISIGN	Sgn(Arg ₂)* Arg ₁	2 2 2	Real Integer	Real Integer
Double precision	DSIGN	-gmm1927 101911	2	Double	Double
Positive Difference				Real	Peol
Real Integer	DIM* IDIM	Arg1-Min(Arg1,Arg2) 2 2	Real Integer	Real Integer
Exponential:		eArg	strand a	Real	Real
Real	EXP DEXP	e	1	Double	Double
Double Complex	CEXP		ī	Complex	Complex
Logarithm	1100	log (Arg)	1	Real	Real
Real	ALOG ALOG10	log _e (Arg) log ₁₀ (Arg)	î	Real	Real
Double	DLOG	log _e (Arg)	1	Double	Double
00010	DLOG10	log (Arg)	1	Double	Double
Complex	CLOG	log _e (Arg)	1	Complex	Complex
Square Root:	CODTA	$(1 - 1)^{1/2}$	1	Real	Real
Real	SQRT* DSQRT	$(\operatorname{Arg})^{-1}/2$	1	Double	Double
Double Complex	CSQRT	$(Arg)^{1/2} (Arg)^{1/2} (Arg)^{1/2} (Arg)^{1/2}$	ī	Complex	Complex
Sine:			,	Real	Real
Real(radians)	SIN* SIND		1	Real	Real
Real(degrees) Double(radians)	DSIN	sin(Arg)	1	Double	Double
Complex	CSIN		1	Complex	Complex
Cosine:	COS*		1	Real	Real
Real(radians) Real(degrees)	COSD		1	Real	Real
Double(radians)	DCOS	cos(Arg)	1	Double Complex	Double Complex
Complex	CCOS		+	-Out-T-N	0

Function	Mnemonic	Definition	Number of Arguments	Type Argument	of Function
Hyperbolic:					
Sine	SINH	sinh(Arg)	1	Real	Real
Cosine	COSH	cosh(Arg)	1	Real	Real
Tangent	TANH	tanh(Arg)	1	Real	Real
Arc sine	AJIN	asin(Arg)	1	Real	Real
Arc cosine	ACOS	acos(Arg)	1	Real	Real
Arc tangent Real Double Two REAL argu- ments	ATAN* DATAN ATAN2*	atan(Arg) datan(Arg) atan(Arg ₁ /Arg,	$\frac{1}{1}$	Real Double Real	Real Double Real
Two DOUBLE arguments	DATAN2	atan(Arg1/Arg2		Double	Double
Complex Conjugate	CONJG	Arg=X+iY, CONJG=X-iY	1	Complex	Complex
landom Number	RAN	Result is a random number in the range of O to 1.0.	1 Dummy Argu- ment	Integer, heal, Double, or Complex	Real

-

(iii) PDP-11 Intrinsic Functions

FORM	DEFINITION	ARGUMENT TYPE	RESULT TYPE
ABS (X)	Real absolute value	Real	Real
IABS(I)	Integer absolute value	Integer	Integer
DABS(X) UABS(Z)	Double precision absolute value Complex to Real, absolute value where $Z=(x,y)$ CABS(Z)=($x^{2}+y^{2}$)1/2	Double	Double
	$CABS(Z) = (\chi^2 + \gamma^2)^{1/2}$	Complex	Real
FLOAT(1)	Integer to Real conversion	Integer	Real
IFIX(X)	Real to Integer conversion IFIX(X) is equivalent to INT(X)	Real	Integer
ENGL(X)	Double to Real conversion	Double	Real
DBLE(X)	Real to Double conversion	Real	Double
REAL(Z)	Complex to Real conversion,		-04-14
	obtain real part	Complex	Real
AIMAG(Z)	Complex to Real conversion,		
	obtain imaginary part	Complex	Real
CMPLX(X,Y)	Real to Complex conversion		C
	CMPLX(X,Y)=X+i*Y	Real	Complex
	Truncation functions noturn the		
	Truncation functions return the sign of the argument * largest		
	integer < arg		
AINT(X)	Real to Real truncation	Real	Real
INT(X) IDINT(X)	Real to Integer truncation Double to Integer truncation	R _{eal} D _{ouble}	Integer Integer
	Double to integer traffertion	DOUDIE	TUreder
	Remainder functions return the		
	remainder when the first argument		
	is divided by the second		
AMOD(X,Y)	Real remainder	Real	Real
MOD(IJ)	Integer remainder	Integer	Integer
DMOD(X,Y)	Double precision remainder	Double	Double
	And Andreas and a second s	A DATA PARA PARA PARA PARA PARA PARA PARA P	
	Maximum value functions return the		
	largest value from among the		
	argument list, ≥2 arguments.		
AMAXØ(I,J,)	Real maximum from Latogor list	Integer	Real
ALIAX 1 (X Y	Real maximum from Integer list	and the second se	
$AMAX_1(X,Y,\ldots) =$	Real maximum of Real list	Real	Real
MAXØ(I.J)	Integer maximum of Integer list	I _n teger Real	Integer Integer
		6.021	Integet
MAX1(X,Y) DMAX1(X,Y,)	Integer maximum of Real list Double maximum of Double list	Double	Double

FORM	DEFINITION	ARGUMENT TYPE	RESULT TYPE
•	Minimum value functions return the smallest value from among the argument list, ≥ 2 arguments.		
AMINØ(I,J,) AMIN1(X,Y,) MINØ(I,J,) MIN1(X,Y,) DMIN1(X,Y,)) Real minimum of Integer list) Real minimum of Real list Integer minimum of Integer list Integer minimum of Real list) Double minimum of Double list	Integer Real Integer Real D _o uble	Real Real Integer Integer D _o uble
	The transfer of sign functions return (sign of the second argument) * (absolute value of first argument).		
SIGN(X,Y) ISIGN(I,J) DSIGN(X,Y)	Real transfer of sign Integer transfer of sign D _o uble precision transfer of sign	R _{eal} Integer D _o uble	Real Integer D _o uble
	Positive difference functions return the first argument minus the minimum of the two arguments.		
DIM(X Y) IDIM(I,J)	Real positive difference Integer positive difference	Real Integer	Real Integer
	Exponential functions return the value of e raised to argument power.		
EXP(X) DEXP(X) CEXP(Z)	e ^x ex ez	Real Double Complex	Real D _o uble C _{omplex}
ALOG(X) ALOG1 \emptyset (X) DLOG(X) DLOG1 $\hat{\emptyset}$ (X)	Returns $\log_{e}(X)$ Returns $\log_{10}(X)$ Returns $\log_{e}(X)$ Returns $\log_{10}(X)$	R _{eal} R _{eal} D _{ouble} D _{ouble}	Real Real Double D _O uble
CLOG(Z)	Returns \log_e^{γ} of complex argument	Complex	Complex
SQRT(X) DS-RT(X)	Square root of Real argument Square root of Double precision argument	Real Double	Real D _o uble
CSQRT(Z)	Square root of complex argument	Complex	Complex

FORM	DEFINITION	ARGUMENT TYPE	RESULT TYPE
COS(X) DCOS(X) CCOS(Z)	Real cosine D _o uble precision cosine C _o mplex cosine	Real Double C _{omplex}	Real Double Complex
TANH(X)	Hyperbolic tangent	Real	Real
ATAN(X) DATAN(X) ATAN2(X,Y) DATAN2(X,Y)	Real arc tangent Double precision arc tangent Real arc tangent of (X/Y) Double precision arc tangent of (X/Y)	Real Double Real Double	Real Double Real Double
CONJG(Z)	Complex conjugate, if Z=X+i*Y	Complex	Complex
RAN(I,J)	Returns a random number of uniform distribution over the range \emptyset to 1. I and J must be integer variables and should be set initially to \emptyset regenerates the random number sequ- ence. Alternate starting values for I and J will generate different random number sequences. See also Appendix C.3.	Integer	Real

(i) VAX-11 Library Subroutines

(A) DATE

The DATE subroutines obtains the current date as set within the system. The call to DATE has the form

CALL DATE(buf)

where:

buf

is a 9-byte variable, array, array element, or character substring. The ing. The date is returned as a 9-byte ASCII character string of the form.

dd-mm-yy

where:

dd

is the 2-digit date.

mmm

is the 3-letter month specification.

ýУ

is the last two digits of the year.

(B) IDATE

The IDATE subroutine returns three integer values representing the current month, day, and year. The call to IDATE has the form

CALL IDATE(i, j, k)

If the current date were October 9, 1984, the values of the integer variables upon return would be:

i = 10

j = 9

j = 84

II/1

(C) ERRSNS

The ERRSNS subroutine returns information about the most recent error that has occurred during program execution. The cal to ERRSNS has the form

CALL ERRSNS(fnum, rmssts, rmsstv, iunit, condval)

where:

fnum

is an integer variable or array element into which is stored the most recent FORTRAN error number.

A zero is returned if no error has occurred since the last call

to ERRSNS, or if no error has occurred since the start of execution.

rmssts

is an integer variable or array element into which is stored the RMS completion status code(STS), if the last error was an RMS I/O error

rmmstv

is an integer variable or array element into which is stored the logical unit number, if the last error was an I/O error.

iunit

is an integer variable or array element into which is stored

the logical unit number, if the last error was an I/O error.

is an integer variable or array element in which is stored the

actual VAX-11 condition value.

Any of the arguments may be null. If the arguments are of INTEGER*2 type, only the low-order 16 bits of information are returned. The saved error information is set to zero after each call to ERRSNS

(D) EXIT

The EXIT subroutine causes program termination, closes all files, and returns control to the operation system. A call to EXIT has the form

CALL EXIT[(exit-status)]

II/2

where:

(exit-status)

is an optional integer argument which can be used to specify the image exit-status value.

(E) SECNDS

The SECNDS function subprogram returns the system time in seconds as a single-precision, floating -point value less the value of its singleprecision, floating-point argument. The call to SECNDS has the form

y= SECNDS(x)

where:

У

is set equal to the time in seconds since midnight, minus the user-supplied value of x.

The SECNDS function can be used to perform elapsed-time computations. For example:

```
C START OF TIMED SEQUENCE
```

```
TI = SECNDS(0.0)
```

```
С
```

```
C CODE TO BE TIMED
```

```
С
```

```
DELTA = SECNDS(T1)
```

where:

DELTA

will give the elapsed time.

The voalue of SECNDS is accurate to 0.01 seconds, which is the resolution of the system clock.

NOTES

1. The time is computed from midnight.

SECNDS also produces correct results for time intervals that span midnight.

2. The 24 bits of precision provides accuracy to the resolution of the system clock for about one day. However, loss of significance can occur if an attempt is made to compute very small elapsed times late in the day. More precise timing information can be obtained using Run Time Library procedures:

> LIB\$INIT_TIMER LIB\$SHOW_TIMER LIB\$STAT_TIMER

(F) TIME

The TIME subroutine returns the current system time as an ASCII string. The call to TIME has the form

CALL TIME(buf)

where buf is an 8-byte variable, array, array element, or character substring.

The TIME call returns the time as an 8-byte ASCII character string of the form

hh: mm: ss

where:

hh

is the 2-digit hour indication.

mm

is the 2-digit minute indication.

SS

is the 2-digit second indication.

For example:

10:45:23

A 24 hour clock is used.

(G) RAN

The RAN function is a general random number generator of the multiplicative congruential type. The result is a floating-point number that is uniformly distributed in the range between 0.0 (inclusive) and 1.0 (exclusive). The call to RAN has the form:

y= RAN(i)

where:

У

is set equal to the value associated, by the function, with the argument i. The argument i must be an INTEGER*4 variable or INTEGER*4 array element.

The argument should initially be set to a large, odd integer value. The RAN function stores a value in the argument that it later uses to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different values on separate runs in order to obtain different random numbers, the seed is updated automatically. RAN uses the following algorithm to update the seed passed as the parameter:

SEED = 69069 * SEED + 1 (MOD 2**32)

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point and returned as the result.

(ii) DEC-20 Library Subroutines

(A) DATE

Places today's date as left-justified ASCII characters into a

dimensioned 2-word array.

CALL DATE(array)

where array is the 2-word array. The date is in the form dd-mm-yy where dd is a 2-digit day(if the first digit is 0, it is converted to a blank), mmm is a 3-letter month(e.g.Mar.) and yy is a 2-digit year. The data is stored in ASCII code, left-justified, in the two words.

(B) DEFINEFILE

A DEFINEFILE call can be used to establish and define the structure of each file to be used for random access I/O operations. The format of a DEFINEFILE may be

CALL DEFINEFILE (u,s,v,f,proj,prog)

where

u= logical FORTRAN device numbers.

s = the size of the records which comprise the file being defined. The argument s may be an integer constant or variable.

v= an associated variable. The associated variable is an integer variable that is set to a value that points to the record that immediately follows the last record transferred. This variable is used by the FIND statement.

At the end of each FIND operation the variable is set to a value that points to the record found. The variable v can not appear in the I/O list of any I/O statement that accesses the file set up by the DEFINEFILE statement

f = file name to be given to the file being defined.

proj= user's project number.

prog= user's programmer number

Example

The statement

CALL DEFINEFILE (1,10,ASCAR, 'FORTEL.DAT',0.0)

Establishes a file named FORTEL.DAT on device 01(i.e.,disk) which contains word records. The associated variable is ASCVAR, and the file is in the user's area.

(c) DUMP

Causes particular portions of core to be dumped and is referred to in the form:

CALL DUMP $(L_1, U_1, F_1, \dots, L_n, U_n, F_n)$

where L_1 and U_1 are the variable names which give the limits of core memory to be dumped. Either L_1 or U_1 may be upper or lower limits. F_1 is a number indicating the format in which the dump is to be performed: 0=octal, 1=real,2=integer, and 3=ASCII.

If F is not 0,1,2,3, the dump is in octal. If F_n is missing, the last section is dumped in octal. If U_n and F_n are missing, an octal dump is made from L to the end of the job area. If L_n , U_n , and F_n are missing, the entire job area is dumped in octal. The dump is terminated by a call to EXIT.

(D) ERRSET

Allows the user to control the typeout of execution-time arithmetic error messages, ERRSET is called with one argument in integer mode.

CALL ERRSET(N)

Typeout of each type of error message is suppressed after N occurrences of that error message. If ERRSET is not called, default value of N is 2.

(E) EXIT

II/7

Returns control to the Monitor and, therefore, terminates the execution of the program.

(F) ILL

Sets the ILLEG flag. If the flag is set and an illegal character is encountered in floating point/double precision input, the corresponding word is set to zero.

CALL ILL

(G) LEGAL

Clears the ILLEG flag. If the flag is set and an illegal character is encountered in the floating point/double precision input, the corresponding word is set to zero.

CALL LEGAL

(H) PDUMP

CALL PDUMP($L_1, U_1, F_1, \dots, L_n, U_n, F_n$)

The arguments are the same as those for DUMP.PDUMP is the same as DUMP except that control returns to the calling program after the dump has been executed.

(I) RELEAS

CALL RELEAS(unit)

Closes out I/O on a device initialized by the FORTRAN Compiler returns it to the uninitialized state.

(J) SAVRAN

SAVRAN is called with one argument in integer mode. SAVRAN sets its argument to the last random number(interpreted as an integer) that has been generated by the function RAN.

(K) SETABL

CALL SETABL(I,J)

Specifies a character set where I is an integer which gives the

the number of the desired character set. If a character set has been defined by I, the value of J is set to 0; if not, J is set to -1. The desired ASCII character set is defined as 1.

(L) SETRAN

SETRAN has one argument which must be a non-negative integer

2³¹. The starting value of the function RAN is set to one value of this argument, unless the argument is zero. In this case, RAN uses its normal starting value.

(M) TIME

Returns the current time in its argument(s) in left-justified ASCII characters. If TIME is called with one argument.

CALL TIME(X)

the time is in the form

hh:mm

where hh is the hours(24 hour time) and mm is the minutes.

If a second argument is requested,

CALL TIME(X,Y)

the first argument is returned as before and the second has the form

bss.t

where ss is the seconds, t is the tenths of a second, and b is a blank.