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ABSTRACT 

A mathematical model for seepage studies from two parallel 

canals has been developed and interference of two parallel canals 

is studied. One of the canals is situated on a high ridge and is 

not hydraulically connected with the aquifer. The other canal situated 

at a lower level has hydraulic connection with the aquifer. Its 

seepage rate is controlled by the water table position in the aquifer 

and is linearly dependent on the difference in the potentials at 

the canal and in the aquifer underneath. In the present study the 

temporal variation of seepage from the canal hydraulically connected 

with the aquifer has been quantified. The model predicts the time 

at which the-seepage from the canal having hydraulic connection with 

the aquifer reduces to zero and quantifies the rate at which the 

canal receives water as a drain. 

Recently there have been evidences that the exchange flow 

rate between a canal and a hydraulically connected aquifer can be 

very non-linear. In the present report seepage from a single canal 

when water table lies at a shallow depth has also been studied for 

a case in which the seepage rate has an exponential relation with 

the potential difference between the canal and the aquifer. The seepage 

rates corresponding to the linear and non linear relations have been 

compared. 



1.0 INTRODUCTION 

The assessment of seepage from canals and consequent recharge 

to aquifer are often required for the solution of problems of surface 

and ground water resources. Many research workers have investigated 

the steady free seepage from canals. A number of theoretically well 

established analysis are known after Kozeny (1931), Vedernikov (1934), 

Risenkampf (1940), Muskat (1940), Bouwer (1969). For homogeneous 

soil and idealized boundary conditions, the classical studied canbe 

used to predict steady seepage loss from canals. However, the soil 

and boundary conditions in nature do not conform always to the idealized 

soil and boundary conditions adopted in the various theoritical treat-

ment of seepage study. Numerical methods and electrical analogue can 

handle the non homogeneous and anisotrophic nature of soils besides 

the various complex boundary conditions. Unless a canal is lined it 

is inevitable that seepage would occur from a canal. Impact of the 

seepage water on ground water regime and its distribution in the aquifer 

need equal attention as does the quantification of seepage. 

The process of seepage from a canal starts as soon as water 

is conveyed in it. In the beginning the seepage rate undergoes rapid 

changes due to dispersion and swelling of soil particles after wetting 

and elimination of entrapped air by solution in the water. Few days 

after initiation of seepage, the seepage rate follows an exponential 

decay curve. It may be noted that seepage rate from a canal is not 

equal to the recharge rate at the water table at all time. When the 

wetting front position is some where between the canal bed and initial 

water table position, the recharge rate is zero. If the water content 
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behind the wetting front is close to saturation recharge rate rises 

abruptly from zero to the prevailing seepage rate at the time the satu-

ration front encounters the water table. The study of seepage prior 

to initiation of recharge to ground water is not the scope of the present 

report. 

The computation of rise in water table due to recharge from 

water bodies has been dealt with by few authors. Hantush (1967) has 

derived an expression for rise in water table height due to recharge 

from a basin of finite length and width. If the dimension of length 

is increased to a very large value, the solution will correspond to 

rise in water table due to recharge from a canal. However, the solution 

involves numerical integration. Shestakov (1965) has tabulated special 

function for calculating water table rise due to recharge from a strip 

source using numerical method for integration. Glover (1974) has analysed 

the evolution of water table due to recharge from a line source, but 

has not taken the width of recharge body into consideration. Hantush 

and Glover have assumed that there is no hydraulic connection between 

the recharging water bodies and the aquifer. Morel Seytoux and Daly 

(1975) have developed stream aquifer interaction model in which the 

stream has hydraulic connection with the aquifer. 

It has been often assumed for a stream (canal) which is hydrau-

lically connected with the aquifer, that the exchange flow rate is 

linearly dependent on the potential difference between the aquifer 

and the stream (Aravin and Numerov, 1965, Herbert, 1970, Morel-Seytoux, 

1975, Besbes et al.,1978,Flug et al.,1980). There have been evidences 

that the process can be very non linear (Dillon, 1983, 1984, Rushton 

and Redshaw, 1972). But as it is difficult to determine the exact non-

linear relationship, the linear relationship is still in vogue. 
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In the present report using a linear relation and the basic 

solution of Glover and the discrete kernel approach of Morey Seytoux, 

seepage study from two parallel canals one of which has hydraulic 

connection with the aquifer, has been made. Also unsteady seepage from 

a canal having hydraulic connection with the aquifer has been determined 

for the case in which the seepage rate has an exponential relation 

with the potential difference between the canal and the aquifer underneath. 

3 



2.0 REVIEW 

The literature on steady seepage from canal and its impact on 

ground water regime have been well documented (Bouwer, 1969; Glover, 

1970; Harr, 1962; Kovacs 1981; Muscat, 1940; Schestakov, 19u5). In 

the current report literature review has been made only for seepage 

from water body (canal or river) which has hydraulic connection with 

an aquifer. 

Dillon and Liggett (1983) have analysed unsteady seepage from 

a strip source depicted in Fig.1, which is hydraulically connected 

9
2
h a

2h 
with the underlying aquifer by solving the Laplace equation -0 

ax ay 
2 

a-y 
 

satisfying the following conditions: 

i) h = y, and 

ah _ K , 1 ah wet) 
at — cos$ 

+ 
K 
 1 along the unknown phreatic line, 

(I) L - an  

ah _ qb 
is) along 

an - K 
the base of the aquifer, 

311  
iii) _ 0 for x = 0, and 

an - 
an 

iv) h = hs 
 -B an on bed of the water body when h> ym 

 

in which 

h = - + y, 
/w  

y = height above arbitrary datum chosen as the elevation of the aquifer 
basement, 

K = coefficient of permeability of the aquifer material, 

B the anglethe free surface makes with the horizontal, 

outward normal direction to the boundary, 

y
m
(x) = elevation of the semipermeable bottom of water body above the 

basement, 
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B = Kl/KB, 

1 = tHickness of semipermeable bed comprising the boundary of the water 

body, and 

K = hydraulic conductivity of the semipermeable blanket. 

The recharge has been obtained by the expression 

w/K = (h
s-h)/B for (y +h )511<y m c m 

w/K = (h -y -h )/B for h < (y +h ) s m c m c 

in which h
c is capillarysuction head at the base of the blanket. 

The Laplace equation with the above boundary conditions has been solved 

by boundary integral equation method. 

Rushton and Tomlinson have presented typical non linear relation-

ship between flow from an aquifer to the river as shown in Fig.2. The 

actual flow from a river into an aquifer is usually considerably less 

than the flow in the reverse direction for a similar head difference 

because of sediment in river bed. 

According to Rushton and Redshaw (1979)4  the non-linear relation-

ship between flow to the aquifer and the potential difference between 

the aquifer and the river which appear to give a fair representation 

are as follows: 

Q = C1(ho-hr
)+C

2 
El_e-C3(ho-hr) ] for h h o " r 

and 

Q = 0.3C2 le
C3(ho

-h
r
)
-1 ] for h < h 0-  r 

where C
1' C2' C3 are constants which depend on field condition. 

Because of the difficulty in determining the actual nonlinear 

relationship, it is common practice to use a linear relationship. The 

constant of proportionality in the linear relationship has been desig-

nated as reach transmissivity or river resistance. methodsof calculating 

the hydraulic river resistance have been proposed by Aravin and Numerov 
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(1965), Herbert :1970), Streltsova (1974), Morel-Seytoux et al (1979). 

According to Herbert the linear relationship between the exchange flow 

rate and the potential difference between the river and the aquifer 

underneath is given by: 

Qr  = 1tarK(hr-h0)/loge(.5m/rr) 

in which 

1
r = length of river reach, 

K = coefficient of permeability of the aquifer material, 

hr = potential at the river perimeter, 

ho =potential in the aquifer at a point under the river, 

m = thickness of the aquifer as shown in figure 2, 

rr = radius of the semicircular river cross section. 

Morel-Seytoux has postulated and verified the following relation- 

ship between return flow to a river and the potential difference between 

the river and in the aquifer in the vicinity of the river: 

9r
(1) = r [ (n)-Sr(n)] 

in which Qr(n) is the return flow to a river reach, 

Fr = reach transmissivity, 

ar(n) = drawdown of the water level in the river reach during 

n
th 

time period measured from a high datum 

S
r  (n)= drawdown of the water table in the aquifer measured from 

the same high datum in the vicinity of the river. 

It may be noted that seepage rate from a canal is not the recharge 

rate at the water table at all time. With the wetting front position 

some where between the canal bed and initial water table position, 

and for initially dry soil the seepage rate varies in time but the 

recharge rate is constant and zero. If the water content behind the 

wetting front is close to saturation, recharge rates.rises abruptly from 
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zero to the prevailing seepage rate at the time the saturation front 

encounters the water table (Abdulrazzak and Morel-Seytoux, 1983). The 

following expression for the time delay, td, for the recharge to reach 

the water table after the onset of seepage has been obtained by Dillon 

and Ligget by integrating Green and Ampt equation: 

h -h +y-D' 
0 r s c 

m i  
td  = K L  y -D'.-(h -h )log 

m isc e h -h 
s c 

where 

$ is the effective porosity, and 

W.ia the initial saturated thickness. 

9 



Oni••• 
IMFERVOUS SIFIATUM 

3.0 PROBLEM DEFINITION AND METHODOLOGY 

3.1 Seepage from a Water Body, when the Flow Rate is Nonlinearly 

Dependent on Potential Difference 

3.1.1 Statement of the problem 

A river having hydraulic connection with the underlying aquifer 

is depicted in Fig.4. The water table lies at a shallow depth below 

the river bed. The recharge from the river to the aquifer is assumed 

to have thefollowingnon-linear relationship with the potential difference 

between the river and the aquifer that has been proposed by Rushton 

and Redshaw (1979): 
A 

= 0.3C21r -exp.( -c3(hr
-h(n)) }] ...(1) Q1r(n)  

The hydraulic head h(n) in the aquifer during time period I n I 

is governed by the recharges those take place from all reaches during 

time period 'n' and those took place from all reaches upto (n-1)
th 

time period. It is required to find the recharge rate QlrInh  from 

a reach of length lr  at various time after the onset of recharge. 

HIGH DATUM 

Fig.4 Schematic section of a river hydraulically connected to the aquifer 
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3.1.2 Methodology 

The constants C2 
and C3 

which appear in equations (1) are 

evaluated in the following manner: 

If the water table is at a large depth below the river bed 

i.e.when h(n) is small in comparison to h, the exponential term 

in equation (1) reduces to a' small quantity. Neglecting the expo-

exponential term for large values of [h
r
- h(n)] 

lr 
= 0.3C

2 
 1 

Q  r 

According to Kozeny the seepage from a strip source of width B and a 

depth of water H is given by 

Q
lr 

= K(B+2H)1
r 

where K is the coefficient of permeability of the aquifer material. 

Equating equations (2) and (3) 

C
2 
= K(B + 211)/0.3 

Substituting C2  in equation (1) 

Q
lr
(n) = K (B + 211) 1

r 
[ 1-exp {C3(hr-h(n)} ] 

For small difference between hr 
and h(n) the higher order terms of the 

polynomial expansion of the exponential term appearing in equation (5) 

can be neglected and the recharge can be approximated to be 

11 



lr(n) = K(B+2H)lr[171+C3 
h
r-h(n) }] 

or 

Q
lr(n) = K(B+2H)1r

C
3 
[h

r  -h(n)) ...(6) 

Assuming a steady state condition and applying a simple potential 

theory Morel Seytoux et al.(1979) have derived the following relationship 

between return flow and the potential difference between river and the 

aquifer: 

Qlr(n) = (Tye) [ (0.5w
r
ife)/(5w

p
+0.5e)][ hr-h(n)] ...(7) 

in which e is the saturated thickness, T is the transmisSivity equal to 

K e and w is the wetted perimeter of the river. 

Though the derivation assumes a steady state of condition it has been 

applied to unsteady flow on the basis that a unsteady state can be 

approximated to be succession of steady state conditions. Comparing 

equations (6) and (7) 

C
3 = 1/(B+2H) [(0.5w e)/(5w +0.5e)] ...(8) 

A 

For a homogeneous aquifer, if the river stages in different 

reaches are not varying from each other, the recharge rates from river 

reaches during a particular time period are equal. Let N number of 

reaches on either sides of a particular reach influence the rise in 

water table. Let the time span be discretised by time steps of equal 

size and let dOring a particular time step the recharge rate be constant. 

With these assumptions the hydraulic head h(n) can be written as 

n N 
h(n) = H + Qr1(1 ) B (1,1,n—) +1)+2 E F Q

r1
() ) (1,R,n-) +1) 

1 =1 1 =1 R=2 
...(9) 

in which a ) are discrete kernel coefficients for drawdown and R is 

initial water table height before onset of recharge. Substituting h(n) in 

equation (5) and simplifying 
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1-Q
lr
(n)/ [ K(B+2H)1

r
] =expl-C 

11 
(n)-g - r Qrl(1  ) a (1,1,n- ) +1) 3 1 r 

= 
n N 

- 2FE Q 1( If )3(1,R,n-1 +1) }] ...(10) 
) =1 R=2 r  

inwhichais depth to Impervious stratum measured from a high datum and 

a(n)is drawdown of the water level in the river measured from the same datum. 

Taking logarithm of terms on either side 

log [1-Q
lr  (n)/ 4K(B+2H)1r

11=-C3 1 
D.- 0 e r 

- I Qr1 ( lo (1,1,n-) +1) 
1=1 

n N 

-2  " Qr1()  ) 8(1,R,n- 1+0 ...(11) 
1=1 R=2 

splitting the summation into two parts 

log
e 0lr[1- (n)/ {K(B+211)1r} ] C3Q  (n) 

(a (1,1,1)+2 a (1,R,1)} - 1r 
R=2 

n-1 
= - C3  {D. - a (n) - H-I Q

rl
()) a (1,1,n-) +1) 1 r 

1=1  
n-1 N 

-2 I 
r Qr1 (1 )a (1,R,n-1 +1) } 

y=1 R=2 

Q
lr
(n) can be solved in succession starting from time step 1 by an iteration 

procedure. The following simplification can be adopted without much loss of 

accuracy. K(B+2H)Lr  being the recharge rate when water table is at large 

depth, the ratio Q
ir
(n)/ {K(B+2H)L

r} is less than 1. Expanding the logarithm 

term and neglecting higher order terms 

- 

1=1 
n-1 N 

-2 I=  I= 
 Qr1 (1 )a (1,R,n-1 +1)] ...(13) 

)1 
R
2 

 

Equation (13) is a quadratic equation in Q
lr
(n) and can be written in the 

(B+2H)Lr] 
1 

Qlr(n) d 1 2  

C3(21r(n)( (1,1,1) + 21 a (1,R,1)] 
R=2 

_ n-1 
=-C [ Dro 3 1 r (n) -H - (1,1,n-1 +1) 

13 



form: 

2 + c = 0 
a Qr1(11) b Qr1(1.1)  

and Ori 
 (n) is given by 

1)r11a1 =1  -b (b
2
-4ac) V2a 

where 

a = 0.5/ [KI,
r
(B + 21)12  

b = 1/ [K(B+2H)Lr 
 + C3  a (1,1,1)+2 E a (1,R,1)] 

R=2 
_ n-1 

c = - C
3
[ p

i 
- (n)-H- E Q

rl
( 1 ) 3(1,1,n- 1+1) 

1=1 
n-1 N 

-21 (1 1 ( 1) 3(1,R,n-  1 +1)] 
- =l R=2 r  

3.2 Seepage from two Parallel Water Bodies one of which has Hydraulic 

Connection with the Aquifer 

3.2.1 Statement of the problem 

Two parallel canals have been constructed in a homogeneous and 

isotropic pervious medium of infinite aerial extent. The dimensions 

of the canals and the horizontal distance between centre to centre 

of the two canals are as shown in Fig.(5). One of the canals is situated 

on a high ridge and the other is at a much lower elevation. On account 

of large difference in the elevations of bed level of the ridge canal 

and the water table underneath, it is unconnected with the aquifer. 

Therefore, the seepage occurs at constant rate from ridge canal. The 

bed of the lower canal is near to the ground water table and is hydrau-

'lically connected to the aquifer. Its seepage rate will be controlled 

by the potential difference between the water levels in the canal and 

in the aquifer below the bed of the canal. The permeability of the 

14 



D
E

P
T

H
 T

O
 I

M
P

E
R

V
IO

U
S

 
S

T
R

A
T

U
M

 (
 0

 I
) 

s
a
w

 
,P

O
R

Pr
 

p
o
tp

ie
 

F
i
g
-
5
 
S
c
h
e
m
a
t
i
c
 
S
e
c
t
i
o
n
 
o
f
 
t
w
o
 
P
a
r
a
l
l
e
l
 
C
a
n
a
l
s
 



aquifer is K. The thickness of the saturated depth of aquifer is E 

and the storage coefficient is . It is required to determine the see-

page from the lower canal and the temporal and spatial variation of 

water table rise. 

3.2.2 Methodology 

The assumptions made to carry out the analysis for evolution 

of water table by using Glover's basic equations and reach transmissi-

vity-discrete kernel approach of Morel-Seytoux are as follows: 

Time interval in which the seeping water from ridge canal reaches 

the water table is mall and can be neglected. 

The hydraulic properties of the aquifer remain constant with 

respect to time and space. 

The flow due to seepage from ridge canal is vertically downwards 

until it reaches the water table. 

Dupuit's assumptions are valid. 

The time span is discretised by uniform time step. Within each 

time step the seepage from the lower canal is constant, but 

it varies from step to step. 

A linear relationship which has been postulated ,and verified 

by various investigators (Morel Seytoux and Daly, 1975, Morel Seytoux, 

1975, Morel Seytoux et al.,1979) is of the form Qr= Pr(0 r-Sr
),where 

is the return flow, a is the drawdown to the water level in the 

stream measured from a high datum, Sr is the drawdown in the aquifer 

in the vicity of the reach measured from the same datum. The coefficient 

rr
has been designated as reach transmissivity which depends on the stream bed char-

acteristics and shape of the stream cross section( Morel Seytoux, 1 964,Bouwer, 1 969). 
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Assuming a steady state' condition and applying a simple potential theory 

for saturated flow, an expression of reach transmissivity has been 

derived by Morel-Seytoux et al.,(1979) which is given by 

r r
_ TL 0.5w +e 

5w +0.5e ' 

where T is the transmissivity of the aquifer, L is the reach length, 

w is the wetted perimeter and 'e' is the saturated thickness under 

the river bed. Though the reach transmissivity has been derived on 

the assumption of steady state condition, it has been used to predict 

the return flow under transient condition supported by the argument 

that transient nature of a system can be represented as a continuous 

succession of steady states. 

Making use of this approach for the case of lower canal, which 

is connected to the aquifer, the seepage from it is given by 

r(n) = -r [CY (n)-S
r
(n)j ...(16) r r 

wherep r (n) and S
r(n) are the depth to water surface in the canal and 

the depth to water table below the canal bed respectively, measured 

from the same high datum at the end of time step n, and rr is the reach 
transmissivity. 

The depth to water table below the lower canal bed S
r(n), com-

prises two parts, Sl(n) and 52(n), where, 51(n) is the rise on account 

of seepage from ridge canal and 52 (n) is the rise due to its own seepage. 

As stated above the ridge canal is unconnected with the aquifer. 

The evolution of rise of water table due to seepage from a canal can 

.he ascertained by solving the following linearised one, dimensional 

Boussinesq's equation for saturated flow 

a 2s  
=a 

a x2  

as 
at 

_417) 

17 



in which S is the rise in water table, a=vd) , T being the transmissi-

vity of the aquifer and 0 is the storage coefficient. If the canal 

is assumed as a line source, the solution to the equation(17 ) has/  

to satisfy the following boundary conditions: 

At x = 0, T 1.17! = - , and 

at .x = , S(a),t) = 0 

in which, q is recharge rate per unit length of the line source. If 

the ground water is at rest before the initiation of recharge, the 

initial condition to be satisfied is 

S(x,0)=0. 

Considering the canal to be a line source, the solution that satisfies 

one dimensional Boussinesq's equation and the above stated initial 

and boundary conditions has been given by Glover (1974), which is of 

the form 

S(x,t) =94a t) e
-x2/4a t 

- Erf x  2T 2T V(4et t) 

In reality, however, a canal has a certain finite width which 

cannot be neglected. Therefore, it would be appropriate to treat it 

as a strip source instead of a line source. Since the water table is 

at large depth below the bed of ridge canal, the width of the strip 

can be taken approximately to be (131  + 281). Also, according to Kozney, 

the seepage rate per unit width of strip is K, as the water table lies 

at large depth. A strip source can be regarded to be consisting of 

a number of line sources. As the differential equation governing the 

flow is linear, the method of superposition can be used. Thus, the 

rise of water table due to seepage from a strip source can be obtained 

by integrating the rise of water table due to each line source. The 

'solution to the equation (17) corresponding to seepage from a strip 

18 



KD(B1+2H1 ) 
S1(n) = F(D,n) 2T 

—(21) 

source has been given by Bhargava et al.,(1986) as below: 

For x> (0.58
1
+H

1 ) and x S -(0.5B1
+8

1 ), the rise in water table is given 

by 

x+0.5131 +111 Rot  
Erf( 

 
Ka t 1  1 

S(x,t) = 2T Erf (  V4a t ) - 2T Inert 

x+0.5B1+H1 
( x+0.5B1+H1)

2 
Erf ( 

4T /217  

x-0.5B-H 
1 1 

- --( x-0.58 - H1)
2 
Erf ( 

4T 1 vtala t 

-(x+0.5B1 +H1 )
2
/4a t 

(1-r (x+0.5B1+H1 ) .e 2TiK 

_ K_  CITE 
2 
/4a t 

( x-0.5131-81 ) .e
- 1 1 

2TIK 

KA x
2

) (B1+ 211 1 ) 

2T 

K 1/(x2 )(131 +2H1 ) 
= F(x,t) 2T 

For -(0.5B
1 
 +H

1 
 ) x< (0 5B

1 
 +H

1 
 )the rise is given by 

- - ) 

S(x,t) = F(x, t) - x
2 
+ (0.5B1 +H1)

2 
2T 

...(20) 

The rise of water table with time due to seepage from the ridge canal 

can be obtained from these solutions. The rise of water table under 

the lower canal due to seepage from the ridge canal at the end of time 

Step is given by 

where D is the distance between centre to centre of the two canals. 
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The rise in water table due to seepage from the lower canal 

which is hydraulically connected with the aquifer can be predicted 

by the stream aquifer interaction model of Morel Seytoux and Daly. 

Let the length of the canal, from which the recharge causes appreciable 

rise in water table at a point, be divided into number of reaches. 

The rise in water table at the centre of the rth reach at the end of 

n
th 

unit time step, S
2(r,n) due to recharges which have taken place 

from all reaches upto n
th 

time Step, is given by(Morel Seytoux arJ Daly,105) 

n N 
S
2(r,n) = I' ()) a(r,R,n- I+1) 

f =1 R=1 

in which 

N = total number of reaches, 

...(22) 

R = an index representing reaches, 

d
2 

...(23) 
 ) 

d: 

(r,R,I =  
c%-1))1' 

a ) r R 4T1 4(11 

d
rR = distance from centre of the r

th 
reach to the centre of the th 

reach 

CO - u 
' E

1  (x) = f 1
7
,1 du 

a(r,r,I) 1 
1 L B

2 
ofErf ( 4/ (/_y)) Erf (717m77777) dY 

 

 

...(24) 

Let all the reaches be of equal length. Let the total number of reaches 

be 2N+1 and the central reach be the first reach. The rise in water 

table under the central reach can be obtained from equation (22) as 

given below: 

n-1 n N 
S
2
(n)= I Q(' ) a(1,1,n- If +1) 4 2 1

(10 (1,R,n-)+1) ...(25) 
1  

'1=1 )=1R=2 
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Spliting the temporal summation into two parts 

n-1 
5
2
(n) = FQ

1(1) 
)=1  

a(1,1,n- 1+1)+Q1(n)a (1,1,1) 

n-1 N 
+ 20

1
(n) E (1,R,1) + 2 E 1 (21(1)a (1,R,n-)  +1) 

R=2 )=1 R=2 

Referring to Fig.5, the relation between depth to water table from 

the high datum at the centre of the lower canal and the rise in water 

table underneath above the initial static stage ban be written as: 

Sr(n) = Di  - E - Sl(n) - 52(n) ...(27) 

Substituting for S
r(n) in equation (16) and noting that Qr

(n) = Q1(n) 

+s(n)+S
2(n)] ...(28) r r 1  

Substituting 5
1(n) and 92(n) from equations (21) and (25) respectively 

in equation (28) and rearranging 

1 . Q1(n) 
= 
[-- + a(1,1,1)+2  E a (1,R,1)1-1  .LD.-E-F(D,n) 

R=2 

KD(3
1+2H1 ) n-1 

F Q1()) a(1,1,n-) +1) 2T 
)=1  

n-1 N 
- 2 I 1Q1(1) a(1,R,n- }+1)] 

1=1 R=2 
...(29) 

In particular for the first time step the seepage rate is given by 

E- F(D,1) +0.5KD(3
1+2H1 )/T Q1(n) ...(30) 

1/F 
r+ D(1,1,1)+2 E a(1,R,1) 

R=2 

The seepage rate during any time step n can be found in succession 

starting from the first time step by using equation(29). 

When the water table in the aquifer under the lower canal rises 

above the water level in the canal i.e.when
r
fro < a

r(n), the lower 
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canal will receive water and then onwards it will act as a drain. If 

the exchange flow rate is small in comparison to the discharge in the 

canal, it can be assumed that the change in water level in the canal 

is insignificant. Thus a constant head boundary condition can be assumed 

to prevail along the canal boundary after the canal receives water 

from the aquifer. Let the canal receives water after time step m. Since 

the head under the canal is constant for n>m, 

51(n) + S2
(n) = + H —(31) 

Substituting for 51(n) and s2(n) in above and solving for yn), the 

rate at which water is entering into the canal is found to be 

1
(n) = [H+H2 1 -F(D n)+0.5KD(B1+2H1 )/T - 

n-1 
-F Q1  (I 0 (1,1,n-1 +1) 
1=1 

n-1 N 
-2 7 7 QI( 1) 3(1,R,n-) +1)1/ 

1=1 R=2 

9(1,1,1) + 2 1 9(1,R,1)1, n > m 
R=2 

...(32) 
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4.0 RESULTS AND DISCUSSION 

4.1 Seepage from a Water Body when the Flow Rate is Nonlinearly 

Dependent on Potential Difference 

Results pertaining to unsteady seepage from a canal hydraulically 

connected with the underlying aquifer have been presented in non- dimensional 

form in Fig.6 for 13/111=20 and 10. The water table is assumed to be at 

a depth of 0.005E below the canal bed. As seen from figure the results 

decrease monotonnically with time. For B/H=10 when the time factor 

increases from 5x10-4 to 1x10
-1
, the nondimensional seepage rate 

decreases from 8.778x10-3 to 7.299x10
-3
. The corresponding results 

when the seepage rate is taken as linearly dependent on potential 

difference is presented in Table 1. It can be seen that there is no significant 

difference in the results pertaining to linear and nonlinear cases. 

4.2 Seepage from two Parallel Water Bodies one of which has Hydraulic 

Connection with the Aquifer 

Results pertaining to interference of two parallel canals have 

been presented in nondimensional form for different spacings and widths 

of the canals. The spacing of the canals has been varied from 80m to 

240m. Both the canals are assumed to have equal width. The widths of 

the canals considered are 30m to 60m. The variations of seepage from 

the lower canal with time are shown in Fig.7 and 8. 

At the beginning of the seepage during the early period, canal 

'having larger width will loose at a higher rate than that of the canal 

with smaller width. As the seepage rate of the lower canal is governed 

by the potential difference between the canal and the aquifer underneath, 
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Table 1. Comparison of, seepage rates from a single canal when the flow rate is 
, taken linearly and non-linearly dependent on potential difference 

Width of Depth of Nondimensional NondimensionalNondimensio- Percentage 
canal water in time recharge nal ReCharge difference 

canal Kt Qlr Qlr  (---) 2CE ( _ ( ) Co1.4-Col5  
K1r.E " Klr.E Co1.4 

for linear for nonlinear 
variation variation• 

(10-3) 
4 5 6 

10.130 8,915 12.00 

9.935 8.778 11.64 
9.844 8.714 

11.48 

9.473 8.449 10.81 

9.210 8.259 10.32 

8.872 8.010 9.72 

8.647 7.842 9.31 

8.480 7.715 9.02 

8.348 7.615 8.78 

8.240 7.532 8.59 

8.148 7.461 8.43 

8.070 7.400 8.30 

8.000 7.346 8.18 

7.940 7.298 8.08 

10.279 9.355 8.99 

10.089 9.208 8.73 

9.996 9.134 8.62 

9.613 8.833 8.11 

9.343 8.617 7.55 

8.995 8.337 7.32 

8.763 8.148 7.02 

8.591 8.007 6.80 

8.456 7.895 6.63 

8.345 7.803 6.50 

8.251 7.724 6.39 

8.171 7.657 6.29 

8.100 7.598 6.20 

8.037 7.545 6.12 

1 2 3 

30 3.0 .5x10-6 

5x10-3 

1x10-2 

.5x10-2 

1x10 
-1 

2x10 1 

3x10-1 

4x10-1 

5x10-1 

.6x10-1 

.7x10 -1 

8x10-1 

9x10-1  

1x10-1 

60 3.0 .5x106 

5x10
-3 

.1x10
-2 

.5x10
-2 

.1x10-1 

.2x10-1  

.3x10
-1 
 

4x10 -1 

5x10
-1 

.6x10
-1 
 

.7x10-1  

8x10
-1 

9x10-1 

1x10
-1 
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reduction in seepage :is faster for canal with larger width due to rapid 

rise in water table. As seen from figures 7 and 8 the seepage rate 

from canal having 60m width is more than that of the canal having 30m 

width in the beginning of seepagge. At large time the seepage rate 

from canal having 30m width is more than the seepage rate of canal 

with 60m width. The variation of nondimensional seepage rate, Q(t)/ 

K L
r
E, with nondimensional time, K.t/24 E, has been presented in Pig.9 

in a semilog plot. As seen from the figure the canal seepage reduces 

to zero and there after receives water from the aquifer. When the spacing 

is 80m for K=0.1m./day and 4 =0.1, the time at which the seepage rate 

reduces to zero is 73 days. When the spacing is 120m., 180 and 240m. 

the corresponding times are 89, 114, 142 days respectively. 

The evolution of water table has been presented for spacing 

between canals equal to 180m (D/E=0.18). The rise in water table under 

the lower canal at t=114 days is 8m and there after it remains constant 

due to imposition of boundary condition. The maximum rise in water 

table occurs under the ridge canal. The maximum rise of water table 

after 180 days is 14.3m which is equal to 1.43% of the saturated thickness. 
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5.0 CONCLUSIONS 

Unsteady seepage from a canal has been evaluated considering 

the flow rate to be nonlinearly dependent on the potential difference • 

between the canal and the aquifer under the canal. The exponential 

relation between flow rate and potential difference proposed by Rushton 

and Redshaw .has been used in the analysis. The constants which appear 

in the exponential relation have been evaluated analytically. It is 

seen that there is no significant difference in the results pertaining 

to linear and nonlinear cases. 

A mathematical model has been developed to predict irterfereree 

of two parallel canals. One of the canals is hydraulically connected 

with the aquifer. The temporal variation of seepage from the canal 

connected hydraulically with the aquifer has been quantified. The evolu-

tion of water table with time due to seepage from the canals has been 

determined. The model predicts the time at which the seepage from the 

canal, having hydraulic connection with the aquifer, reduces to zero. 

The model also quantifies the rate at which the canal receives water 

as a drain. 
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