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The formulation of strategy for the optimal management 

of groundwater demands a knowledge of the relationship between 

the pumpages in the wells to the drawdowns in the aquifers 

both in spatial and temporal coordinates. Such relationships 

are available from several analytical solutions in well hydrau-

lics, the notable being Theis and Hantush solutions. However, 

they have been derived under highly idealised conditions. 

Thus there exists a need to refine the analytical solutions 

by incorporating the actual field conditions to the extent 

possible. Most of the available solutions consider the well 

to be a line sink and do not consider the storage in the well 

While most of the wells in the country are dug wells of large 

diameter with huge amount of storage in them. The application 

of the existing methods of analysis for the assessment of 

aquifer parameters or for modeling the aquifer or for simul- 

ating the drawdown history from the wells of this type would 

be erroenous. Hence in the present investigation, the simu- 

lation for the unsteady flow towards finite diameter wells 

storage has been attempted. The analysis includes the 

problems of wells with storage in leaky aquifers both for 

fully and partially screened wells. 

The existing analytical solutions reveal that it would 

be impossible to incorporate the boundary conditions into the 

analytical formulation and bring out a solution that is 

tractable. Hence finite element method based on the variational 



formulation of the flow problem has been used in the analysis. 

Appropriate sizes for the elements are chosen while discretizing 

the flow domain. Considering the accuracy demands of the pro-

blem, the Crank Nicolson scheme has been adopted for time 

discretization. Type curves have been presented for the case 

of fully and partially screened wells with storage for leaky 

aquifers for various storage parameters. The critical study 

of these curves indicated that there are three zones in each 

of the type curve. Zone-1 of the curve is a straightline with 

a steep slope indicating that the contribution of the aquifer 

storage for the discharge is negligible. Zone-3 of the type 

curve matches with the type curve for wells'with no storage' 

signifying the effects of well storage have practically 

vanished. The Zone-2 has been considered a transition between 

Zone-1 and Zone-3 which varies with the parameters that are 

indentified. The time of pumping corresponding to the end of 

zone-1 is termed as deviation time and that of zone-2 is 

defined as merging time. The storage effects are found to 

decrease both with time and radial distance from the pumping 

well but to increase with the storage parameter. The limits 

of storage effect zone have been identified. Ignoring the 

effects of storage in this zone would lead to significant errors. 

The drawdowns in the case of partially screened wells increase 

with decrease in screening ratio. The steady state conditions 

will be reached much earlier as it has been found that the 

effects of leakage and the storage of the well are cumulative 

in nature. From the concept of time of deviation a general 

expression for assessing the transmissibility of the aquifers 

vi 



is presented. It has been found that the expression for 

time of deviation remains the same for Darcy flow whatever 

be the variation of the storage parameter and radial distance 

from the pumping well, while the merging time is found to 

vary with the radial distance. 
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1.0 INTRODUCTION 

1.1 General 

During the last decade, it has been more fully reali- 

zed that refined quantitative answeres are needed in the eva- 

luation of available resources. Competition for the available 

resources has brought about an awareness and as such ,one of 

the principal problems of the Government is the resource 

management. Before the ground water resources can be managed, 

they must be quantitatively appraised. Proper planning and 

management of this important resource require the testing 

of all possible schemes and appraising of the relative merits 

of various alternatives. The problems related to the ground 

water resource management basically are the determination of 

sustaining yields of wells and aquifers, the interference 

between wells and well fields , the interrelation between 

surface and sub-surface waters and the quality of water. 

Questions pertaining to the use of ground water 

resources require the establishment of proper relationship between 

pumpages and water level changes both in time and space and 

for doing so, the hydrogeologic properties of aquifers and 

aquitards, their dimensions in space and the boundaries are 

of utmost importance. This relationship cannot be established 

until hydrogeological maps are available which encompass all 

nonhomogeneous and irregular hydrogeological conditions. Thus, 

there is a necessity to determine the hydrogeological parameters 
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like transmissibility, leakage factor and storativity etc., with 

reasonable accuracy. For these purposes, pumping or recovery 

tests are performed on the wells penetrating into the water 

bearing strata in the subsurface. 

A water bearing stratum, called an aquifer may be 

confined, semiconfined or unconfined. A confined aquifer is a 

permeable bed confined in between two impermeable layers. A 

semiconfined aquifer, also called a leaky aquifer is the one 

which is bounded above and/or below by a semipervious layer 

having low but still measurable permeability. This semipervious 

layer is generally known as aquitard. 

The wells, generally, are screened through the entire 

portion of the aquifer thickness. Such wells are termed as 

fully screened wells. However, in the event when the aquifer 

is too thick, the wells can be partially screened even. Most 

of the times, these partially screened wells are economical, 

as the cost of the well may be less without significant reduc-

tion in discharge. Also, the wells may be either open dug wells 

or tube wells. Dug wells are usually, large diameter wells 

(varying from 2 to 10 meters) of small depth. In some parts of 

India and in Asia, most of the existing wells are of this type. 

Generally, they will be either penetrating a leaky aquifer or 

a water table aquifer and at times penetrating into confined 

aquifers with a reduced well radius. A typical dug well in a 

confined aquifer is shown in Figure 1. 

The flow towards a well may be steady or transient. 

The flow is said to be steady if the discharge from the well 

and the recharge of the aquifer to the well is equal. In this 

2 
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case, the discharge from the well and drawdown are invariable 

with respect of time. Transient or nonequilibrium flow occurs 

from the moment pumping starts till the steady state conditions 

is reached. 

There have been a series of developments between 1856 and 

now in understanding the flow phenomena through porn's media and 

the factors that govern this flow which rids helped 

to establish the principles of ground water resources evaluation 

as a quantitative science. Darcy's law serves as basis for 

numerous quantitative methods in the field of ground water flow. 

The mathematical analysis for relating cause and effect avail-

able in literature, deals with the problems with sulgae looundary 

conditions. The complicated hydrogeological problems which 

generally occur in real life situations require certain simpli-

fications for mathematical amenability. However, in most of 

the cases, such simplifications make the solutions unrealistic 

and may not yield a true relationship between cause and effect. 

In the recent past, due to the enormous demands on the ground 

water, a proper management policy over the pumping rates and 

other factors has become essential, for which accurate methods 

of determination of the aquifer properties are needed. This 

resulted in the necessity for the development of more accurate 

analysis for the complex ground water problems like finite 

diameter wells with storage, aquifers with anisotropy and/or 

inhomogeneity with respect to transmissivity and aquifer with 

irregular time variant boundaries etc. 

In India the most of the existing wells are dug 

wells with large amounts of storage in them. The study conducted 
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by Papadopulos and Cooper (1967) suggests that use of Theis 

curve/Hantush curves for the analysis of pumping test data 

obtained from the large diameter wells would yield erroneous 

aquifer parameters. Though, it is clear that the influence 

of well storage would effect the drawdown distribution in the 

aquifer, their study was limited to the well boundary only. 

In view of the proven necessity for a thorough study for 

assessing the proper drawdown/piezometric head distfibution 

within the aquifer when pumping tests are conducted in the 

wells with storage, a finite element model was developed by 

the author. This model was used to study the effect of well 

storage on the piezometric head distribution in the aquifer 

and for the establishment of type curves in leaky aquifer. 

Also, the zone of applicability of these type curves both in 

time and space was established. The present investigation 

deals with the study of wells with storage in semiconfined/ 

leaky aquifers and establishment of type curves which could 

be used for the proper assessment of hydrogeologic properties 

of aquifer-aquitard systems. Also an attempt is made to identify 

the region of the applicability of these type curves both in 

time and space. 

1.2 Scope 

It is thus noted that the studies made till now on the 

effects of well storage over the drawdowns around wells, parti-

ally and fully screened in leaky aquifers, have been very 

little. Accordingly, it is proposed in the present investiga-

tion, to make a comprehensive study of the effects of well 
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storage on drawdown around wells mentioned above. For this study, the 

aquifer is taken to be homogeneous and isotropic and the flow 

is in transient state. It is proposed to employ the finite 

element techniques for the analysis of the problem in view 

of the several advantages offered by this method. 
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2.0 REVIEW 

Exploration of underground natural resources is highly 

dependent on the development of well hydraulics. The usage and 

importance of groundwater is known from as early as 1000 B.C. 

(Keilhack,1912). However, it is only after the advent of 

Darcy's law in 1856, the rigorous and sound mathematical approach 

could be given to the subsurface flow. During the last two 

to three decades important developments have contributed much 

to such understanding by reassessing the basic physical prin-

ciples which determine the behaviour of water flowing through 

porous media. Advances in mathematics and computer technology 

have facilitated the analysis of complex problems in the field 

of groundwater hydraulics. 

2.1 General Field Equation for Transient Seepage Flow 

Combining the Darcy's law and the law of conservation 

of mass, popularly known as continuity equation, the general 

fieLd equation in the three dimensional cartesian coordinate 

system for the case of transient flow through porous media of 

uniform thickness can be obtained as (Walton,1970). 

2 32s 3
2 

as s _ S as 
T Dt 

Dx
2 ay az

2 
 

where, s = drawdown in the well, 

x,y,z = coordinates axes, 

S = storage coefficient 
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t = time of pumping from the start 

T is defined as the transmissibility of the medium and is 

equal to the product of the thickness of the aquifer 'm'and  

the Darcy's permeability Coefficient 'K' 

i.e. T=Kxm 

The equation I can be rewritten in radial coordinates as 

2 
D2s s  1 as s ISS s as 
ar
2 r ar 'azt T • at 

Equation 1 is of the same form as the fundamental equation 

of applied physics known as diffusion equation. Under steady 

state conditions of flow, the right hand side of the equations 

1 and 2 become zero, since the velocity and therefore the 

pressure distribution is invariant with respect to time. 

2.2 Flow towards a Fully screened well without storage 
in a confined aquifer 

Dupuit (1863) obtained an expression for the steady state 

flow to a fully penetrating well in confined aquifer. 

However, for the usage of Dupuit's equation, the knowledge of 

radius of influence is essential. Thiem (1870) reviewed 

Darcy's experiments and derived an equation similar to that of 

Dupuit's interrelating the piezometric surfaces at any two 

known radial distances with discharge from the well. Using 

this equation, the transmissibility of the aquifer can be 

obtained. But in a practical case, it is difficult to obtain 

a steady state condition, which make-,the applicability of these 

equations very much limited. Attempts have been made subse-

quently, to use the transient history of the pumping of the well 
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to determine the aquifer properties. Thus, Theis (1935) 

presented a solution to the diffusion equation(Eq.1) from the 

analogous solution of the heat conduction theory. In his 

analysis, the production well is replaced by a mathematical 

sink of constant strength and is assumed to have an infinite-

simal diameter. Subsequently Hantush(1964) considered the 

production well as a finite diameter well instead of a line 

sink and obtained an exact solution for the drawdown equation. 

2.3 Flow towards a Fully Screened well with storage 
in a confined aquifer 

Since in majority of middle Eastern and Asian countries 

most of the wells are dug wells, the above mentioned tables or 

type curves given either by Hantush or Theis are not suitable 

as they do not consider the relatively large capacity of the 

pumping well itself. Papadopulos and Cooper Jr. (1967) attem-

pted to give an exact solution for the drawdown in finite 

diameter wells with storage. They have suitably modified the 

boundary condition on the well face expressing the rate of 

discharge pumped from the well as equal to the sum of the 

rate of flow of water into the well from the aquifer and the 

rate of decrease in the volume of water within the well. 

i.e. Q = Qw  + QA .. • (3) 

where, 

Q = the water pumped from the large diameter well 

Qw  = the water contributed by the Well storage 

Q= the water contributed by the aquifer 
A 

The general differential equation (equation 1 I for 
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unsteady radial flow with suitable initial and boundary condi-

tions was solved by them using Laplace transform technique 

and an expression for the drawdown in the well was obtained. 

Fenske (1977) also obtained an expression for the drawdown 

around large diameter well with storage. His analysis includes 

effects of storage of the pumping well as well as the observa-

tion well. He obtained the necessary equations by a simple 

modification of the Theis equation. His analysis assumes that 

the water stored in the observation well would recharge the 

aquifer instantaneously with a drop in the head in the adjoin-

ing aquifer. Since the rate of recharge from the observation 

well depends upon the aquifer parameters and differential head 

between the aquifer and the well, significant error may exist 

in the early time portion of the drawdown episode. 

2.4 Flow towards a fully screened well without storage in 
Leaky Aquifers 

The confining beds of an artesian aquifer are rarely 

completely impermeable. Frequently, the artesian sand is 

confined above and/or below by semi pervious elastic clay or 

silt that yield significant amounts of water from storage. 

Hantush (1956) gave equations for the drawdown in the wells in 

leaky artesian aquifers. The governing differential equation 

for axisymmetric flow in polar coordinate system is 

as 1 35 s S as  ...(4) 
2 17 L2 T 

at 
lr 

where, 

= drawdown in the well 
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L
2 = TRW/mt ) and is termed as leakage factor 

K' = permeability of the aquitard, and 

m' thickness of the aquitard. 

The leaky aquifer is diagrammatically represented in Figurel 

While deriving the equations the following assumptions are 

made; Viz., 

The aquifer and aquitard are individually elastic, • 

homogeneous, isotropic, uniform in thickness,infinite 

in aerial extent and the tangent of the angle of dip 

is small. 

The conductivity and specific storage remain constant 

with time and constant in the space of the layer they 

characterize; and 

The wells are screened through the aquifer portion only. 

Though, he derived an exact equation for drawdowns in the 

main aquifer, the inverse Laplace transform present in the 

equation could not be evaluated. Hence he could present only 

asymptotic solutions at later and early times. 

Neuman and Witherspoon (1969 a and b ) later extended 

Hantush's work to obtain a complete solution to a more complex 

problem of flow in a confined system consisting of two aquifers 

separated by an aquitard. They also developed asymptotic 

solutions for small values of time. All the available analyt-

ical solutions are based on the assumption that the flow 

direction is horizontal in the aquifer and vertical in the 

aquicard. Hantush also assumed that the leakage from the 

aquitard into the aquifer is vertical and the storativity of 

11 



the aquitard is neglected. This assumption was shown by Neuman 

and Witherspoon (1969) to lead to errors of no more than 5% when 

the permeability of the aquifer is at least two orders of mag-

nitude greater than that of the aquitard. This was later 

substantiated by Javandel and Witherspoon (1969) while they were 

analyzing the transient fluid flow through multilayered aquifers. 

2.5 Flow towards partially screened well 
without storage in leaky aquifers 

Wells for which the water entry section is less than the 

thickness of the aquifer they penetrate, are called as partia-

lly screened wells (Figure 2). Unlike the flow towards a 

completely screened well where the main flow takes place 

essentially in planes parallel to the bedding planes of the 

aquifer the flow towards partially screened wells is three 

dimensional. Consequently the drawdown observed in partially 

screened wells will depend among other variables, on the length 

and space position of the screened portion (i.e., water entry 

section) of the discharging well. Convergence of flow at a 

well of partial screening causes additional head losses, which 

are superimposed on those of an undeformed radial flow pattern 

of fully penetrating well. Solutions developed by many authors 

are obtained therefore in terms of the two drawdown components; 

the first being caused by the well of complete penetration, 

while the second indicates the effect of partial screening. 

However, the solutions differ somewhat mainly by the assumed 

distribution of pressure along the well surface. Steady state 

analysis of partially screened wells in confined aquifers was 

12 
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under taken by Forchheimer (1930),De Glee (1930), Muskat (1932) 

Litet al,(1954), Kirkham(1959) and others. Hantush(1961) gave 

early and late time solutions for the transient flow towards 

partially screened wells in confined aquifers. The partially 

screened wells in thick leaky artesian aquifers were analyzed 

by Hantush (1967) and Halepaska(1972). For this boundary 

value problem, Hantush gave the solution for drawdown 

involving sine and cosine series. 
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3.0 PROBLEM DEFINITION AND FORMULATION 

me analysis of wells with storage in confined aquifers 

revealed that the use of Theis curve for the estimation of 

aquifer parameters lead to erroneous results during early time 

pumping history. From the analysis, it was found that the 

effect of storage of the well would be negligible at late 

times or after certain distance from the discharging well. 

The storage effected zone both in spatial and time coordinates 

was determined beyond which the applicability of Theis curve 

can be made for determining the aquifer constants Also, 

type curves for the wells with storage in confined aquifers 

were presented which can be used for assessing transmissivity 

and storage coefficient from the early pumping history. 

The present investigation is primarily concerned with 

study and anslysis of the effects of storage of a partially 

screened pumping well on the flow fieldinlcaky( semi confined) 

aquifer under constant discharge conditions. As a special case 

of the above mentioned problem the analysis include fully 

penetrating wells also. 

3.1 Description of the flow field 

A diagrammatic sketch of a partially screened well in a 

semi-confined aquifer (i.e., an aquifer overlain and/or under-

lain by an aquitard) is shown in Figure 3. The aquifer-aquitard 

system is considered to be of infinite aerial extent with the 

well at its centre such that all physical conditions are 
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symmetrical with respect to the axis of the well. The aquifer 

of thickness, m , is overlain by an aquitard of uniform thick-

ness,m', and underlain by an aquiclude. Both the aquifer and 

aquitard are independently considered to be homogeneous and 

isotropic and they have negligible dip. The well of radius, 

rw, has penetrated completely the aquifer and aquitard. 

However, it is screened only through a length 1, in the aquifer 

region commencing from the junction of the aquifer and aquitard. 

The well is considered to be pumped at constant discharge Q, 

and the steady state conditions are yet to reach. The casing 

of the well, r
c, starts from the top of the aquitard. The 

drawdown in the well at any time t ( total time from the 

starting of the pump) is designated by sw. The height of the 

non-pumping piezometric surface is indicated by 110. For the 

purpose of discretization, the infinite aquifer-aquitard system 

is replaced by a finite system, with the inflow potential 

boundary for the aquifer located at r = r
o  from the axis. The 

height of the piezometric surface at any radial distance r is 

designated by h. The water table surface is assumed to be at 

a constant height H, over the surface of the aquitard. 

3.2 Mathematical Formulation 

3.2.1 Assumptions 

The following simplifying assumptions have been made in 

the study of the problem - 

the aquifer as well as the aquitard are individually 

homogeneous and isotropic with a negligible dip. 

Darcy's law is assumed over the entire domain. 
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Water is released instantaneously from the aquifer 

with decline in head. 

The water table above the aquitard is remaining at 

a constant level. 

The model is considered as a composite unit of 

aquifer-aquitard system. 

3.2.2 Governing differential equation 

The governing differential equation is same as the 

equation 2 since the aquifer and aquitard is treated as a 

composite unit. 

3.2.3 Boundary conditions 

The boundary conditions for this problem are as 

follows (Figure 3 )• 

AC r - rw 
0 s z .5 .(m - 1) shAr - 0 ...(5) 

DE r = rw 
m s z E (m + m') oh/or = 0 ...(6) 

EF z - m+m' rws 
r s ro 

h =H  

FG r = ro 
m s z .5. (m+W) h = H ...(8) 

GE r = ro 0 s z s in h =h0  

HA z = 0 rw.5 X ' S ro 
6 11/6 Z = 0 ...(10) 

CD r = rw 
(m-1).5z s m the discharge 

condition 
prescribed 

in 
i.e. -2wK rw 

 [ah(t)] dz + wr2  9.t hw
(t) = -Q ...(11) 

z(m-1) ar r=r 
c d 
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For the case of fully screened well, the equations 5 and 10 are 

replaced by the following equation : 

AD r = r
w 0 z s m the discharge prescribed 

condition 

m ahw(t) 

z0 
i.e.-2a I rw 

[  ah(t)] dz + Er2 - Q ...(12) 
Dr c at = 

r=r w 
It may be noted that (Dh/3r)r 

r 
varies with z for a partially 

= w 
screened well, while it is a constant for a fully screened well. 

3.2.4 Initial conditions 

The initial condition is 

h(r,o) = h 

The boundary and initial conditions as indicated by 

equations 6 to 13 combined with the governing differential 

equation (equation 2) will define the well with storage in a 

leaky aquifer. The solution of equation 2 with initial and 

boundary coordination will give head variation across the 

aquifer. 
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4.0 FINITE ELEMENT FORMULATION 

By employing the variational principle in conjunction 

with the finite element idealization, a powerful solution 

technique is available for the determination of unknown 

function distribution within complex bodies of arbitrary 

geometry. Zienkiewicz, et al., (1966) have employed the 

finite element method in obtaining steady state solutions to 

hetereogenous and anisotropic seepage problems. Finn(1967), 

Taylor and Brown (1967), Neuman and Witherspoon (1969) have 

used this method to investigate steady state flow involving 

a free surface. Complex transient problems have been studied 

by Javandel and Witherspoon (1968,1969) and Witherspoon 

et al., (1968) using the finite element method. Sandhu and 

Wilson (1969) made a finite element analysis of soil consoli- 

dation (i.e. seepage in an elastic medium). Fenton (1968) and 

Volker (1969) used this method to investigate steady non 

Darcy flow with a free surface. Mc Corquidale (1970) employed 

this method to study both steady and transient non Darcy flow 

with a free surface. Also, France, et al.,(1972) and Verruijt 

(1972) have applied this method in solving unsteady flow 

problems. Chowdary and King (1972) discussed the analysis of 

non Darcy steady seepage problems using the finite element 

techniques. This method is also adopted by Huyakorn (1974) 

while studying the two regime flow around wells in confined 

and unconfined aquifers. Das (1975), Rao and Das (1976) 

have applied this method to analyse the flow pattern around 

20 



the partially penetrating wells in unconfined aquifers. Morandi 

and Mancino (1976) used the finite element method to simulate 

the confined flow. Seethapathi (1979) used the finite element 

technique to study the problems of wells with storage. 

4.1 Development of Variational Principle 

Variational forms of the previously derived equations may 

be obtained by considering an equivalent variational problem 

and adopting Euler-Lagrange equation from the Calculus of 

variations. The general aquifer system is shown in Figure 4 

in Cartesian coordinate system, with x11x2,x3 as coordinates. 

Let h (xl,t) be an admissible function with the second 

order space and first order time derivatives, which are 

continuous everywhere in the given flow region R and let the 

time domain be sub-divided into a number of finite time 

increments. 

The general functional to be minimised over the space region 

R over the time increment At may be expressed as 

[I (h)] = f f ail all F (h,— ati x.,t) dR dt aix!  

where i refers to a particular component along the coordinate 

axis and its range is one to three for three dimensional space 

region. 

Now the problem is reduced to seeking the function h(x,t) 

which holds the above functional stationary. A necessary 

condition is the Euler Lagrange equation {Myers (1959),Remson, 

Hornberger and Moltz (1971) and Huyakorn (1974)] which can be 

written as 
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aF a 3F a aF  + — 0 an ax (. 'I ----) 3h at •  an  
1 a( ) 3x . at i  

The above equation represents various classes of partial 

differential equations. The equation derived earlier (equation 

1) belong to one of these classes. 

To obtain the expression for the functional F, the 

equations derived earlier may be equated to Equation 15. 

The field equation describing Darcy flow through iso- 

tropic aquifers is rewritten as 

a 3h an ( K ) +  ax1 3x Ss at - 0 ...(16) . 

On comparing Equation 16 to Equation 15, the following equations 

are obtained 

8F 0 ...(17) an 
aF = 3h 
9h Dx. a(--- ) axi  

= h Ss 

Integrating the above equations 

an an F = 1/2 K + h S 3h 
s  at  i i 

...(20) 

Hence the functional over the region R is given by 

t+At 
['(h)] R = f 11/2 K 3h an + h S)dR dt ...(21) 

t R Dx. Dx. s—
an
TE 

4.1.2 Initial conditions 

At a particular time, ( taken as the initial time) the 
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head distribution throughout the space region of the flow system 

is assumed to be known. If, in the minimisation of the functional 

the time integration is carried out between t=0 and t =At 

the admissible function will automatically satisfy the initial 

head condition represented by the equation 

h(x.) (x.), (xis K 
11
0 = h o ...(22) 

where ho 
 (x.) is the initial non pumping piezometric height and 

R denotes the closed region of the flow system. 

4.1.3 Boundary conditions 

In minimising the functional, the requirement on the 

flow boundary must also be •met. These requirements lead to the 

addition of some extra terms to the functional. 

For the various types of boundary conditions like head 

prescribed boundaries, flux prescribed boundaries, impervious 

boundaries, seepage faces, free surface boundaries etc., the 

additional terms have been obtained by Neuman and Witherspoon 

(1971). 

On the portion B1
, where flux is prescribed, the 

additional term may be written as 

t+ At 
[I(h)] -I I hqdB dt ... (23) 

B1 t B1 

On the portion 82  where the function h is prescribed, it is 

given by 

t+At 
[I(h)] = f I (h-E) v1 1 

dB dt ...(24) 
B2 t B2 
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where H is the prescribed head on the boundary and v is the 

velocity component. 

Since the admissible function h is chosen to automati-

cally satisfy the prescribed head condition on the entire flow 

boundary, the term contributed by B 2 may be dropped. For the 

impervious boundaries, the normal component of the velocity 

across the boundary is zero and hence v.n.
I  = 0 and there will i  

be no contribution to the functional from this type of boundary 

condition. 

Now the functional for the entire region IR-  with the 

above mentioned boundary conditions being incorporated,becomes 

(h)] = (h)] R + [1 (h)] 
1 

... (25) 

4.2 Formulation of element matrices 

Consider the general problem of three dimensional 

transient flow towards a pumping well penetrating a leaky 

aquifer. The flow region K consists of the region inside the 

boundary and the flow boundary. The functional over B , may be 

expressed as the sum of the functional over the interior 

Region R, and over the boundary B (Equation 25). 

The flow region is discretised into a network consis-

ting of M interconnected finite elementb. 

Considering a typical element with a closed sub-region 

of ft e  and with Me  nodes on its boundary, the head distribution 

within the element may be written as 

h (xi,t) = Ni(xi) hi(t) ...(26) 

where N (x.) are piecewisely defined functions of coordinates 
I 1  
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(x1,x2,x3) within the element, hi(t) are the nodal values at 

time t of the function 'h', and the repeated subscript I 

denotes summation over the full range, from 1 to Me. The 

functional over the entire flow region [I (H K  , may now be 

expressed as the sum of the functionals over the elements, 

thus 

[I (4 - 1! [Ie  (h)] ...(27) 

For convenience, the elements are classified into two catego-

ries viz., interior elements, which have their closed elemental 

boundaries contained within the interior of the flow region, 

and exterior elements, which have their elemental boundaries 

as parts of the boundary of the flow region. Accordingly,the 

elemental contributions are evaluated. 

4.2.1 Interior elements 

For the interior elements, the functional Re  is given 

by 
t+At 911 an 3h 

Ie(h) = f f 1 1/2 K- — x 
dR dt ...(28) 

Re 
+S h---1 9x 3.  . D 3, 

Differentiating the above equation with respect to hi, gives 

31e t+At ah  f [I< D ah
)  + 311I t 

ax. PhI 3x. 
Re 

D an an 3h 
Ss h 3h( at) + ss at Dh dR dt 

From equation 26, it follows that 

p 
ph 

NI  
axi pzci  I 

a_ f ah  ) 
DNI _ 

ph, px. Dx. 
26 

... (29) 

... (30) 

(31) 



Also, since NI  are functions which do not vary with time, 

it follows that 

and 

DN Dh 
(— ) = N h  0 " art, at J J at -  

Dh Dh _ 3hJ 
at • ah, — at NJ NI  

... (32) 

•• • (33) 

substituting equations 31,32 and 33 into equation 29 gives 

@I e t+At •F DN 3N Dh_ J I S -ii - I I K h + s 
I t 

...(34) Dh a . J Dx . at " 
m J"m I dRdt x3 i Re 

4.2.2 Exterior elements 

For the evaluation of the functional contributed by 

an exterior element, the boundary conditions on the element 

boundary has to be taken into account, for which some extra 

terms are being added for the functional that is already derived 

for an interior element. These terms only exist on the exterior 

portion of the element boundary and vanish elsewhere. In the 

case of leaky flow problems as attempted in this investigation 

the boundary conditions are prescribed head and prescribed flux 

conditions. If Be  and Be  denote the exterior portions of an 1 2 

element where the flux and head functions are described res- 

pectively, the additional terms are given by 

t+At t+At 
Ie h 4 dB dt and I Ie (h-E) v.n. dB dt B1 B2 

The admissible function h is chosen to automatically 

satisfy the prescribed head condition on the entire flow 

boundary. Therefore, the contribution of the term due to head 
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prescribed boundary, may be dropped. 

Now the functional is 

t+At ah + ah 
[I(h)] e  = S) dR dt f f ( k K 

t Re 
ax. ax. s at 

t+AtIe hq dB dt 
B1 

...(35) 

Differentiating the equation 35 with respect to hI, gives 

t+At aN aNI J 
ah 

a  (Ie) = a 
J N N ) dR dt I 

ahI 
fe (K x.hjax. + Ss at J I 

t R 3 i 

+ I
t+At 

e NI dB dt B1 

... (36) 

For convenience the following terms have been introduced 

e 
aN aNI   

CODJI = I K 
J  dR ....(37) 

Re ax. 3x. 
3 i 

e 
PORJI f

e 
Ss NJ N1 dR 

...(38) 
R 

e DISI 
= fe 

i NI  dB ...(39) 
B1 

Substituting the above equations 37 to 39 in 34 and 36 the 

following expressions are obtained for interior and exterior 

elements respectively in the case of Darcy flow. 

al
e t+At e t+At 3h 

J  
(for interior) = i COD h dt + f PORe  dt 

J JI at ahI 
JI 

 t t 

(40) 
and 

ale t+At 

ah 
(for exterior) I CODeJI hJ 

 dt 
I t 

t+At ah t+At 
+f PORe dt + I DIS

e dt J  
JI at I 

t t 
... (41) 
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The following matrix notation is used for convenience. 

e T 
[COD] Ie K[S] [Si dR 

R 
e 

[POP] = f e  Ss 
 [NIT bql dR 

R  
e , T 

[DIS] le a -.. [N] dB B1 

where m is tne shape function matrix given by 

... (42) 

... (43) 

(44) 

IN] = [N1  Nme] ... (45) 

[N] = Transpose of N 

[s] = Transpose of matrix [S] given by 

3N1 3NMe 

ax i  

aN1  

a xi  
aNMe 

[s] — ax2  

3N e 

x2  

aN1  
3x3 ax3 

The equations relating the differentials of the functional 

Ie(h) and the nodal values of the function h may also be 

written in the matrix form. Rewriting the equations 40 and 

41 in the matrix form we obtain 

t+At t+At „ [ 
 ahI a 

(Ieinterior] ) f PAle  [he]dt + [PON
e  
N dt t 

... (46) 
t+At e t+At 

L ' 
1—(Ie) exterior]  = f [COD] [111 dt + f [PORf 

[ ] 

e 
dr ah1t t aath  

t+At e 
+ f [MS] dt .... (47) 
t 
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h1 

and [he] 

DI
e 

ahMe 

Since the present study is concerned with flow towards 

wells, axisymmetric system is adopted. The domain is divided 

into a finite number of ring shaped elements, with rectangular 

cross section (Figure 5). A triangular element with linear 

variations of head has been chosen in the present analysis. 

To save the requirements of computer storage, the following 

technique has been used. The aquifer is discritized as an 

assemblage of rectangular elements. By drawing the diagonals, 

each rectangle is subdivided into four triangles with five 

nodes. The overall conductance and porosity matrices have been 

obtained by combining the corresponding individual matrices 

of the triangles. These 5 x 5 matrices have been condensed 

to 4 x 4 matrices by algebriac elimination of the central 

node. 

4.3 Assemblage of elements 

In the element assembling process, all elements are 

assembled through the specification of the reduced compatibility 

condition, which requires that the nodal values of the function 

be the same at the coincident nodes of adjacent elements and 

also equal to prescribed value on the boundary portion where 

the function is prescribed. 
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Thus an assembling, the functional for the entire flow 

region becomes 

= E I
e (h ) [I ay] 

ft 
 for I - 1  M ...(48) 

e=1 

where the summation is taken over the elements adjacent to the 

I-th nodal point and the subscript I ranges from one to the 

total number of nodes in the entire flow region. The minimization 

of[I (hI)1 requires that 

DI
e 

g; [I ( hi)] _ = ahI 
—o 

for I - 1  

Thus the general expression is now written as 

are tl-At t+At ah 

 - f CODe I  hI  dt + 
I PORe  --J  dt 

3hI 
J 

t t 
flat 

t+ At 
+f DISI dt 

... (49) 

...(50) 

substitution of equation 50 into equation 49 leads to 

t+At t+At 9h t+At 
e e  

E f CODJI hJ 
dt + E f PORJI 3t

j dt + E I DISe dt=0 
e e I 

e t t t 

. ( 51) 

Introducing the following gross matrices 

E e 
C = COD ...(52) 
JI e JI 

E e 
PJI = 

PORJI 
...(53) 

e  

Q = 
E DISe ...(54) 

I e 

where C is called conductance matrix, P is called porosity 

matrix and Q is the prescribed boundary matrix 
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Substitution of the equations 52 to 54 into equation 51 results in 

t+At t+At t+At 
C I  h dt + f PJI h dt + Q dt = 0 ...(55) J J J 

where subscripts J and I range from one to the total number of 

nodes in the entire region. Rewriting the above equation we 

have 

Ch+Ph+ Q = 0 at any instant of time ...(56) 

where h indicates the derivative of head w.r.t. time. 

4.4 Integration with respect to time 

Equation 55 represents a system of M simultaneous equations 

involving the integral terms which must be integrated with 

respect to time. To carry out the integration, it is assumed 

that all  the nodal values of h
I and QI are known at earlier 

time t. Using the Crank Nicolson method with a logarithmic 

time increment, the final equations would be, 

[Di = [E] {h} At 
2 ({4}  

where, 

[17)} = [P] + At 2 LC]    (58) 

[ET = LP] - 
fl [CJ 
2   (59) 

P4 . nodal head vector at time, t+1 

in} = nodal head vector at time,t 

{Q} = boundary discharge 'vector at time,t, 

{QM} = boundary discharge Vector at time, t+1 

At = time increment between t and t+1 
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4.5 Implementation of boundary conditions 

4.5.1 Head prescribed condition 

While minimizing the functional for the elements and 

while assembling them to generate the conductance and porosity 

matrices, it was assumed that even at the nodes where head 

is prescribed, that nodal values were unknown and differentia-

tion with respect to that nodal value was performed, for the 

sake of convenience and ease. However, in reality, the head 

at that node under consideration would be a constant value and 

eaual to the prescribed value. To implement this condition, 

without altering the structure of the gross matrices, a 

suitable procedure was adopted. 

4.5.2 Treatment of conditions on the Well Boundary 

Two types of well boundary conditions are possible, 

depending on the pumping operation. If the well is pumped at 

a constant discharge, the constant prescribed flow rate will 

prevail. On the other hand, it is pumped such that the water 

level in the well remains constant, the constant prescribed 

head condition will result. These two types of boundary 

conditions were dealt with in the following manner. 

(a) Constant head prescribed boundary condition 

Consider a typical pumped well as shown in the Figure 6 

As indicated in the figure, if the water level is maintained 

constant throughout the pumping period, the head values at the 
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D. 13 

nodes situated on the well screen will be constant with time 

and equal to the known elevation of the water level above the 

datum plane. Let(a,b) and ( i,j) be additional subscripts 

referring to the nodes situated on the well screen where the 

boundary condition is prescribed and the remaining nodes in 

the flow region respectively. It follows that the subsc- ipts 

a and b ranges from 1 to K and i,j ranges from K + 1 to M. 

The equation 57 is partitioned into two parts (1) upto the 

rows equal to the number of nodes on the well boundary where 

the boundary condition is prescribed, (ii) remaining nodes. 

Thus 

At 
2 

... (60) 

Rewriting the partitioned matrix equation, we have 

{Da b.]  ixd + [Da j] ixi1= [Ea b] {J ± [Ea j] {h j}  

f Qb ()Mb)  ...(61) 

and 

[Di ID] fxbI + [D .] {x [E, bl fhb} + [Ei  ]{h1} 
3 3 

36 
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for the boundary condition prevailing on the well face, x
b 

which signifies the head values at nodal points on the well 

screen is a known priori. Hence, x
b = hb Rearranging 

the terms in the equation 62. 

[D. •] {x.} = [Ei b  - Di b] fhb} + [E. .1{h.} 3 3 3 3 

_ At 
- 2 {Qj  + QM.} ... (63) 

Intheaboveequation.and QM, indicate the flux at time t 43  

and at time t+At at the internal nodes, which is equal to 

zero, since the flux at the internal nodes balances out. Also, 

substituting the expressions for matrix CD] and [E] (Equations 

58 and 59), we have 

[D.ij ix . ) = - A t Li  b] 'hip{ + [Ei j] {h.} ...(64) 3 

In the equation 64 the right hand side of the equation can be 

evaluated. Using the Gaussian elimination technique, the 

equation is solved for x. To calculate the flux at the 

nodal points on the well screen, equation 61 can be used in 

the form 

fQM13.1 = -2.([Cabl fhb)) 2  (Paj119 At ) - 

-2 ( [Rjj{xj} / At) - iQb} ) ... (65) 

However, the discharge from the well would be equal to the sum 

of the discharge from the aquifer which is the sum of the nodal 

discharges on the well screen obtained by solving the equation 

65 and the discharge obtained from the storage in the well 

i.e. Qwell = Qaquifer Qwell storage ...(66) 
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(b) Constant prescribed flow rate condition 

In the extraction of groundwater pumping, it is common 

to maintain constant total discharge from the well throughout 

the pumping period. Accordingly, since the total flow rate 

is fixed, the water level in the well and prescribed hydrau- 

lic head along the screened portion of the well boundary 

must vary with time. Once again consider the well shown 

in Figure 6 . If 0 denotes the prescribed flow rate, the 

condition is given by 

Q = Qaquifer + well storage 

Qaquifer = bL1 Qb 
and ...(67) 

 

Qwell storage = nr
2 (st+1

-st) 
...(68) 

where s = is the drawdown in the well at any instant of time. 

In the simple case where the well storage is ignored and 

where the total discharge is uniformly distributed along the 

well screen as in a fully screened well, the constant flow 

rate condition may be treated by computing the values Qb  

from equation 67 and incorporating this into equation 61. 

However, in the case of partially screened well, the 

discharge along the well bore is not uniformly distributed 

and further it is not known a priori. To implement this 

boundary condition in the computer programme an iterative 

technique has been employed. This procedure is essentially 

the same as outlined for problems with head prescribed 

boundary conditions. A guess is made at any time 't' and is 

corrected iteratively till the discharge boundary condition 

is satisfied in the limits of the accuracy prescribed. The 
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details are described below. 

Let tn+1 
and tn 

denote the current and preceeding times 

respectively. For the first iteration, k=1, an initial estimate 

of the value of H at time tn+1 
is made from 

1 
= (H)t + H for n = 0,1 ...(69) (H)tn+1 

or from the following logarithmic extrapolcation formula 

1 
log(tn+i/tn_i) 

(H)t  (H)tn+1 
log (tn  / t 

(H)t 
- 

n_
l) n-1 

(70) 

when the equation 69 is used an initial guess had to be made 

to the value of the head increament AH at the beginning of the 

first and second time steps. The initial estimate of H is 

used in solving for the unknown head and flux values in 

equations 64 and 65 respectively. Knowing the nodal flux Qb  

and the drawdown between the time increment the total discharge 

Qk  is calculated by the equation 

ffr2 
Qk (H)

1 n+1I 
...(71) [(H)

tn = b1-1 Qb At t  

The Qk, thus obtained, is compared with the prescribed 

discharge Q. 

 

Q

k 
_ Q 

 

 

... (72) 

If 
> 

    

where E is the prescrihed tolerance of the discharge ratio,a 

new trial head is calculated from 

2 1 
(H)t 

= (H)t + [(H)
tn+1 

- (H)t  I  

n+1 
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The solution for the unknown nodal head and flux values is then 

repeated and the total discharge is recalculated and tested for 

convergence. If the convergence is still not obtained, the 

following formula is applied to modify the head. 

(H)k+1 

[

(H)k  - (H)k-1] 

(4)
K 
- (4)

k-1 

[Q  _(Q)k1] 

...(74) 

The solution procedure is then repeated and equation 74 is 

reapplied until convergence is resulted. (The formulae 

represented by equations 69,70,73,74 are suggested by Huyakorn, 

1974). The above iteration procedure gave satisfactory results. 

For earlier times, the convergence criterion is met after three 

iterations and for later times, after two iterations the con-

vergence is resulted. 

4.6 Elimination Scheme 

The assemblage of element matrices, after imposing the 

conditions prevailing on the well boundary, reduced to a system 

of (M-K) equations as represented by equation 64 while formu-

lating the gross matrices, the symmetry and banded nature of 

these matrices is taken into account and hence only upper 

diagonal elements are calculated and stored, in a rectangular 

array. The half band width of each matrix is computed as the 

length between the diagonal element and the last non zero 

element. This has resulted in eliminating the problem of 

insufficient computer storage capacity, as only part of the 

two gross matrices needs to be stored. 

A banded Gaussian elimination scheme is employed to solve 

the reduced system of (M-K) equations. The process of 

40 



elimination is accomplished by reducing the system of equations 

to an equivalent triangular form through a series of arithmetic 

operations.on the coefficients of the equations. Then starting 

from the last equation, the last unknown is solved and the 

remaining unknowns are obtained by back substitutiqn into the 

preceeding equations. Since the gross matrices are in a 

condensed fashion a special subroutine is prepared for this 

scheme and this requires smaller number of arithmetic operations, 

which resulted in a considerable saving of the solution time. 
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5.0 ANALYSIS OF RESULTS 

In the present investigation, a mathematical model is 

developed to study the effects of well storage on the drawdown 

distribution within the aquifer. The cases of both fully 

screened and partially screened wells in leaky aquifers have 

been studied. 

5.1 Verification of the Model 

Before proceeding with the actual analysis, the programme 

that has been developed is tested for different standard 

cases, like, wells in confined aquifers and semi confined 

aquifers. The results thus obtained were compared with those 

values presented by Theis and Hantush. It is found that the 

maximum deviation from these standard values is only of the 

order of 0.05% indicating that there is a fine agreement 

between the developed model results and the standard values. 

The programme is also used to compare the results, for wells 

with storage in confined aquifers for storage parameter values 

ranging 10
-2 to 10

-5 on the well boundary with those presented 

by Papadopulous and Cooper (1967). There is a satisfactory 

agreement of the results obtained by the model developed by 

author (Table 1 ). 

5.2 Definition of Storage Parameters 

While deriving the expression for the temperature 

distribution for heat flow problems, carslaw and Jaeger 
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idendified a nondimensional parameter a. The same parameter 

was subsequently adopted by Papadopulos and Cooper ( to define 

the storage of the large diameter well)to analyse the problems 

of wells with storage. This parameter reflects the storage 

properties of the well in comparison to the storage properties 

of the aquifer. However, the parameter decreases with an 

increase in the well storage rendering it inconvenient for use 

in ground water hydrology. Hence, a new parameter called 

storage parameter is introduced and is designated by 0 which 

is reciprocal of a . 

5.3 Wells without Storage in Leaky Aquifers 

The case of wells without storage in semi confined aquifers 

is analysed by Hantush. He formulated the problem considering 

the finiteness of the well. In his anslysis he considered two 

cases viz., a) the aquitard storage considered b) the aquitard 

storage neglected. He obtained an expression for the drawdown 

in terms of inverse Laplace transforms. Since the Inverse 

transforms are not available, he could not obtain an exact 

solution. However, asymptotic solutions ( at early times and 

late times) are given by him. While considering the long time 

solution, he observed that the finiteness of the well has the 

least significance in time for the expression. At early times, 

Hantush assumed that the diameter of the well is vanishingly 

small. Thus it could be seen that Hantush though considered 

the finiteness of the well in his analysis, he has neglected 

the same while obtaining the solutions and there is no exact 

solution for the intermediate times. Hence it can be concluded 
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that exact analytical solutions are not available in literature 

for wells without storage in leaky aquifers. Hantush assumed 

that the flow in the aquitard is vertical though it has been 

subsequently proved by Javendal, Neuman and Witherspoon that 

the error caused due to such assumption is about 5% when the 

ratio of the permeabilities of the aquifer to the aquitard 

is more than 100. Thus the conclusions which can be drawn 

from Hantush solution from the well storage in leaky aquifers is 

1). For a constart discharge from a well, the dradowns will 

be comparatively smaller than in the case of confined aquifers. 

For the case of aquitard being more compressible, these draw- 

downs become still less. 2) At very early times, all 

the curves corresponding to different value of r/L ratios 

converge on to the Theis curve. 3) At late times or for the 

points farther to the well, the drawdowns will attain a particular 

value and remain constant thereafter. 

5.4 Fully screened wells with storage in leaky aquifers 

The model that has been developed can be used for a finite 

diameter well with storage or without storage in an aquifer 

aquitard system or can also be used for multi-layer aquifers. 

In the present investigation eight different cases (Figure 7 ) 

are used with different values of storage parameters and for 

two different aquitard storativity values viz., a) when the 

storativity of aquitard is equal to the storativity of the 

aquifer b) when the storativity of the aquitard is 100 times 

that of the storativity of the aquifer. Finite element solutions 

are obtained for these cases keeping the aquitard thickness equal 
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to that of the aquifer and the permeability ratio between 

aquitard and aquifer is 1/100. The leakage factor L has been 

considered as 100 length units. Type curves are drawn between 

the non-dimensional time parameter (u) with the non-dimensional 

drawdown (W(u)) on a log-log scale for different values of 

storage parameters and for different r/L ratios as well as 

for the two strativity ratios of 1 & 100 respectively. 

5.4.1 Shape of the type curves 

The shape and general pattern of the type curves for 

different values of e
s 
 (Figures e to 13) for both the cases, 

S' = S and S' = 1005, are same as the corresponding type 

curves for the case of non leaky aquifers ( confined aquifers). 

Three regions are seen distinctly in these curves. The straight 

line portion representing Zone I, is seen to be same as the 

corresponding region in the non leaky aquifers. However,the 

Zone II, which represents the combination of aquifer storage 

and the well storage is found to vary in curvature with r/L 

ratio . As r/L ratio increases, the curvature in zone II 

also increases. In the Zone III, the type curves are 

similar to those of confined aquifers for small r/L ratios. 

But, as r/L increases the plots in zone III become horizon-

tal. The length of the horizontal portion is found to 

increase with increasing in r/L ratio. Also, it is observed 

that beyond the r/L ratio of 1.0, the type curves for 'wells 

with storage' and ' wells with no storage' become almost the 

same ( with an error of about 5% for 0 = 105) 
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TABLE 1 COMPARISON OF THE RESULTS OBTAINED BY THE 
FINITE ELEMENT MODEL WITH THE PAPADOPULOS 
AND COOPER'S VALUES 

uw 
W uw  , a ) 

0 = 1.0 E+02 0 = 1.0 E+05 
PapadopukOs and FEM 
Cooper 

Papadoplulos FEM 
and Cooper 

1.0 E -07 1.554 E + 01 1.559 E +01 1.513 E +01 1.519 E +01 

5.0 E -07 1.393 1.397 1.013 1.017 

1.0 E -06 1.324 1.329 6.779 E +00 6.814 E +00 

5.0 E -06 1.162 1.166 1.817 1.860 

1.0 E -05 1.087 1.091 9.493 E -01 9.518 E-01 

5.0 E -05 9.229 E + 00 9.276 E +00 1.975 1.981 

1.0 E -04 8.443 8.481 9.932 E -02 9.940 E-02 

5.0 E -04 6.031 6.079 1.997 1.999 

1.0 E -03 4.545 4.586 9.992 E -03 1.00 

5.0 E -03 1.540 1.579 2.000 2.00 E -03 

1.0 E -02 8.520 E -01 8.547 E -01 1.000 1.00 

5.0 E -02 1.896 1.973 2.000 E -04 

1.0 E -01 9.666 E -02 9.668 E-02 1.000 -- 

5.0 E -01 1.974 1.971 2.000 E -05 
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the type curves presented herein include up to r/L ratio of 

0.5. The time corresponding to the deviation of the curve 

from the straightline portion ( the junction of Zone I and 

Zone II) is termed as the deviation time. It has been found 

that the product of non-dimensional time parameter correspondinc 

to the deviation time if the observations were taken on well 

boundary and the storage parameter a remains a constant. Using 

this value ,the transmissivity of the aquifer can be assessed. 

Also it has been found that the product of non-dimensional 

time parameter corresponding to merging time ( the time 

corresponding to the junction of Zone II and III) and the 

storage parameter 0 has a specific value which depends only 

on r/L ratio. Knowing the value of this product the domain 

where the effects of well storage are predominant can be 

assessed. However, for S' = S, the type curve for r/L = 1.0 

is also presented (Figure  14). This merging of the type 

curves for 'wells with storage' with those of 'no storage' 

curves at a short distance in a leaky aquifer compared to a 

confined case can be attributed to the fact that the effects 

of storage and the effects of leakage are cumulative. The 

aquitard storage brings about a reduction in the drawdown 

in the aquifer as in the case of ' well with no storage'. 

This becomes evident from a plot between u versus W(u) for 

0= 10
3 at r/L = 0.01 for S' = S and S' = 1008 (Figure 15). 

This reduction in drawdown has further reduced the merging 

distance in the case of 6 = 100. It is observed that for 

a= 105 ( the extreme storage parameter used in this investi-

gation) at r/L = 0.5, the type curve differed from the type 
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curve for ' well with no storage' by approximately 3.5%. Hence, 

the type curves for r/L = 0.5 and for = 100 are not presented. 

5.4.2 Deviation time 

In leaky aquifers also, the product uwd.$ ( where uwd 
 

is the nondimensional time corresponding the deviation of the 

type curve from the straight line portion) is found to be 

the same as in the case of non leaky aquifers and is equal 

to 2.0. Hence, the expression for td(time of deviation) is 

2 2 
td  = 0.125 rc

/T or td  = Cd.r
c
/T where Cd  = 0.125. Using 

this expression, the transmissibility of the aquifer can be 

determined from the early time pumping history. 

5.4.3 Merging time 

on the well boundary 

It is observed that the product of um, ( the nondimen-

sional time parameter corresponding to the merging time) and 

the storage parameter, $ remains constant in leaky aquifers 

also. But, it is observed that this product varies with the 

ratio of the storativities of aquitard and aquifer and r/L 

ratio. As S'/S increases the product um
.0 also increases. 

In other words, for a particular 0, the value of um  increases 

with increase in storativity ratio (S'/S) (i.e., the merging 

time decreases). The values of um
.$ for S'/S = 1 and for 100, 

and the corresponding coefficients,cm  are presented in Table3 

For the interior of the aquifer 

The product of um. sis determined for the interior of 

aquifer ( i.e., for different r/L ratios) and for both the 
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storativity ratios and the values are presented in the Table3 

Using these values, the coefficients c
ms can be computed. From 

these values, it can be said that as r/L ratio increases ( for 

both cases of S'/S) the product um.8 increases ( but remains 

same for different Os, as in the case of non leaky aquifers) 

and hence, results in the decrease of the merging time. 

5.4.4 Merging distance 

As is seen from the type curves presented for r/L = 1.0 

it can be concluded that beyond the radial distance equal to 

the leakage factor the storage effects can be neglected. 

Quantitatively, it is assessed that by ignoring the well 

storage effects at r/L = 1.0, the error caused is not more than 

5% for = 105 and less for 8 105. Hence, in the present 

analysis type curves are presented up to r/L ratio of 0.5 

for6 = 1 and for 6= 100, they are given up to r/L of 0.1 

( for 6= 100, the merging distance is further reduced). 

In conclusion, it can be said that the storage effects 

and effects due to leakage are cumulative and reduces the 

drawdown for a particular discharge. This reduction in the 

drawdowns increases with increase in the storativity ratio. 

Consequently, the merging time and the merging distance also 

reduce. However, as in the case of nonleaky aquifers, the 

deviation time remains unaltered. 

5.5 Partially Screened Wells with Storage in Leaky Aquifers 

For this analysis, twentyfour cases are solved and ana-

lysed. The geometric and hydrogeological properties adopted 
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for these cases are shown in Table 2. Three different values 

of screening ratios, Sr  , are choosen, viz., 0.75,0.50 and 

0.25 for each storativity ratio,S'/S, (i.e., S'/S = 1 and 100). 

The storage parameter,a is varied from 102 to 105 for each 

of the above mentioned cases. Plots are drawn on a log-log 

scale for different avalueSbthem  the nondimensional time 

parametner, u, and the non-dimensional drawdown,W(u). Such 

plots are presented herein for five different r/L ratios and 

for different Sr  s ,(Figure 16 to 33). In this analysis, finite-

ness of the well is taken into account. 

5.5.1 Shape of the type curves 

The general pattern and shape of the type curves for 

partially screened wells (Figures 16 to 33) did not differ fromUp:3e 

for fully screened wells in leaky aquifers, except that the 

drawdowns obtained in these cases are more. These drawdowns 

increase with decrrease in the screening ratio but decrease 

with increase in storativity ratios. The three regions, which 

are discussed in sub-section 5.4.1 are seen distinctly. 

5.5.2 Deviation time 

The deviation time, as it signifies, is the time at 

which the storage from the aquifer and aquitard system commences 

to subscribe to the well discharge. The type curve,which is 

a straight line until then, deviates from it and has a variable 

curvature till it meets the 'no storage' curve. The product 

of uwd'a  is found to remain constant and is independent of 

screening ratio, the storativity ratio, with its value equal 
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TABLE - 2 SOLVED CASES OF FULLY PARTIALLY SCREENED WELLS 
IN LEAKY AQUIFERS 

Radius of the Pumping V11, rw = 0.076 m 

Thickness of the Aquifer, m = 12.25 m 

Thickness of the Agatard, m' = 12.25 in 

Permeability of the Aquifer, K = 440 m/day 

Permeability of the Aquitard, K' = 440 m/day 

COnstant discharge drawn from 
the well, Q 0.046 m3/sec 

Case NO. rc 
Sr S s 

FDS-1 0.5000 1.0 E +02 1.0 1.0 E-03 1.00 

FDS-2 0.5000 1.0 E +02 1.0 1.0 E-03 100.00 

FDS-3 1.5812 1.0 E +03 1.0 1.0 E-03 1.00 

FDS-4 1.5812 1.0 E +03 1.0 1.0 E-03 100.00 

FDS-5 2.5000 1.0 E +04 1.0 2.5 E-04 1.00 

FDS-6 2.5000 1.0 E A34 1.0 2.5 E-04 100.00 

FDS-7 3.7500 1.0 E +05 1.0 5.625 E-05 1.00 

FDS-8 3.7500 1.0 E +05 1.0 5.625 E-05 100.00 

PDS-1 0.5000 1.0 E -02 0.2520 10.0 E-04 1.0 

PDS-2 1.5812 1.0 E -03 0.250 10.0 E-04 1.0 

PDS-3 2.5000 1.0 E -04 0.250 2.5 E-04 1.0 

PDS-4 3.7500 1.0 E-05 0.250 5.625 E-05 1.0 

PDS-5 0.5000 1.0 E-02 0.500 10.0 E-04 1.0 

PDS-6 1.5812 1.0 E-03 0.500 10.0 E-04 1.0 

PDS-7 2.5000 1.0 E-04 0.500 2.5 E-04 1.0 

PDS-8 3.7500 1.0 E-05 0.500 5.625 E-05 1.0 

PDS-9 0.5000 1.0 E-02 0.750 10.0 E-04 1.0 

PDS-10 1.5812 1.0 E-03 0.750 10.0 E-04 1.0 

PDS-11 2.5000 1.0 E-04 0.750 2.5 E-04 1.0 

PDS-12 3.7500 1.0 E-05 0.750 5.625 E-05 1.0 

PDS-13 0.5000 1.0 E-02 0.250 10.0 E-04 100.0 

PDS-14 1.5812 1.0 E-03 0.250 10.0 E-04 100.0 

s 
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PDS-15 2.5000 1.0 E -04 0.250 2.5 E-04 100.0 
PDS-16 3.7500 1.0 E -05 0.250 5.625 E-05 100.0 
PDS-17 0.5000 1.0 E -02 0.500 10.0 E-04 100.0 
PDG-18 1.5812 1.0 E -03 0.500 10.0 E-04 100.0 
PDS-19 2:5000 1.0 E -04 0.500 2.5 E-04 100.0 
PDS-20 3.7500 1.0 E -05 0.500 5.625 E-05 100.0 
PDS-21 0.5000 1.0 E -02 0.750 10.0 E-04 100.0 
PDS-22 1.5812 1.0 E -03 0.750 10.0 E-04 100.0 
PDS-23 2.5000 1.0 E -04 0.750 2.5 E-04 100.0 
PDS-24 3,7500 1.0 E -05 0.750 5.625 E-05 100.0 

Cbnversion factors: 

1 Ft = 0.305 Mt 
1 Ft2/Sec = 0.0929 Mt2/Sec. 
1 Ft3/Sec = 0.028 Mt3/Sec. 
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to 2.0. Thus the early time drawdown in a well with storage 

is influenced by the transmi.ssibilitY of the aquifer. 

5.5.3 Effects of partial screening 

a) Time domain 

It is observed that the merging time is different for 

different screening ratios. However, for a particular screen-

ing ratio, it is found that the product of um
,( the non-

dimensional time parameter corresponding to the merging time, 

tm
) and the storage parameter, a, remains constant. Also, 

it is observed that this product increases with increase in 

the storativity ratio, thus reducing the value of merging 

time. Further, it is noticed that as the ratio r/L increases 

the product um
.0 also increases. These values, i.e., the 

product um
.a for different screening ratios, at different 

values of r/L ratios in each case of storativity ratio is 

presented in Table 3 . From the •close observation of the 

values for different r/L ratios ( in the Table 3) for a parti-

cular screening ratio and for a given storativity ratio, it 

can be seen that as the radial distance from the well increases 

for a particular leakage factor, the product of um
s is 

increasing indicating that tm 
 is decreasing. That is, as r 

increases, the different curves corresponding to different as 

merge at an early time. It is observed that the merging time 

is far low in the case of leaky aquifers. This signifies 

that in the case of leaky aquifers, the different values for 

as
merge with the 'no storage' curve at an early time. 
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4 

b) Space domain 

As in the case of 'wells with no storage', the partial 

screening causes increased drawdowns for a particular discharge. 

Also, it is found from the computer output that the effect of 

partial screening is felt only up to a radial distance of 1.5 

times the thickness of the aquifer, as in the case of confined 

flow with 'no well storage'. 

5.5.4 Mergind distance 

As in the case of fully screened wells, the merging 

distance, i.e., the radial distance where the type curves 

for different storage parameters will merge approximately 

(within a reasonable percentage of error, in this case it is 

assumed as 5%) with the type curve for the 'wells with no 

storage', is found to be at r/L ratio of 1.0. Also, it is 

found that this distance reduces with increase in the 

storativity ratio. 

In conclusion, it can be •said that the type curves 

presented herein for various screening ratios are„in general, 

similar to the ones presented for fully screened wells. The 

merging time increases with decrease in the screening ratio. 

However, the deviation time remains constant for all the 

screening ratios and storativity ratios for which the 

analysis is made. 
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6.0 CONCLUSIONS 

In the present investigation, the storage effects for 

large diameter wells ( both fully and partially screened 

wells) in leaky aquifers were studied. Because of the compl-

exity of the problem, the finite element method based on 

variational formulation of the problem has been employed, 

and flow domain around the wells has been discretised as an 

assemblage of network of rectangular elements. Finer grid 

of rectangular elements nearer to the well and a Course 

network of elements farther from the well with triangular 

elements in the transition zone is used in the model. Variation 

of the hydrological potential in each element has been assumed 

to be linear. Crank-Nicolson scheme is chosen for the time 

integration. The algorithm is so developed that the non-zero 

upper diagonal terms of conductance and porosity matrices 

can be stored in rectangular array to save the computer 

memory requirements. The Gaussian elimination technique is 

used to solve the resulting simultaneous equations. The 

finite element models developed for the present study have 

been verified with the standard known solutions, like, unsteady 

radial flow towards wells in confined aquifers ( Hantush 

solution), unsteady flow in a leaky aquifers (Hantush solution) 

and unsteady flow towards well with storage in confined 

aquifers ( Papadopulos and Cooper solutions). 

Type curves have been presented for fully and partially 
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screened large diameter wells with storage in leaky aquifers. 

It has been observed from the type curves that the effects of 

well storage reduces both with time and increase in radial 

distance from the well but increase with the storage parameter 

. The time from which the storage effects become negligible 

at a given radial distance from the pumping well is designated 

as merging time tm
. The concept of time of deviation, td, 

is introduced and a method for the assessment of transmissivity 

of aquifer from early time pumping history using the deviation 

time is presented. 

The analysis indicated that the effects of leakage 

through aquitard and storage effects are cumulative and hence 

steady state conditions are attained much earlier in leaky 

aquifers for the case of wells with storage compared with 

the case of wells with no storage. Also it has been found 

that the effects of leakage increase with increase in storativity 

ratio between the aquitard and aquifer while the effect of 

partial screening of well increases the drawdowns. 
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