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Foreword 

This report is an output from the project Groundwater resilience to climate change and 

abstraction in the Indo-Gangetic basin 

Groundwater resilience to climate change and abstraction in the Indo-Gangetic basin is a 

two-year (2012-14) research project strengthening the evidence-base linking groundwater 

resources, climate variability and abstraction in the Indo-Gangetic basin. This project has been 

funded by UK aid from the UK Government, and led by the British Geological Survey, however 

the views expressed do not necessarily reflect the UK Government’s official policies.  The 

project has two main aims: 

 To develop a strategic overview assessment of the occurrence and status of groundwater 

resources in the Indo-Gangetic basin and develop a map of groundwater typologies 

spanning the groundwater system 

 To strengthen the evidence-base linking groundwater resources, climate and abstraction 

through a series of four targeted case studies in the basin. 

The project team involves researchers from the British Geological Survey, IIT Kharagpur, ISET-

Nepal, ISET International, Meta-Meta, National Institute of Hydrology (Roorkee), Overseas 

Development Institute, University College London, University of Dhaka and Bangladesh Water 

Development Board. 

 

For more information: 

http://www.bgs.ac.uk/research/groundwater/international/  
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Summary 

This report summarises initial findings from a case study investigating the response of 

groundwater resources in Punjab State, India, to irrigated agriculture. Punjab was central to 

India’s green revolution, and with fertile soils, abundant surface water and groundwater 

resources, Indian’s farmers soon transformed the State to be the “bread basket” of India.  

Currently approximately 20% and 11% respectively of India’s wheat and rice production, 10% 

of cotton production comes from Punjab. 

The aim of the case study is to examine the response of groundwater in a representative area 

within Punjab to current pressures from sustained intensive abstraction and pollution, investigate 

groundwater recharge, and forecast likely future trajectories. The Bist-Doab area was chosen as 

for the case study: the geology and hydrogeology is typical of the Punjab, situated on the thick 

and extensive multi-layered alluvial Indo-Gangetic aquifer and has an annual average rainfall of 

700 mm. The Doab is one of the most productive agricultural regions in the Punjab and has 

experienced intense groundwater pumping from shallow aquifers for at least the last four 

decades.  The hydrogeology of this region is best understood as an aquifer system comprising a 

series of thick high permeability horizons (>10 m thick) divided by thick low permeability 

horizons with highly variable lateral extent. Locally these are referred to as the first (shallow), 

second and third etc. (deep) aquifers, although the aquifers are not laterally continuous over long 

distrances.   

The following work was undertaken from 2013 to 2014:  

An analysis of groundwater level monitoring data (1970-2012) from the Indian Central Ground 

Water Board (CGWB) was carried out.  

New hydrochemical observations and residence time indicators (CFC and SF6) taken from 19 

locations were obtained from paired shallow (<50 mbgl) and deep (>100 mbgl) sites across the 

Bist-Doab under pre and post monsoon conditions. Stable isotope observations were collected 

and assessed within the context of an ongoing study by NIH investigating spatial and temporal 

changes in stable isotope chemistry in groundwater and surface water across Bist-Doab. 

Long-term groundwater monitoring undertaken by the CGWB since the 1970s shows declining 

shallow pre-monsoon groundwater levels (up to 0.8 m/y in places) across 20-25% of the Bist-

Doab. Hydrographs responses imply that for some areas this has led to enhanced recharge during 

the monsoon. However, for the most affected region of the Bist-Doab, declining post monsoon 

water levels suggest that abstraction for irrigation is now outstripping the enhanced recharge 

potential. In the long-term this will lead to a continued decline in shallow groundwater levels 

pre-monsoon, currently commonly found to be >20 mbgl, with future implications for irrigation. 

For most sites there is a significant difference between stable isotope values for the paired deep 

and the shallow groundwater, with deeper sites showing isotopically depleted signatures relative 

to the shallow samples. This is consistent with different recharge areas and pathways for the 

paired sites at any given location, with the deeper sites have a greater component of water that 

was recharged some distance up-gradient (i.e. towards the recharge zone at the foot of the 

Shiwalik range). This source has a depleted isotope signature compared to the shallow aquifer 

due to Raleigh distillation processes as monsoon moisture tracks from the Bay of Bengal. Based 

on the distinct depleted stable isotope values of the Sutlej canal system, there is no evidence of 

significant component of regional groundwater recharge in either the shallow or deeper aquifer 

from this source. However, it is likely that this is important at locations in close proximity to the 

canal network. 

Results obtained using chlorofluorocarbon (CFC-12) groundwater age tracers show that average 

shallow groundwater mean residence times (MRTs) are 29 years and 30 years under post-

monsoon and pre-monsoon conditions. Deep groundwater (>100 mbgl) had median MRTs of 45 
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years. There is no obvious relationship between deep groundwater MRTs and distance from the 

recharge zone at the foot of the Shiwalik hills. However, deep groundwater MRTs are much 

younger than would be expected under natural groundwater flow regimes, where groundwater 

residence times of the order of ca.10
2
-10

3
 years or more might be expected based on the aquifer 

properties and the distance from the recharge zone, some 50- 100 km down-gradient in many 

cases.  

Areas with fastest long-term declining groundwater levels show evidence of enhanced modern 

recharge in both shallow and deep groundwater, suggesting that there is a significant component 

of vertical leakage to deeper aquifers induced by long-term intensive pumping. This corroborates 

findings from modelling studies undertaken in analogous multi-layered alluvial systems in 

Gujerat, India (Rushton 1986).   

There is evidence of nitrate breakthrough from the shallow groundwater to depth and this is 

likely to be enhanced in the future if the current increases in pumping from the shallow and deep 

aquifers continue. This has implications for future contamination of deep sources of drinking 

water from other anthropogenic contaminants such as pesticides. 

The naturally occurring contaminants arsenic and fluoride were present at concentrations below 

WHO guideline drinking water limits for all sites and median concentrations were below 2 g/L 

and 0.4 mg/L respectively. Uranium concentrations in deep groundwater are significantly higher 

compared to shallow groundwater (p<0.05), with median values >15 g/L, the provisional WHO 

guideline concentration for drinking water is currently 30 g/L (WHO, 2012). This is a result of 

water-rock interactions and mineral dissolution and longer residence times.  

The findings from this case study have broad relevance across a large geographical area as 

similar groundwater typologies extend within the Indus basin, to the west across Indian Punjab, 

Rajasthan and Pakisan Punjab as well as in the Ganga basin to the east in the Indian states of 

Haryana and Delhi. While the broad findings from this study are relevant across a large 

geographical area, local anthropogenic and geogenic factors, as well as heterogeneity, will of 

course influence the recharge, hydraulic flow processes and geochemistry, and need to be 

considered in a consistent way.
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1 Introduction 

Groundwater is a critical resource for millions of people in the Punjab who rely on it for drinking 

water, agriculture and industry. Overall, the Punjab region is highly dependent on groundwater 

(Garduno et al., 2011; Wada et al., 2010; 2012).   

The mid plains region of NW India is one key area for food production where groundwater 

levels have been reportedly dropping over a sustained period of time due to intense abstraction 

(Wada et al., 2012). While groundwater levels are falling in some parts of Punjab, evidence from 

modelling work suggesting that groundwater recharge in this region is actually increasing (Döll, 

2009) and may continue to do so for some time, with pressures from intensive pumping the two 

processes are not mutually exclusive. Modelling studies undertaken in India suggest that 

pumping may actually induce post monsoon recharge in some parts of the IGB (e.g. Chaturvedi 

and Srivastava, 1979). Understanding the connectivity of the shallow and deep aquifers is 

important for assessing both the vulnerability of the deep aquifers to the migration of 

contamination to depth and understanding sources of recharge in the deeper aquifers. Using 

environmental tracers, such as chlorofluorocarbons (CFCs) and isotopes, is one key way to 

explore connectivity and anisotropy in this aquifer system. 

This report outlines preliminary findings from a case study focussed on understanding the 

response of groundwater resources to sustained abstraction for irrigation in Punjab State. The 

aim of the case study is to examine the response of groundwater in a representative Doab to 

current pressures from abstraction and pollution and forecast likely future trajectories. Specific 

objectives were: 

 To collate historical water level responses to abstraction across the catchment 

 To collate new evidence on recharge processes, groundwater quality, groundwater 

residence times, and connectivity of the layered aquifer systems and surface water by 

repeated sampling of shallow and deep piezometers using a suite of environmental 

tracers 

 To obtain new high frequency data on water level variations in shallow and deep 

piezometers for one hydrological year 

 

1.1 BACKGROUND – PUNJAB AND THE GREEN REVOLUTION 

Punjab means the land of five Rivers: the River Jhelum, Chenab, Ravi, Satluj and Beas, and all 

are tributaries of the Indus River. The Indian part of Punjab is divided into four geographic 

regions: Malwa (region south of river Satluj), Bist Doab (region between the rivers Satluj and 

Beas), Majha (region west of river Beas) and Powadh (region in Rupnagar and Ambala district) 

that falls between the Rivers Satluj and Ghaggar. 

Punjab state is one of the most productive agricultural regions in India. This is a semi-arid region 

with annual average precipitation of ca. 700 mm. The agricultural activity of the state is reliant 

on a dense network of canals, with a total length of 14,500 km that distributes water from the 

Rivers Satluj, Ravi and Beas as well as the extensive use of groundwater extraction for irrigation 

(approx. 33 BCM per year (Punjab Remote Sensing Centre, 2008) through millions of its state 

and private owned pumps. From the 1960s an era of sharp agricultural growth in Punjab was 

sustained partly through intensive irrigation. The state has become synonymous with the ‘Green 

[agricultural] Revolution’ which was sustained in part though the intensive growth in 

groundwater irrigation. This boom in the agricultural sector earned Punjab the accolade of the 

‘bread basket of India’ due to its spectacular growth in wheat and rice production. Punjab is the 

highest per capita electricity consuming state in the country. The agricultural dominance of the 

state can be seen from the fact that the state produces 19.5 % of India’s wheat, 11% of India’s 
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rice and 10.26 % of India’s cotton. In 2013 the state’s NPK fertilizer consumption was 470 kg 

per hectare of sown area compared to 54 kg nationally (Statistical Abstract, Punjab, 2013; Indian 

Department of Fertilizers 2014).  

Table 1 summarises the changes in cropping patterns for Punjab between the 1970 and 2012. 

This shows that agricultural output in the state has grown significantly since the adoption of 

modern techniques in the late 1960s (Sidhu, 2005). Important crops for the state include rice, 

sugarcane, fruits and vegetables. Industries in the state include the manufacture of scientific 

instruments, electrical goods, financial services, machine tools, textiles, sewing machines, sports 

goods, starch, tourism, fertilizers, bicycle, garments and the processing of pine oil and sugar. 

Most of the Punjab is an alluvial plain, bounded by mountains to the north.  

 

Table 1. Cropping patterns in Punjab (Area in ‘000 ha) 

Crop 1970-71 1980-81 1990-91 1999-2000 2000-01 2011-2012 

Rice 390 (6.9) 1183 (17.5) 2015 (26.9) 2604 (33.2) 2612 (32.9) 2826(35.8) 

Maize 555 (9.77) 304 (4.50) 183 (2.44) 163 (2.08) 164 (2.07) 133 (1.69) 

Bajra & Jowar 212 (3.73) 70 (1.03) 12 (0.16) 5 (0.06) 6 (0.08) 2.5 (0.03) 

Groundnut 174 (3.06) 83 (7.23) 11 (0.15) 5 (0.06) 4 (0.05) 2.0 

Cotton (American) 212 (3.73) 502 (7.42) 637 (8.49) 381 (4.86) 358 (4.51) 482.8 (6.25) 

Sesame 15 (0.26) 17 (0.25) 18 (0.24) 145 (1.85) 19 (0.24) 5 

Sugarcane 128 (2.25) 71 (1.05) 101 (1.35) 108 (1.38) 121 (1.52) 70 (0.89) 

Kharif Pulses 33 (0.58) 58 (<0.86) 73 (0.97) 51 (0.65) 42 (0.53) - 

Wheat 2299 (40) 2812 (41) 3273 (43) 3388 (43) 3408 (42) 3510 (44) 

Barley 57 (1) 65 (0.96) 37 (0.49) 51 (0.65) 32 (0.40) 11.7 (0.15) 

Gram 358 (6.3) 258 (3.81) 60 (0.8) 6 (0.08) 8 (0.1) 2.2 (0.03) 

Rapeseed & Mustard 103 (1.81) 136 (2.01) 69 (0.92) 56 (0.71) 55 (0.69) - 

Potato 17 (0.30) 40 (0.59) 23 (0.31) 76.0–(1) 64 (0.81) 64 (0.81) 

Other Vegetable 23 (0.41) 24 (0.36) 31 (0.41) 47 (0.6) 46 (0.58) - 

Fruits 50 (0.88) 29 (0.43) 69 (0.92) 30 (0.38) 34 (0.43) 71.5 

Net Sown Area 4053 4191 4218 4243 4264 4158 

Total Cropped Area 5678 6763 7502 7847 7935 7882 

Cropping Intensity 140 161 178 185 186 190 

Source: Statistical Abstract of Punjab, 1971, 1981, 2000, 2001, 2010. Area for each crop is 

shown in units of ‘000ha with figures in parentheses indicate area under crops as percentage 

share to total cropped area. Cropping intensity is total cropped areas (single+double+triple)/net 

cropped area * 100.  

1.2 GROUNDWATER AND IRRIGATION IN THE PUNJAB 

The network of canals, some of which are more than 150 years old, have steadily reduced in their 

carrying capacity due to siltation and leakage and decreased the availability of surface water 

across the region. The net-area irrigated by canals has decreased from 55% in 1960-61 to 29% in 

2006-07. The canal irrigation system irrigated about 1.3 million hectare of land in 1970-71, 

while only one million hectare was irrigated during 1999-2000. In contrast, tube well irrigation, 

particularly in the central and northern region of Punjab, has increased from 55% in 1970 to 75% 

in 2001-02 (Punjab Remote Sensing Centre, 2008) (Figure 1).  In the state of Punjab the level of 

groundwater use is estimated to exceed replenishable groundwater resources by a factor of 1.4, 

the highest level of overuse of any state in India (Gandhi and Namboodiri 2002). 

Today there are an estimated 1.1 million tube wells in the state abstracting water for agricultural 

irrigation and another estimated 150 thousand in urban and semi urban areas to provide water for 

domestic and industrial purposes.    
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Figure 1. Comparison of net irrigated area (‘000 ha) by different sources in Punjab (Source: 

Statistical Abstract of Punjab, 2013) 

Long-term downward trends in parts of the mid Plains Aquifer in Punjab (NW India), in the 

headwaters of the Indus, suggest that the current pumping regime is not sustainable, and will 

likely impact the poorest parts of the community which cannot afford to deepen boreholes 

(Chawla et al., 2010; Fishman et al., 2011). The intensive farming carried out in this region 

largely relies on pumping from the shallow aquifer (0-50 m) and uses large quantities of 

fertilisers and chemicals to control pests and sustain yields (Chaudhary et al., 2000; Kuldip-singh 

et al., 2013). In responds to the groundwater security issues in Punjab a number of initiatives are 

being implemented by the state government for improving water use efficiency, these include: 

 Propagation of irrigation water saving techniques, for example laser  grading of 

fields,  zero tillage and directly seeded rice  

 Rainwater harvesting and recharge structures are being constructed in the sub-

mountainous region 

 A subsidy of up to 85% on micro-irrigation, a 50% subsidy on underground pipeline 

systems to individual farmers, 90% subsidy for the community underground pipeline 

projects 

 Watershed management projects are being implemented in 26 locations 

The rapid expansion of urban centres in NW India has also contributed to the anthropogenic 

contaminant loading in the shallow aquifers of the Plains (Purushothaman et al., 2012; Singh, 

1994). As such, the shallow aquifers in this region are polluted, both microbiologically and 

chemically, and are not reliable sources of drinking water. To mitigate this problem there have 

been large programmes across groundwater dependant states such as Punjab to install deeper 

boreholes (ca. 150 m) to supply groundwater for drinking water in urban and peri-urban settings 

which requires minimal treatment. How sustainable this is in the long-term depends on the nature 

and degree of contamination in the shallow subsurface, as well as the vertical variation in the 

hydraulic properties and geochemical conditions within the layered sedimentary aquifer system. 

There is currently a limited understanding of the degree of confinement in the deeper aquifers 

and their sources of recharge. A better understanding of the vertical age profiles and water 

quality variations within the layered sedimentary aquifer is needed to inform and support a 

thorough assessment of the vulnerability of the deeper aquifers to i) the downward migration of 

contaminants from shallow sources and ii) the mobilisation of natural sources of contamination 

at depth due to changing redox conditions. 
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2 Case study area 

2.1 GEOGRAPHY AND CLIMATE 

The Bist-Doab covers an area of 9060 km
2
. The word “Doab” signifies the region between two 

rivers (here the Satluj and Beas). Groundwater levels are shallow in the confluence region with 

some associated salinity issues. Bist-Doab comprises the Nawanshahr, Hoshiarpur, Kapurthala 

and Jalandhar districts of Punjab State, India. It is bounded by Siwalik range in the north-east, 

the river Beas in the north and west sides and the river Satluj in south and east-south. The area 

lies between 30°51'N and 30"04'N latitude and 74"57'E and 76"40'E longitude (Figure 2). The 

study area is part of the Indo-Gangetic alluvial aquifer plain. The drainage density is high in the 

NE strip bordering the Siwalik hills, but it is moderate to low in the rest of the area with sub-

parallel and sub-dendritic patterns. In the plain area the gradients are low, with a regional 

gradient of around 0.4 m/km towards the SE. 

 

 

Figure 2. Location of Bist-Doab (ca.9000 km
2
) major drainage, canal network coverage and 

urban centres 

 

The Beas and Satluj rise in the high Himalayas and traverse long distances in the Himalayan and 

Siwalik zone before entering the state of Punjab. The Bist Doab area is comprised of a low hilly 

area locally known as the Kandi region, and the central plains. In the Kandi region, north-east 

portions of Hoshiapur and Nawanshehar, there are deeper groundwater tables, due to the change 

in topography, and this region is traditionally considered the recharge area for the deeper plain 

aquifer system. Some parts of Nawanshahr and Jalandhar districts are irrigated using canals from 

the Satluj, however, most of the area of Bist-Doab is irrigated using shallow groundwater 

(ca.90%). The ‘shallow’ boreholes abstract from aquifers that are normally at least 10m thick 

and no deeper than 50 meters below ground level. ‘Deep’ boreholes abstract from aquifers that 

are for the most part >100 meters below ground level and are also >10m thick.  

The drainage density is high in the NE strip bordering the Siwalik hills, where there are regular 

parallel channels cutting through the Shiwalik range which drain on to the plain. Drainage 

density is moderate to low in the rest of the area with sub-parallel and sub-dendritic patterns. In 
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the plain area the gradients are low, with a regional gradient of around 0.4 m/km towards the SE 

(Bowen, 1985). 

The climate of the Bist-Doab is semi-arid and there is a moderate temperature and rainfall 

gradient SE-NW across the Bist-Doab region. There is annual average rainfall of ca. 700 mm in 

Jalandhar, in the middle of the catchment, the greatest rainfall occurs between mid-June and 

September. Temperatures in the lower plain area range between 25-48 °C in the summer (May) 

and between 5-19 °C winter months. Slightly higher annual average rainfall occurs to the NE of 

the Bist-Doab region in the Shiwalik hills (ca. 900 mm/a) where temperatures are also generally 

lower, however the seasonal variations in rainfall and temperature are similar to other parts of 

the Doab. 

2.2 GEOLOGY 

The Bist-Doab is part of the Indo-Gangetic alluvial aquifer plain. This is described in detail in 

Bowen (1985) and Khan (1984), and summarised below. Geomophologically the Bist-Doab can 

be divided into three zones, the Shiwalik and Kandi watershed, the interfluvial plain between the 

R. Beas and the R. Sutlej, and the floodplain areas. Thick deposits of Pleistocene to recent 

sediments derived from erosion of the Himalayas’ and lower lying foothills have formed the 

deep sedimentary alluvial plain aquifer we find today. The major lithologies and sequences in 

order of increasing age and depth comprise: 

 Quaternary surface deposits 

 Holocene Sirowal sediments and occasional gravels with inter-bedded course clastics 

from the Kandi belt and red clay beds to the southwest 

 Pleistocene boulder beds and inter-bedded clays: Boulder conglomerate (Middle 

Pleistocene); Pinjore Psammite/Arenites with calcareous/ferruginous cements (late 

Pliocene) 

 

 

 

Plate 1. Holocene Sirowal sedimentary deposits in the North of the catchment 

The polymictic nature of the sediments reveals their heterogeneous provenance resulting from an 

influx of sediment from a number of sources draining the Himalayas (Bowen, 1985). The 

sources are pre-Cenozoic and Palaeogene/Neogene or Cenozoic crystalline and sedimentary 
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rocks in the vicinity of Shimla, identified through fragments of parent rock in the Pinjore beds. 

The infilling of the basin demonstrates that the rate of uplift and erosion was outstripped by the 

rate of deposition through the Holocene and Pleistocene. Fill, scour and bedding structures 

indicate a predominantly southward flow direction during this period (Bowen, 1985). Calcrete 

deposits, referred to in India as Kankar, are extensively developed within the sediments 

deposited in the Bist-Doab inter-fluvial area. This deposit is composed of calcium carbonate and 

has a nodular form in this region and is deposited as a result of upward capillary action in 

arid/semi-arid conditions and as a result of leaching minerals from shallow soil horizons. These 

can form low permeability horizons and are also important in controlling soil and groundwater 

pH and geochemical processes. 

2.3 HYDROGEOLOGY 

In the Kandi region, north-east portions of Hoshiapur and Nawanshehar, there are deeper 

groundwater levels, due to the change in topography, and this region is traditionally considered 

the recharge area for the deeper plain aquifer system. The transition from the Kandi belt to the 

plains and sudden change in slope results in a dense network of drainage that recharges the plain 

aquifers. Figure 3 shows a simple schematic cross-section with a regional conceptual model of 

groundwater flow and recharge processes. Zone 1 has higher rainfall (900 mm/y) and higher 

areal and surface water recharge, zone 2 has lower rainfall (700 mm/y) and recharge from 

irrigation and seepage from canals and zone 3 has lower rainfall (600 mm/y), shallow 

groundwater and limited recharge potential.  Some parts of Nawanshahr and Jalandhar districts 

are irrigated using canals from the R. Satluj, however, most of the area of Bist-Doab is irrigated 

using shallow (0-50 m) groundwater (>90% groundwater irrigation). Historically rising water 

levels, waterlogging and related salinity issues was a problem in the southwestern part of the 

Bist-Doab, and as the groundwater in this region is fresh groundwater pumping was encouraged 

to lower water tables and improve agricultural productivity.  

The alluvial aquifer system comprises a series of layered aquifers of with higher porosity  of 

sand and gravel deposits which are separated vertically by low permeability aquitards comprised 

of thick clay horizons as well thick Kankar deposits of CaCO3. The aquifers and aquitards are 

highly variable both in terms of thickness and areal extent. Details from borehole logs in Bowen 

(1985) show that aquifers have horizons that are typically >20 m thick and are separated by clay 

and kankar horizons between 3-50 m thick. A N-S transect of logs in Bowen (1985) from 

Khudda (N) to Mioonwal (S) shows that aquifer and aquitard horizons are spatially highly 

variable. There are however regions of apparent continuity, although it must be noted that there 

are relatively few logs available, for example, between Njka (N) and Dhisian (S), covering a 

distance of ca. 50 km, there appears to be a consistently thick (ca. 15 m) clay horizon between 

the upper aquifer (<15 mbgl) and the second aquifer (ca 30-50 mbgl).  

There is also clear evidence that paleochannels cut across low K horizons providing vertical 

connectivity and are important in controlling hydrogeolocial processes within the Indo-Gangetic 

plains (Samadder et al., 2011). This setting is considered comparable lithologically to locations 

further south in Gujurat reported by Phadtare (1985) and referred to by Rushton (1987). 

However, there is still limited evidence on the lateral extent of low K horizons and high K 

horizons or aquifers. Regionally, it is perhaps best described as an aquifer system which can be 

conceptualised as a series of aquifers with varying degrees of anisotropy but with overall higher 

horizontal (Kh) compared to vertical (Kv) hydraulic conductivity. The degree of anisotropy (Kh/ 

Kv) can be as high as 10
2
-10

4
 in alluvial systems when significant clay layers are present 

(Michael and Voss, 2009; Sinha 2009). 

Early hydrogeological studies in this region focussed on understanding areal groundwater 

recharge using tritium tracers (Datta and Goel, 1977; Goel and Datta, 1977). Recharge studies 

carried out in at 7 sites across the Bist-Doab in 1972 (Datta and Goel, 1977) using tritium 

tagging gave average recharge (from irrigation and rainfall) values of 93 ±60 mm for the 



   

 7 

monsoon period between June and November. The data set showed a bimodal distribution with 

one cluster of sites with average recharge values of 35 ±3 mm and a second cluster with much 

higher average recharge of 136 ±35 mm, with low recharge values located close to floodplain 

regions and the higher values in the plains region.  

There is limited aquifer property data for transmissivity (T) and storage coefficients (S) in the 

study area, a summary of values are presented in Bowen (1985). However, there is a paucity of 

data and so estimates of T and S must be treated with caution, quoted values for transmissivity 

range from 1700-5180 m
2
d

-1
 from shallow aquifers across the catchment. Storage coefficients in 

the Kandi and Shiwaliks range from 0.0013-0.004 and from the plain region higher values have 

been estimated between 0.082-0.31. 

Although it is beyond the scope of this report, the quarterly long-term water level monitoring 

data could be used to estimate the spatial variation of recharge, provided certain assumptions 

regarding the effects of abstraction (and storage) on water levels hold true. Our high frequency 

monitoring data collected at 6 sites shall be critical in validating the applicability of this 

technique with low frequency data. 

 

 

 

Figure 3. Simplified schematic cross section of post monsoon regional groundwater flow 

(distance from the edge of the Shiwalik range to Bussowal is ca. 100 km) 

2.4 GROUNDWATER QUALITY ISSUES FROM PREVIOUS STUDIES 

In Ludhiana, to the south of Bist-Doab, the shallow aquifer is contaminated with cyanide and 

chromium from industrial waste sources (Singh, 1982). More recent studies have largely 

focussed on groundwater quality assessments for irrigation (Kuldip-singh et al., 2013; Kuldip-

Singh et al., 2011; Purushothaman et al., 2012) and used GIS approaches to map the potential of 

artificial recharge in the area to augment natural recharge (Singh et al., 2013; Singh et al., 2010). 

Dhillon and Dhillon (2003) investigated the links between elevated soil selenium (Se) 

concentrations and Se occurrence in shallow groundwaters in part of the Bist-Doab region. 

Future climate change scenarios point to an increases in high intensity rainfall during monsoon 

months, but overall lower soil moisture in NW India, increasing the potential for microbial 

contamination of shallow groundwaters (Nicholls et al., 2012; Parry et al., 2007). Lower soil 

moisture levels may also reduce the potential for soil denitrification and therefore a greater 

potential for nitrate leaching to groundwater (Groffman and Tiedje, 1989; Ruser et al., 2006). 
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3 Methodology 

3.1 LONG-TERM CHANGES IN GROUNDWATER LEVEL 

As part of this case study, historical groundwater level data (1975-2012) for the Bist-Doab was 

obtained from the CGWB groundwater monitoring database. Sites with groundwater level data in 

Bist-Doab are shown in Figure 4, some of the large urban centres in the catchment are also 

shown for reference. A total of 123 sites (yellow sites in Figure 4) had water level records, 

however only 43 (green sites in Figure 4) of these had long-term records, i.e. >20 years, with 

useful frequency. Most long-term monitoring sites have 4 water level records each year, taken as 

manual dips in May, August November and January, to capture the pre-Monsoon and post 

Monsoon changes in groundwater level across the catchment. 

 

 

Figure 4. CGWB groundwater level records in Bist-Doab, grey squares show selected urban 

centres (source: CGWB) 

A preliminary analysis of three key components of the groundwater level data was undertaken 

for the long-term monitoring sites: i) the degree of groundwater level decline, ii) the minimum 

groundwater level under pre monsoon conditions and iii) the nature of long-term post monsoon 

recovery in groundwater level.  

 

The level of decline, pre monsoon depth and recovery during monsoon were mapped across the 

catchment to investigate spatial variations in groundwater resources and long-term security for 

shallow abstraction.  

 

3.2 ENVIRONMENTAL TRACERS 

Chemical properties of groundwater can be used as environmental tracers and so enable 

conclusions to be drawn about the water’s origin, residence time and hydrogeochemical 

evolution. In addition to stable isotopes (
18

O and 
2
H) major elements (e.g. NO3, Mg/Ca) and 

trace elements (e.g. Sr, Li, Rb, Mo), which are common in many hydrogeological investigations 

(e.g. Edmunds et al., 2003), two specialised tracer techniques have been used in this study: 

Chlorofluorocarbons (CFCs) and SF6 trace gases. Additional samples for noble gas analysis were 
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also taken to obtain recharge temperatures, these results will not be discussed in this report as 

analysis is as yet incomplete. 

 

3.2.1 Stable Isotopes 

Stable O and H isotopes are tracers of physical processes that water molecules undergo between 

evaporation from the ocean and arrival in the aquifer via recharge of rainfall (Clark and Fritz 

1997). They are typically used in semi-arid hydrogeological studies to indicate the degree to 

which waters may have been modified prior to recharge or the existence of pre-Holocene waters. 

In addition, stable isotopes and other conservative anions such as Cl and Br can be used as field 

tracers when applied to the surface. A small pilot study using this method to estimate recharge 

velocities in the shallow unsaturated zone was carried out as part of this study, however the 

analysis for these samples is not complete and the results from this work will not be covered in 

this report. 

3.2.2 Trace gas age indicators 

 

The use of CFCs and SF6 as groundwater age tracers relies on the rise in their atmospheric 

concentrations over the last 50 years together with certain assumptions about atmospheric 

mixing and recharge solubility (Plummer and Busenberg 1999). These gases are known to be 

well-mixed in the atmosphere so the curves are considered to be applicable to the study area. The 

use of several trace gases is recommended as under certain conditions individual tracers may 

have limitations (Darling et al. 2012). In particular, the CFCs may be affected by pollution, 

and/or degradation under anaerobic conditions (Plummer and Busenberg 1999), and there are 

also issues with the use of SF6 due to terrigenic production (Koh et al. 2007).  

 

Interpreting trace gas indicators relies on consideration of mean recharge temperature, altitude 

and incorporation of excess air. An average annual air temperature of 26°C was used for this 

study to represent recharge temperatures. The phenomenon of ‘excess air’ incorporated during 

recharge has only a small effect on the CFCs but requires correction for SF6 measurement. 

Significant numbers of deeper sites in the pre-monsoon sampling round showed enriched SF6 

concentrations, greater than 10 times modern concentrations, suggesting terragenic sources of 

SF6 in groundwaters. In addition, due to the elevated temperatures in the region (45-50 °C) 

during the sampling, a number of SF6 samples expanded and broke the glass bottles and/or lids 

rendering the samples unsuitable for dating. In light of both of these factors only the CFC data is 

presented in this report.  

 

Lumped parameter models (LPM) typically used to describe some of the variation seen in 

groundwater mixtures include piston flow (PFM), exponential mixing (EMM) and binary mixing 

(BMM) (Zuber 1986; Cook and Böhlke 2000). With the absence of SF6 data with which to assess 

groundwater flow processes, for this report two simple mixing models have been used to 

compare results from different sites across the catchment: i) a binary mixing model (assuming 

mixing between modern and CFC dead water) to estimate fraction of modern recharge and ii) a 

simple PFM has been used to estimate mean residence times (MRT) of groundwater samples.  

3.3 GROUNDWATER SAMPLING 

Shallow (approx. <50 m) and a deep (generally >80m) groundwater was sampled from 19 paired 

sites (see Figure. 5 and Table 2) across the catchment. These were selected to ensure a good 

geographical spread across the catchment, and to ensure that the three main hydrological setting 

in the catchment were coved adequately, namely i) the upper NE portion of the catchment within 

the lower Shiwalik range, ii) the centre of the Doab including areas with known groundwater 

depletion, ii) locations in close proximity to both the R. Beas and Satluj and at the lower end of 
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the catchment near the confluence of the two Rivers. Only sites which had good borehole 

completion were selected to minimise localised sources of contamination, and the distance 

between the shallow and deep sites at each location was minimised. Shallow sites were <50 

mbgl, with the exception of one site at Ajnoha, and deep sites were >100 mbgl. Although there 

were differences in completion depths between locations and shallow sites were all completed in 

the first sedimentary aquifer, and where records were available, deep sites were shown to be 

completed in the second or third aquifer.  This term ‘aquifer’ refers to a continuous layer of 

permeable sediment >10 m thick.  The aquifers are separated by low permeability clay, silt and 

kankar deposits. 

Groundwater was sampled using existing hand pumps and tube wells during February and May, 

2013 for pre-monsoon season and during October, 2013 for post monsoon sampling. The sample 

locations were recorded using Global Positioning System (GPS). Prior to sampling, boreholes 

were purged (minimum 3 borehole volumes) to ensure a fresh sample was collected. 

Groundwater chemistry was monitored carefully for a range of field parameters including 

electrical conductivity (EC), pH, redox potential (Eh), dissolved oxygen and temperature using a 

flow-through cell. Only after stable field readings were obtained were samples collected. Field 

alkalinity was determined by titration in the field using 50 ml sample and 1.6 N sulphuric acid.  

 

 

Figure 5. Location of paired shallow and deep monitoring sites across the Bist-Doab 

 

Table 2. Sampling site names, locations, districts and completion details 

 

Site Name District Longitude (E) Latitude (N) Depth (m) Depth (m) 

    

Shallow Deep 

Banga Nawanshahr 75.5°9'36.4" 31°10'04.4" 16 100 

Mehli Nawanshahr 75.4°8'51.4" 31°12'47.6" 40 150 

Phillaur Jalandhar 75.4°47'26.2" 31°01'24.1" 30 80 

Malikpur Phagwara 75.4°50'07.5" 31°16'55.6" 25 160 

Nawanshahr Nawanshahr 76°07'11.5" 31°07'33.1" 30 130 

Maili Hoshiarpur 76°04'12.7" 31°24'07.3" 45 80 

Hariana Hoshiarpur 76°50'29.6" 31°38'06.2" 50 160 
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Aima 

Mangat Hoshiarpur 75°37'57.6" 31°53'32.5" 20 85 

Arjanwal Jalandhar 75°41'44.2" 31°25'13.5" 10 140 

Jandiala Jalandhar 75°37'07.8" 31°09'46.4" 30 60 

Saidpur Jalandhar 75°19'43" 31°05'06.1" 35 122 

Mallian K. Jalandhar 75°24'57.1" 31°10'57.4" 35 130 

Busowal Kapurthala 75°09'17.5" 31°12'49.2" 9 130 

Boot Kapurthala 75°23'52.1" 31°27'11.6" 10 130 

Garhsankar  Hoshiarpur 76°08'07.8" 31°13'34" 18.3 45.7 

Hoshiarpur Hoshiarpur 75°55'09" 31°31'55.4" 45.7 64 

Ajnoha  Hoshiarpur 75°53'46.4" 31°19'36" 67 121.9 

Nussi Pind  Jalandhar 75°33'2.5" 31°24'02" 21.3 152.4 

Amritpur  Kapurthala 75°10'21.8" 31°22'49.5" 7.6 76.2 

 

Filtered (0.45µm, cellulose nitrate) water samples were collected in pre-washed plastic bottles. 

The un-acidified sampling bottles were carefully filled just to overflowing to ensure no air 

bubble was trapped inside the sample container. The samples were labelled, brought to the 

laboratory and stored at 4 °C to avoid any major chemical alteration prior to analysis. Samples 

for cation analysis were acidified (1% v/v Aristar nitric acid) on return to the UK prior to 

analysis. Dissolved organic carbon (DOC) samples were filtered (0.45µm) in the field using 

silver filters and were stored refrigerated in glass bottles prior to analysis. At each site samples 

were also collected for CFC-11 and CFC-12 analysis. CFC and SF6 samples were collected 

unfiltered and without atmospheric contact in sealed containers by the displacement method of 

Oster (1994). This method ensures that the sample is protected from possible atmospheric 

contamination by a protective jacket of the same water.  Stable isotope samples were collected in 

Nalgene bottles. 

3.4 SAMPLE ANALYSIS 

Un-acidified sub-samples were analysed for major anions using ion chromatography. Major and 

trace cations were analysed by ICP-MS. Stable isotope analysis (
18

O, 
2
H) was carried out 

using standard preparation techniques followed by isotope ratio measurement on a VG-

Micromass Optima mass spectrometer. Data considered in this paper are expressed in ‰ with 

respect to Vienna Standard Mean Ocean Water (VSMOW). CFCs and SF6 were measured by gas 

chromatography with an electron capture detector after pre-concentration by cryogenic methods, 

based on the methods of Busenberg and Plummer (1999). Measurement precision was within 

±0.1‰ for 
18

O and ±1‰ for 
2
H, and ±5% for the CFCs, with detection limits of 0.01 pmol/L 

(CFC-12), 0.05 pmol/L (CFC-11) and 0.1 fmol/L (SF6) . Measurement of inorganic chemistry, 

DOC, stable isotopes values, CFCs took place at BGS laboratories in the UK.   

3.5 INSTALLATION OF WATER LEVEL AND SEC LOGGERS  

To record daily and seasonal fluctuations and abstraction effects on groundwater 6 piezometers 

(at depth of 150 mbgl) at Bhogpur, Kapurthala, Nakodar, Saroya, Sultanpur Lodhi and Tanda 

were drilled and instrumented with automatic water level recorders (Figure 6). Water levels in 

paired shallow piezometers are also monitoring to investigate interactions between shallow and 

deep aquifers. Four conductivity loggers are installed in shallow monitoring piezometers (60 

mbgl) developed by Punjab Water Resources and Environment Directorate, Chandigarh, at sites 

Saroya, Bhogpur, Kapurthala and Sultanpur Lodhi (Figure 4). Preliminary results from the data 

loggers are shown in Appendix 2 (Figure 2) as holding data, a full download will be carried out 

in September after a full hydrological year. 
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Figure 6. Locations of paired shallow and deep piezometers where continuous loggers are 

installed to monitor water levels and SEC (shallow sites) 

4 Results 

4.1 LONG-TERM CHANGES IN GROUNDWATER LEVEL 

The long-term trends in groundwater levels for the 43 CGWB monitoring sites, with data 

covering 20 years or more, can be found in Appendix 1. Figure 7a shows a map of the trends in 

groundwater decline across the catchment, 8b the current pre monsoon groundwater level It can 

be seen that the sites with no long-term water level decline are found in the Kandi region or in 

close proximity to the R. Beas and Satluj, sites with moderate or high levels of groundwater 

decline are located away from the rivers or close to the foothills. There is an overall increase in 

the rate of groundwater level decline across plain towards the confluence (Figure 7a), which 

coincides with an absence of the canal distribution system. There is one noteworthy anomaly, 

Udhopur, to the south of Jalandhar 3, which has a shallow water table and which has no long-

term decline in water level. This site is in close proximity to a large perennial tributary of the 

Satluj (See Figure 4) and the trends and groundwater levels at this site probably reflect hydraulic 

connectivity with this alluvial aquifer in close proximity to the river channel.  

In the northern corner of the catchment groundwater levels are shallow and show no long-term 

trends (see Figure 7), this reflects the topography of the region and perhaps the sustained 

discharge from the Pong Dam (Himachal Pradesh) which maintains river/canal flow and 

groundwater levels in this region. Sites with the deepest groundwater levels (pre monsoon) are 

found in the Kandi region and in the central and SW region of the plains, this reflects the incised 

topography of the Kandi belt and the high level of abstraction within the shallow plains aquifer 

for irrigation. The region considered as the recharge zone for the plains aquifer, where there is a 

change in slope from the Kandi belt, generally have shallow groundwater levels and only 

moderate long-term declines in pre-monsoon groundwater levels. 
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 Figure 7. Spatial variation in (a) long-term (20 years) decline in pre monsoon groundwater level 

(b) pre monsoon groundwater level in 2010. source: CGWB. 

 

4.2 STABLE ISOTOPES 

Figure 8 (a-c) shows the stable isotope results in relation to the regional meteoric water line 

(RMWL) from Kumar et al. (2010), and calculated robust regression lines, from this study for 

shallow and deep sites under pre and post monsoon conditions. Figure 9 shows a plot of all the 

data in relation to previous studies of shallow and deep groundwater stable isotope results 

published by Rao et al (2014). Figure 10 shows a plot of spatial variation of stable isotope results 

across the Bist-Doab region.  

Overall the shallow and deep values obtained in this study are consistent with those found by 

Rao et al (2014) in the same catchment (see Figure 8) with the exception of a few enriched 

outliers. There is a generally consistent result across the catchment which shows enriched 

samples in the shallow groundwaters compared to deep sites (see Figure 8 and 10) due to a 

greater component of relatively depleted recharge sources in deep sites from recharge zones up-

gradient due to a the effects of the continental Raleigh distillation processes as the monsoon air 

masses track across India from the Bay of Bengal. The deep sites show no significant changes 

under pre and post monsoon conditions in all but one site (Hariana) which is found in the 

recharge zone.  

The shallow boreholes at Amritpur (7.6 mbgl), in close proximity to the River Beas, show 

particularly depleted values for 
18

O and 
2
H, suggesting that there is significant surface water-

groundwater connectivity in this location. At this site the shift in 
18

O from -9.5 to -8.9 between 

pre and post monsoon conditions suggests that this process is highly dynamic and operating 

within a sub 4 month time frame in response to post monsoon recharge from the Beas to the 

adjacent shallow alluvial aquifers. In contrast, the deep site at Amritpur (76 mbgl) showed no 

changes (-6.9) both pre and post monsoon. The highly enriched 
18

O values at Arjanwal in the 

shallow groundwaters (-2 and -4.8, See Figure 10)  suggest that there are significant sources of 

shallow recharge water at this location exhibiting signs of evaporative fractionation prior to 

recharge. 
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Figure 8. Stable isotope results (
18

O vs 
2
H) for (a), shallow sites pre monsoon (b), deep sites 

pre monsoon (c) shallow sites post monsoon and (d). deep sites post monsoon. Solid line shows 

the RMWL and dashed line the robust regression line for the data. 

 

 

Figure 9. Stable isotope results (
18

O vs 
2
H) for all data in comparison with published 

regression lines for shallow, deep groundwater across the catchment and surface waters. * 

Regression lines from Rao et al., (2014).  
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Figure 10. Spatial and temporal variation in stable isotope results (
18

O) across the Bist-Doab 
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4.3 DISSOLVED GASES (CFC-12 AND CFC-11) 

Table 3 shows the results for CFC-11 and CFC-12 concentrations in groundwaters, modern 

fractions and estimated (PFM) MRTs for sites using CFC-12 data. A recharge temperature of 26 

°C was used to calculate MRTs, the average value obtained from field observations. Figure 11 

and 12 shows the CFC-12 and CFC-11 results, presented as the fraction of modern water, for all 

the sites in this study. It can be seen that only a handful of samples show signs of significant 

CFC-12 contamination compared to CFC-11. Figure 13 shows the model mean residence times 

(MRT) for groundwater estimated using CFC-12 data and a piston flow model, samples that had 

a modern fraction >1.1 were excluded from this analysis due to likely contamination.  

 

 

 

Figure 11. CFC-12 results presented as the fraction of modern water. Hydrogeological setting 

for sites; Amia M.-Malikpur (Zone 1, Kandi); Ajnoha-Mehli (Zone 2, Plains); Saidpur – Phillaur 

(Zone 3, floodplain/confluence). Data missing from Hoshiarpur and Amritpur. 

 

 

Figure 12. CFC-11 results presented as the fraction of modern water. Hydrogeological setting 

for sites; Amia M.-Malikpur (Zone 1, Kandi); Ajnoha-Mehli (Zone 2, Plains); Saidpur – Phillaur 

(Zone 3, floodplain/confluence). Data missing from Hoshiarpur and Amritpur. 
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Table 3. CFC-12 and CFC-11 concentrations, modern fractions and mean residence times 

 

Shallow 

    

Deep 

    

 

CFC-12 CFC-11 CFC-12 CFC-11 CFC-12 CFC-12 CFC-11 CFC-12 CFC-11 CFC-12 

 
pmol/L pmol/L Mod. Fr. Mod. Fr. MRT* -Years pmol/L pmol/L Mod. Fr. Mod. Fr. MRT –Years* 

Pre-monsoon 

          Aima Mangat 1.75 2.23 1.19 0.95 0 1.66 1.29 1.12 0.55 0 

Hariana 0.09 0.15 0.06 0.07 54 0.13 0.15 0.09 0.07 51 

Hoshiarpur N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Mailli 1.58 2.95 1.07 1.26 0 0.05 0.08 0.03 0.03 59 

Malikpur 0.81 3.94 0.96 1.32 22 0.00 0.00 0 0 68 

Ajnoha N/A N/A 0.51 N/A 18 0.09 0.23 0.06 0.1 54 

Arjanwal 1.51 0.77 1.02 0.33 0 0.07 0.21 0.05 0.09 55 

Banga 0.23 0.58 0.16 0.26 47 0.96 0.51 0.67 0.22 32 

Boot 0.60 0.09 0.41 0.04 39 0.50 0.63 0.34 0.27 41 

Garhshankar 1.27 0.14 0.89 0.06 26 0.03 0.29 0.02 0.13 63 

Jandiala 23.57 163.58 16.01 69.66 >Mod 1.44 9.63 0.98 4.1 22 

Nawanshahr 1.37 2.73 0.93 1.16 24 0.84 1.00 0.57 0.42 34 

Nussi Pind 0.00 0.00 0 0 68 0.12 0.08 0.08 0.03 52 

Mallian Kalan 1.32 3.06 0.9 1.3 25 0.05 1.16 0.03 0.49 59 

Mehli 1.41 0.77 0.95 0.33 23 0.28 0.21 0.19 0.09 46 

Saidpur 2.16 0.18 1.47 0.08 >Mod 0.51 0.20 0.34 0.08 41 

Amritpur N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Bussowal 0.00 0.00 0 0 68 1.90 2.39 1.29 1.02 0 

Phillaur 1.96 8.23 1.33 3.5 >Mod 0.26 3.18 0.18 1.35 46 

Mean 2.5 11.8 1.6 5.0 29.6 0.5 1.2 0.4 0.5 42.5 

Median 1.3 0.8 0.9 0.3 24.5 0.3 0.3 0.2 0.1 46.0 

Post-monsoon 
          Aima Mangat 1.35 4.18 0.92 1.78 24 1.62 1.47 1.10 0.62 0 

Hariana 0.11 0.14 0.08 0.06 52 0.18 0.11 0.12 0.05 48.5 

Hoshiarpur 0.38 0.17 0.26 0.07 43 0.80 0.82 0.54 0.35 35 

Mailli 1.39 2.61 0.94 1.11 23.5 0.06 0.37 0.04 0.16 57 

Malikpur 2.20 2.26 1.50 0.96 >Mod 0.00 0.14 0.00 0.06 68 

Ajnoha 0.64 0.19 0.44 0.08 38 0.05 0.12 0.03 0.05 58 

Arjanwal 1.74 0.28 1.18 0.12 0 0.58 0.65 0.39 0.28 39 

Banga 0.00 0.15 0.00 0.06 68 0.32 0.33 0.22 0.14 44 

Boot 0.51 0.32 0.35 0.13 40 0.45 0.46 0.31 0.20 41.5 

Garhshankar 1.34 0.03 0.91 0.01 24 0.07 0.14 0.05 0.06 56 

Jandiala 11.58 107.79 7.86 45.90 >Mod 1.62 3.46 1.10 1.47 0 

Nawanshahr 1.72 3.37 1.17 1.44 >Mod 0.77 0.71 0.52 0.30 35.5 

Nussi Pind 0.13 0.23 0.09 0.10 51 0.09 0.12 0.06 0.05 54 

Mallian Kalan 1.12 0.44 0.76 0.19 28 1.19 1.95 0.81 0.83 26.5 

Mehli 2.06 3.73 1.40 1.59 >Mod 0.29 2.63 0.20 1.12 45 

Saidpur 1.05 0.11 0.71 0.05 29.5 0.44 0.29 0.30 0.12 41.5 

Amritpur 1.80 0.65 1.22 0.28 0 0.23 0.82 0.16 0.35 46.5 

Bussowal 0.38 0.30 0.26 0.13 43 2.10 2.65 1.43 1.13 >Mod 

Phillaur 1.61 4.12 1.09 1.76 0 0.14 0.15 0.09 0.06 50.5 

Mean 1.6 6.9 1.1 2.9 30.9 0.6 0.9 0.4 0.4 41.5 

Median 1.3 0.3 0.9 0.1 29.5 0.3 0.5 0.2 0.2 44.5 

*Piston flow model used to estimate MRT. Mod. Fr = modern fraction 

 

Table 3 and Figures 11 and 12 show that for most locations the shallow boreholes had 

significantly higher CFC concentrations and corresponding modern fractions. Shallow 

groundwaters were shown to have significantly younger MRTs compared to deep groundwater 

samples (Figure 13). Median MRTs were comparable for deep sites pre and post monsoon, while 



   

 18 

for shallow groundwaters MRTs were shifted towards younger residence times during post 

monsoon sampling, although this is not statistically significant (p=0.05).  

 

Figure 13. Notched box-plot of CFC-12 piston flow model Mean Residence Time (MRT) 

grouped by borehole depth and pre/post monsoon conditions 

 

 

Figure 14. Spatial variation in CFC-12 modern fractions and MRTs  

 

Figure 14 shows that there is no clear spatial relationship across the catchment for MRT in deep 

groundwaters, however it is noteworthy that the sites with the youngest deep groundwaters were 

found in the region of rapidly declining groundwater levels (e.g. Jandiala with MRTs between 0-

22 years) and in the recharge area (Amia Mangat) which gave modern recharge values. Overall 

the deep groundwaters have median MRTs of 45 years, while the shallow groundwaters have 

median MRTs ca.30 years. Some locations in the region of rapidly declining groundwater levels 

(e.g. Bussowal, Mallian Kalan Jadiala and Arjanwal) had deep groundwaters that showed 

significantly younger MRTs post monsoon (43, 27, 0 and 39 years respectively) compared to pre 

monsoon (68, 59, 22 and 55 years) suggesting rapid pumping induced vertical leakage of modern 

water to depth during the monsoon.     

4.4 NITRATE, CHLORIDE AND SEC 

A complete table of summary statistics for major and trace elements is given in Appendix 1.  

Figure 15 shows box-plots for nitrate, chloride and SEC data grouped by borehole depth and 

pre/post monsoon conditions. Figure 16 shows cross-plots of total borehole depth vs NO3, Cl, 
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SEC and MRT. There is a consistent trend of significantly lower SEC and lower concentrations 

of Cl and NO3 in the deep groundwater, this is strongly suggestive of anthropogenic sources of 

contamination within the shallow aquifers, and migration to depth at some locations. Overall, 

median concentrations are below 50 mg/L (WHO drinking water limit), however, there are a few 

sites where this is exceeded in both the shallow and deep sites. Median values for all three 

parameters in the shallow groundwater, were lower post-monsoon compared to pre-monsoon. 

This suggests a dilution effect in the shallow groundwater due to rapid meteoric monsoon 

recharge. While median concentration of nitrate in the deep groundwater are low, <5 mg/L, there 

are a significant number of sites which show concentrations >10 mg/L, which suggests that 

contamination from shallow sources may be mobilised and flushed to depth within the aquifer. A 

significant proportion of shallow sites have low nitrate concentrations and high SEC, this point 

to natural attenuation of nitrate in shallow aquifers in some situations, likely linked to redox 

controls and availability of DOC in the shallow aquifers. The low SEC in most of the deeper 

sites also indicates the lack of evidence for saline groundwater at depths of 150 m within this 

Doab.   

 

 

Figure 15. Notched box-plot of a) NO3, b) Cl and c) SEC grouped by borehole depth and 

pre/post monsoon conditions. 
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Figure 16. Cross-plot total borehole depth vs a) SEC, b) NO3, c) Cl and d) MRT 

 

4.5 TRACE ELEMENTS 

Figure 17 shows box plots for selected trace elements of particular significance in terms of 

drinking water quality (e.g. As, F, Se, U, Fe and heavy metals) and groundwater residence times 

/geochemical evolution due to mineral dissolution processes (e.g. As, Mo, U). All groundwater 

samples in this study had dissolved As and F concentrations below 10 g/L and 1.5 mg/L (WHO 

drinking water guideline values). Iron concentrations were generally below 500 g/L except for 

some shallow sites, where overall Fe concentrations were significantly higher during post 

monsoon conditions and were >2000 g/L in a few instances. Selenium concentrations were <10 

g/L in deep sites, however there were significantly higher concentrations in shallow 

groundwater, occasionally exceeding concentrations of 20 g/L. Median concentrations of Cd, 

Pb, Cr, Cu, Ni and Zn were all significantly higher in shallow sites compared to deep sites, 

suggesting an anthropogenic source of contamination. Lead concentrations were generally below 

10 g/L, however there were 5 occasions where concentrations in shallow groundwater exceeded 

20 g/L. The heavy metals and Se appear to have a shallow source, anthropogenic contamination 

from waste water is a likely source for the former while perhaps enhanced Se concentrations in 

soils may be the source of enhanced Se in shallow groundwaters (Dhillon and Dhillon 2003).  

 

 

Figure 17. Notched box-plots of selected trace elements a) As, b) Fe, c) F, d) Se, e) Mo, f) U, g) 

Pb, h) Cd, i) Cr, j) Cu, k) Ni, m) Zn grouped by borehole depth and pre/post monsoon 

conditions. 
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Median concentrations of U, Mo and As were higher in the deeper sites compared to the shallow 

sites. Median concentrations for uranium in deep sites are >15 g/L (WHO provisional guideline 

value is 30 g/L). This guideline value for U is based on daily water consumption of 2 L/day 

which may not be realistic for NW Punjab, particularly during the hot season. These trace 

elements and others (e.g. Sr, Li, Rb) can be used as traces of groundwater evolution due to 

mineral dissolution processes and are therefore tracers of groundwater residence times (e.g. 

Edmunds et al., 2003). These results suggests that a major control on trace element 

concentrations, for elements which are not limited by mineral saturation, is groundwater 

residence time and water-rock interactions, however, anomalous high concentrations for U, Se 

and Mo in some shallow groundwaters also suggests a redox controls on element concentrations 

may also be important in some instances.  

Figure 18 shows a cross plot of MRT vs four common chemical indicators of groundwater 

residence time (Mo, NO3, Mg/Ca and Sr). There is a general trend of increasing Mo, Sr and 

Mg/Ca with increasing MRT and a decreasing trend in NO3 with increasing MRT, together these 

highlight residence time controls on natural trace element compositions and anthropogenic 

contamination in groundwater. The variation in trace element composition (i.e. the noise in the 

trend) for samples with a given MRTs also suggests that mixing processes occurring at sites are 

important in controlling chemical compositions of groundwater and may reflect anthropogenic 

induced mixing due to intense pumping. 

 

 

 

Figure 18. Cross-plot of MRT vs a) Mo, b) NO3, c) Mg/Ca and d) Sr 
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5 Discussion 

5.1 GROUNDWATER FLOW AND RECHARGE PROCESSES: EVIDENCE FROM 

NATRUAL AND ANTHROPOGENIC TRACERS 

A range of natural and anthropogenic tracers have been used in this study to understand, 

groundwater flow processes, anthropogenic contamination, and the natural geochemical 

evolution of groundwater in the Bist-Doab. Stable isotope results confirm the largely diffuse 

meteoric sources of recharge across the catchment in both the shallow and deep groundwater, 

which have significant overlap in terms of 
18

O vs 
2
H values. However, for most sites there is a 

significant difference between sable isotope values for the paired deep and the shallow 

groundwater, with deeper sites showing isotopically depleted signatures relative to the shallow 

samples. This is consistent with different recharge zones and processes for the paired sites at any 

given location, with the deeper sites have a greater component of water that was recharged some 

distance up-gradient (i.e. towards the recharge zone at the foot of the Shiwalik range). This 

source has a relatively depleted isotope signature due to Raleigh distillation processes (Figure 

10). The values for the deeper sites (
18

O values of ca. -7± 0.5) are consistent with continental 

scale depletion in meteoric recharge as monsoon air masses track from the Bay of Bengal (
18

O 

values of ca. -4) in a NW direction, and the inland gradient of -2 per mil per 1000 km 

(Krishnamurthy and Bhattacharya 1991). There are also a small number of sites where the 

isotopic signatures for the shallow and deep sites are not significantly different, this suggests that 

there is a common local source or (mixtures of sources) for both depths and implies significant 

vertical leakage and mixing which may be enhanced due to pumping. This marks an important 

new finding and highlights the use of stable isotopes to delineate regional and local flow 

processes.   

There are some shallow sites where there is evidence of recharge from fractionated sources of 

recharge, perhaps as a result of ponding, as well as surface water replenishment of aquifers 

adjacent to rivers (e.g. Amritpur, R. Beas) as a result of rising river stage in the post monsoon 

period. This is consistent with recent results presented by Sharma et al. (2014) which showed 

between 40-70% surface water recharge in shallow aquifers adjacent to the R. Beas at Naushera 

Pattan and Amritpur based on 
2
H values. Based on the results for shallow and deep sites, and 

comparing them to the published values for the Sutlej Canal (with a significantly depleted 

signature), there is no evidence of the Sutlej canal water being a significant component of 

recharge regionally – in fact the deep sites are more depleted than the shallow sites. However, 

this does not rule out significant recharge to shallow groundwater at locations close to canals or 

where canal leakage water is likely and canal water may be a significant component of irrigation 

water. The isotope values from the Beas River and the Kandi canal system, in the north of the 

Bist-Doab, overlap significantly with the groundwater isotope values, this means that delineating 

the influence of canal water in this region is not straightforward. 

Trace elements were shown to be effective natural tracers of groundwater evolution as a result of 

mineral dissolution processes. For example, Sr, Mo, As, U, Mg/Ca all showed overall trends of 

increasing concentrations with increasing MRT. However, the trends showed a lot of scatter, 

suggesting perhaps that mixing processes, i.e. the convergence of groundwater with multiple 

residence times, is important in controlling trace element concentrations. Shallow sources of Se 

from soils rich in Se, observed across some in parts of the catchment (e.g. Dhillon and Dhillon 

2003 and references therein), have been suggested as possible sources of high Se in shallow 

groundwater in these previous studies, it is also possible that high Se could also be associated 

with fertiliser use. This hypothesis was corroborated by evidence from this study which show 

enhanced Se concentrations in shallow groundwaters, although redox and pH controls are also 
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likely to be locally important in mobilising trace elements and enhancing concentrations in 

shallow groundwater. Enhanced heavy metal (e.g. Pb, Cd, Cr) Cu, Ni and Zn in shallow 

groundwater compared to deeper aquifers, also suggests migration of anthropogenic sources of 

contamination in to the shallow aquifer system, most likely from waste water sources (Gopal et 

al., 2014). 

Nitrate, Cl and SEC values are significantly higher in shallow groundwater due surface 

anthropogenic contamination from agriculture (e.g. fertiliser) and waste water sources. While 

there is evidence for denitrification in some sites (NO3<0.03 mg/L) low concentrations were only 

detected in 18 % of samples. Groundwater in this region is moderately oxygenated (mean DO of 

1.2 mg/L) and are oxidising (mean Eh of +256 mV), suggesting that NO3 is a useful tracer of 

modern recharge and contamination in this setting. Shallow groundwater NO3, Cl and SEC 

values show an overall downward shift in post monsoon conditions suggesting that there is a 

rapid dilution due to meteoric monsoon recharge. Overall the deep sites show consistent median 

values pre and post monsoon. 

CFCs have been employed to trace recent recharge and estimate groundwater MRTs across the 

Bist-Doab. While there was evidence of contamination/degradation by CFCs at some sites, CFC-

11 was much more affected by this than CFC-12. Where degradation or contamination were not 

occurring, there was generally good agreement between CFC-11 and CFC-12 MRTs and 

calculated modern fractions, providing important support for the interpretation of the CFC-12 

data. The generally oxidising nature of the groundwater in this catchment also means that the use 

of CFC-12 as a conservative tracer is more reliable as CFC degradation can occur in sub-anoxic 

environments.  Overall, shallow groundwater showed significantly younger MRTs compared to 

deep sites, as might be expected, although it is noteworthy that CFC-12 was detected in the 

majority of deep sites suggesting at least a component of modern recharge at depth. Even where 

concentrations were found to be greater than estimated modern recharge, indicating a potential 

source of local contamination, this data can still be used as a sensitive diagnostic tracer of 

connectivity between the shallow and deep aquifers and pathways for modern recharge. 

Mean groundwater residence times in the shallow aquifers show a large range (0->50 years) with 

average values of 29 years and 30 years under post-monsoon and pre-monsoon conditions 

respectively. Using Darcy’s law to calculate groundwater flow (Q) and literature values 

representative of alluvial sediments for hydraulic conductivity of 10-30 m/d (Rushton 1986); 

porosity of 0.2-0.3 (Todd 1959) and a regional gradient of 0.0004 (Bowden 1985) residence 

times of the order of ca.10
3
-10

4
 y in the deep aquifers (100-150 mbgl) 50 km from the recharge 

zone under natural flow regimes are estimated. Deep groundwater (>100 mbgl) have mean 

MRTs of 42 years, suggesting that the natural flow regimes for this aquifer system are  highly 

perturbed by pumping, the young MRTs imply a significant component of recharge from vertical 

leakage induced by pumping from depth.  

5.2 IMPLICATIONS FOR LONG-TERM GROUNDWATER SECURITY 

There is clear evidence from historical groundwater level records that there has been a large 

decline in groundwater levels in shallow aquifers used for irrigation at a regional scale (ca. 20-

25% of the Bist-Doab) over the last 20 years. Natural flow regimes and recharge in the shallow 

groundwater system are highly perturbed by the sustained pumping for irrigation, as shown by 

the MRT and stable isotope results. Work by Datta and Goel (1977), using tritium techniques, 

also showed that areas with irrigation had significantly enhanced recharge compared to non-

irrigated locations. In many cases pre-monsoon groundwater levels are now >20 mbgl and in 

some areas falling at ca. 0.5 m per year, which has potential cost implications for long-term use 

of these shallow aquifers for irrigation. The area most affected by over-pumping for irrigation is 

the region SW of Adampur (i.e. zone 2 in Figure 3), the worst affected sites include Jalandhar, 

Phagwara, Nakodar and Shahkot, in the middle Doab and confluence, where pre-monsoon 

groundwater levels have declined by >20 m in the last 20 years.  
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There is evidence from the hydrographs that pumping and the declining pre-monsoon water 

levels are actually enhancing net recharge in the middle Doab and confluence region.  However, 

in many of the sites in this region the post monsoon maximum are on a downward trajectory 

suggesting that net abstraction is outstripping the actual recharge.  

A significant number of sites in the region of greatest groundwater decline (see Figure 7) show 

modern or over-modern CFC-12 recharge concentration suggests that the response in the shallow 

aquifers post-monsoon is due to rapid modern recharge. This has implications for the security of 

these shallow aquifers for i) sustained pumping towards the end of the pre-monsoon period, ii) 

the rapid migration of contaminants to depth within the aquifer, by-passing natural attenuation 

processes, and iii) inter-annual variability in rainfall and recharge during the monsoon. The 

higher groundwater levels (Figure 7) and modern CFC values obtained from shallow and deep 

sites at Aima Mangat (most northern site) suggest that recharge in this region may be from 

shallow modern sources, perhaps due to the larger density of canals used for surface water 

irrigation in this part of the catchment or due to leakage from the Pong Dam. The similar 

enriched isotope values (
18

O values of ca. -5.4 to -5.7) for shallow and deep groundwater at this 

site suggests a common source of recharge at both depths and significant connectivity between 

the shallow and deep aquifers. The southern part of the Bist-doab also has a relatively high 

density of canals originating from the R. Satluj, which could be enhancing overall recharge in 

this region. However, the stable isotope data suggests that this is probably insignificant 

compared to shallow groundwater irrigation and enhanced monsoon recharge from meteoric 

sources as the distinct depleted 
18

O and 
2
H signature (<-10 and <-70 respectively) of R. Satluj 

(see Figure 9 and Rao et al., 2014) is not evident in any of the shallow groundwater in this 

region. 

There is new evidence from groundwater dating using CFCs that some of the deep aquifers are 

also being replenished by a significant component of more recent recharge. This is most 

pronounced in the region of groundwater decline in the SW of the catchment where MRTs shift 

by up to 20 years to younger values in the deep sites post-monsoon, at two sites in the catchment 

post monsoon recharge is effectively modern recharge. There are two obvious explanations for 

this, either the deep abstraction sites at these locations are poorly constructed and what we are 

seeing is by-pass flow along the casing and the MRTs are an artefact of the borehole completion. 

The detailed logs and construction details available at some municipal sites suggest that these are 

well constructed sites which case out all but the lower portion of the borehole. Alternatively, the 

thick horizons of lower permeability material are leaky and allow significant vertical movement 

of groundwater from shallow aquifers to depth due to pumping. The fact that there is significant 

overlap between the region of long-term significant groundwater decline and the observed shifts 

in MRT post-monsoon at shallow and deeper sites suggest that it is unlikely to be just a case of 

poor borehole construction and is in fact an anthropogenic signal of pumping induced recharge 

and vertical leakage. One explanation for this is that there is a high degree of lateral variation in 

vertical permeability in the confining layers between the shallower and deeper aquifers, or 

indeed they may be discontinuous over relatively short distances. This results in zones or 

windows of high permeability within the confining horizons allowing rapid vertical migration of 

younger recharge to depth (e.g. Rushton, 1986; Rushton and Tiwari, 1989). These variations in 

vertical permeability are not likely to be a significant control on vertical groundwater flow under 

natural flow regimes in this mid-plains aquifer setting, due to the low relief and low hydraulic 

gradients, however they may become significant if an aquifer system is stressed by sustained 

pumping in both the shallow and deep aquifers.  

5.3 NATURAL AND ANTHROPOGENIC IMPACT ON GROUNDWATER QUALITY 

The shallow aquifers in this catchment are vulnerable to anthropogenic contamination from both 

agricultural (e.g. NO3) urban sources (e.g. NO3, heavy metals) and natural sources (e.g. Se in 

soils). In some shallow groundwater these contaminants are approaching or exceeding WHO 

guideline drinking water limits, e.g. for NO3, Pb and Se. This shows the potential for 
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contamination from surface sources are being flushed into the shallow aquifer, exceeding the 

capacity of the shallow aquifer to fully attenuate these contaminants through natural mechanisms 

such as sorption, dilution and denitrification. The enhanced pumping and resulting decline in 

water levels in some regions has meant that net recharge to the shallow aquifer has been 

enhanced, facilitating the rapid migration of recharge to depth within the shallow aquifer.  

The leaky nature of the lower permeability horizons which separate the aquifer systems, 

demonstrated using a range of environmental tracers, means that the deeper groundwater is 

potentially vulnerable to vertical breakthrough of contaminants from shallow aquifers. There is 

evidence that this is already leading to nitrate contamination of some deep groundwater sources 

due to pumping enhanced vertical movement of groundwater. This has implications for the likely 

current levels and future trends for contaminants such as nitrate other anthropogenic 

contaminants such as pesticides. While these contaminants are not pressing concerns for 

groundwater security today they will need to be addressed in the long term.  

In addition, some of the shallow groundwaters have SEC >1500 S/cm, and have significantly 

higher SEC (p<0.05) compared to deep sites (Figure 15), with potential implications for the use 

of this water for irrigation in the long-term due to the build-up of salts in the unsaturated zone. 

Elevated SEC in the shallow groundwater is likely due to the use of fertilisers and manure as 

well as evaporative effects due to irrigation in this semi-arid climate. The current levels of SEC 

are not prohibitive for irrigation, but trends in salinity build up in the shallow groundwater 

system need to be monitored. These results are comparable with trends in the deterioration of 

groundwater quality found in other parts of Indian Punjab, Pakistan Punjab and northern China 

due to irrigation in semi-arid environments (Kumar et al., 2007; Kijne 1995; Ò Dochartaigh et 

al., 2010). 

Enhanced residence times and mineral dissolution within deep groundwater has resulted in more 

elevated trace element concentrations for elements such as As, Mo and U compared to shallow 

groundwaters. In Bist-Doab this results in median U concentrations >15 g/L and as high as 70 

g/L in some instances (over twice the WHO provisional guideline value of 30 g/L). There are  

potential implications for radon contamination, and radiological aspects of toxicity that warrant 

further investigation. Evidence from this study shows that As contamination is not a major 

groundwater quality issue within the Bist-Doab where all dissolved As concentrations were 

<10g/L, and median concentrations for both deep and shallow groundwater were <g/L. 

Fluoride concentrations were below WHO drinking water limits of 1.5g/L  in all samples. 
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6 Conclusions 

This report summarises initial findings from a hydrogeological case study focussed on 

investigating the response of groundwater resources in Punjab State, India to sustained long-term 

(>30 year) abstraction. The report covers a basic analysis of the long term groundwater level data 

(available from GWDB) in the region as well as the initial analysis and interpretation from a 

hydrochemical investigation carried out using a suite of environmental tracers (including dating 

tools and stable isotopes) to understand the sources of shallow and deep groundwaters in the 

Bist-Doab region of northern Punjab. Pre and post monsoon samples were collected across the 

Bist-Doab from paired shallow and deep sites and analysed by BGS. The findings from this case 

study have broad relevance across a large geographical area since broadly similar groundwater 

typologies extend across Indian Punjab, northern Rajasthan in the west, and upper Pakistan 

Punjab, as well as into neighbouring Indian states of the Ganges Basin in the east (e.g. Haryana).  

Preliminary conclusions: 

 Evidence from long-term groundwater monitoring shows declining trends in shallow pre-

monsoon groundwater levels across a large part (20-25%) of the Bist-Doab.  

 This is leading to enhanced recharge during the monsoon. For the most affected region of 

the Doab, declining post monsoon water levels suggest that abstraction for irrigation is 

outstripping the enhanced recharge potential.  

 If the current situation is allowed to continue, in the long-term this will lead to a 

continued decline in shallow groundwater levels pre-monsoon, currently commonly 

found to be >20 mbgl, with future implications for irrigation. 

 CFC groundwater age tracers show that median shallow groundwater MRTs of 25 years 

and 30 years under post-monsoon and pre-monsoon conditions. Deep groundwater (>100 

mbgl) had median MRTs of 45 years irrespective of recharge conditions. Modern tracers 

were detected in all of the deep sites. 

 Deep groundwater MRTs are much younger than would be expected under natural 

groundwater flow regimes. The region with long-term declining groundwater levels 

shows evidence of enhanced modern recharge in both shallow and deep groundwater, 

suggesting that there is a significant component of vertical leakage to deeper aquifers 

induced by long-term intensive pumping. 

 Some of the shallow groundwaters have SEC >1500 S/cm, with potential implications 

for the use of this water for irrigation in the long-term due to the build-up of salts in the 

unsaturated zone. 

 There is evidence of nitrate breakthrough from the shallow groundwater to depth and this 

is likely to be enhanced in the future if the current increases in pumping from the shallow 

and deep aquifers continue. This has implications for future contamination of deep 

sources of drinking water from other anthropogenic contaminants such as pesticides. 

 The naturally occurring contaminants arsenic and fluoride were present in concentrations 

below WHO guideline drinking water limits for all sites and median concentrations were 

below 2 g/L and 0.4 mg/L respectively. 

 Uranium concentrations in deep groundwater are significantly higher (p<0.05) compared 

to shallow groundwater, median values >15 g/L, as a result of long residence times and 

mineral dissolution. There may be implications for elevated radon in deep groundwater, 

and this should be investigated.  
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Appendix 1  

 

LONG-TERM TRENDS IN GROUNDWATER LEVEL IN THE BIST-DOAB  

 

Appendix Figure 1. Long-term groundwater level trends for CGWB monitoring sites with 

records >20 years 
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SUMMARY STATISTICS FOR GROUNDWATER CHEMISTRY 

Appendix Table 1. Summary statistics for dissolved groundwater chemistry including field 

parameters. Mean values estimated using either the Kaplan-meier (KM) or maximum likelihood 

estimation (MLE) method. 

Element Unit %cens min mean max sd P5 P10 P25 P50 P70 P75 P80 P90 P95 

Temp °C 0 24 26.0 30.8 1.4 24 24 25 26 26.4 26.8 27 27.9 29 

SEC us/cm 0 85 748.3 1816 379.6 226 424 456 648 885 924 981 1262 1675 

pH 

 

0 6.31 7.2 8.22 0.4 6.61 6.78 6.95 7.2 7.34 7.4 7.43 7.61 8.04 

Eh mV 0 25 256.4 533 111.0 83.1 108 161 258.6 316 329 343 395 448 

DO mg/L 9 <0.01 1.2 7.8 1.8 NA 0.05 0.14 0.4 0.75 1.13 1.94 4.3 5.9 

HCO3 mg/L 0 87.8 393.1 859.4 158.5 152.4 212.1 263.3 395.0 459.6 474.2 490.0 616.8 653.4 

Ca mg/L 0 11.6 59.6 167.6 30.9 19.9 22.6 35.9 57 69.2 70.8 78.3 92.4 128.8 

Mg mg/L 0 5.13 22.9 46.48 11.9 5.87 8.88 12.15 21.22 31.88 32.72 34.69 38.85 43.48 

Na mg/L 0 5.8 66.9 262.3 56.1 7.5 15 29.7 46 76.5 85.8 96.8 158.2 179.4 

K mg/L 0 1.25 5.2 27.29 3.9 1.74 1.95 3.16 4.57 6.02 6.5 6.59 7.44 11.06 

Cl mg/L 0 1.3 31.4 225.5 45.4 2.7 3.1 5.6 13.5 31.8 39.6 41.4 87.0 151.2 

SO4 mg/L 3 <0.05 24.6 154.6 30.9 2.6 3.2 5.3 11.1 28.7 29.4 36.6 63.1 79.1 

NO3 mg/L 18 <0.03 14.1 72.7 18.4 NA NA 0.0 3.0 19.0 26.2 30.8 38.8 59.0 

Br mg/L 11 <0.02 0.09 0.40 0.1 NA 0.01 0.03 0.06 0.12 0.14 0.15 0.23 0.29 

NO2 mg/L 41 <0.01 0.14 3.19 0.5 NA NA NA 0.01 0.03 0.03 0.06 0.28 1.15 

F mg/L 0 0.08 0.40 1.20 0.2 0.11 0.17 0.21 0.35 0.45 0.48 0.52 0.61 1.03 

DOC mg/L 6 <0.5 2.49 21.64 3.4 NA 0.59 0.81 1.26 2.26 2.64 2.82 5.12 9.08 

Si mg/L 0 3.58 12.1 17.55 2.9 5.54 8.38 10.74 12.2 13.81 14.16 14.45 15.3 16.28 

Ba g/L 0 54.7 240.4 568.2 132.8 68.6 77.7 109.6 205.1 319.4 336.9 351.2 436.7 476.2 

Sr g/L 0 95.6 542.7 1588.3 322.7 112.4 175 243.9 493.8 718.2 771 871 988.1 1060.5 

Mn g/L 0 0.5 84.0 1050.3 175.8 1.7 3.1 8.9 21.1 57.9 71.9 93.6 227.5 410.9 

Fe g/L 0 0.5 270.5 5441 815.5 2 5 12 44 78 101 128 477 1686 

Li g/L 0 4 20.8 63 10.8 7 8 12 22 26 27 28 31 40 

Be g/L 100 <0.01 0.0 <0.01 0.0 NA NA NA NA NA NA NA NA NA 

B g/L 0 15 121.7 380 85.5 18 25 47 112 164 174 194 248 265 

Al g/L 14 <1 3.0 24 3.6 NA NA 1 2 3 4 4 6 7 

Ti g/L 42 <0.05 0.2 1.87 0.3 NA NA NA 0.07 0.1 0.11 0.14 0.21 0.6 

V g/L 11 <0.2 1.8 12.1 2.0 NA 0.1 0.7 1.6 2.1 2.2 2.4 3.4 3.5 

Cr g/L 0 0.02 0.3 3.51 0.7 0.02 0.02 0.02 0.02 0.11 0.13 0.23 1.23 1.86 

Co g/L 14 <0.01 0.1 0.75 0.1 NA NA 0.01 0.03 0.07 0.08 0.14 0.23 0.37 

Ni g/L 0 0.05 0.6 5.8 1.1 0.05 0.05 0.1 0.2 0.5 0.6 0.8 0.9 3.6 

Cu g/L 0 0.2 15.0 226.4 33.6 0.4 0.8 1.7 5.1 12 13.3 15.5 24.3 70.7 

Zn g/L 0 2 380.1 7474.1 1013.9 3.8 6.5 17.4 41 154.9 276.5 455.8 864.7 1749.3 

As g/L 0 0.1 1.2 9.83 1.8 0.15 0.19 0.34 0.69 1.03 1.11 1.37 1.87 5.8 

Se g/L 0 0.05 2.3 41.6 6.0 0.05 0.05 0.05 0.4 1.2 1.2 1.7 4.9 12.3 

Rb g/L 0 0.1 0.7 2.81 0.5 0.15 0.22 0.41 0.59 0.8 0.84 0.94 1.18 1.38 

Y g/L 7 <0.005 0.0 0.172 0.0 NA 0.006 0.009 0.015 0.023 0.024 0.026 0.044 0.055 

Zr g/L 100 <0.05 0.0 <0.05 0.0 NA NA NA NA NA NA NA NA NA 

Nb g/L 100 <0.02 0.0 <0.02 0.0 NA NA NA NA NA NA NA NA NA 

Mo g/L 0 0.04 3.2 18.48 3.4 0.1 0.31 0.91 2.14 3.65 3.82 4.53 8.68 10.37 

Cd g/L 0 0.005 0.0 0.33 0.0 0.005 0.005 0.005 0.02 0.02 0.04 0.05 0.08 0.1 
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Pb g/L 0 0.06 3.8 49.95 8.5 0.1 0.14 0.23 0.72 2.44 3.19 3.46 6.81 21.97 

Ag g/L 82 <0.05 0.04 0.56 0.09 0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.08 0.13 

Sn g/L 11 <0.02 0.2 1.88 0.3 NA NA 0.05 0.07 0.16 0.19 0.25 0.43 0.52 

Sb g/L 0 0.01 0.19 2.92 0.42 0.02 0.03 0.04 0.08 0.13 0.16 0.18 0.37 0.68 

Cs g/L 57 <0.005 0.0 0.021 0.0 NA NA NA NA 0.007 0.007 0.008 0.014 0.017 

La g/L 7 <0.002 0.0 0.036 0.0 NA 0.003 0.004 0.006 0.008 0.009 0.01 0.014 0.018 

Ce g/L 32 <0.002 0.0 0.042 0.0 NA NA NA 0.003 0.006 0.007 0.01 0.014 0.028 

Sm g/L 36 <0.002 0.0 0.014 0.0 NA NA NA 0.003 0.004 0.004 0.004 0.005 0.006 

Tb g/L 97 <0.002 0.0 0.002 0.0 NA NA NA NA NA NA NA NA NA 

Tm g/L 100 <0.002 0.0 <0.002 0.0 NA NA NA NA NA NA NA NA NA 

Yb g/L 55 <0.002 0.0 0.008 0.0 NA NA NA NA 0.002 0.002 0.002 0.004 0.004 

Lu g/L 100 <0.002 0.0 <0.002 0.0 NA NA NA NA NA NA NA NA NA 

Tl g/L 99 <0.01 0.0 0.01 0.0 NA NA NA NA NA NA NA NA NA 

Ga g/L 86 <0.07 0.0205 0.0500 0.0311 0.0069 0.0084 0.0119 0.0175 0.0235 0.0256 0.0282 0.0362 0.0444 

Pr g/L 89 <0.002 0.0009 0.0070 0.0018 0.0001 0.0001 0.0003 0.0005 0.0009 0.0011 0.0013 0.0021 0.0030 

Nd g/L 95 <0.01 0.0030 0.0200 0.0063 0.0002 0.0004 0.0007 0.0016 0.0029 0.0034 0.0041 0.0068 0.0104 

Sm g/L 36 <0.002 0.0030 0.0140 0.0033 0.0009 0.0012 0.0017 0.0025 0.0035 0.0038 0.0042 0.0055 0.0069 

Eu g/L 86 <0.002 0.0012 0.0040 0.0018 0.0003 0.0004 0.0006 0.0010 0.0014 0.0016 0.0017 0.0023 0.0029 

Gd g/L 70 <0.002 0.0019 0.0140 0.0035 0.0002 0.0003 0.0006 0.0012 0.0020 0.0023 0.0027 0.0043 0.0061 

Dy g/L 71 <0.002 0.0018 0.0130 0.0032 0.0002 0.0003 0.0006 0.0012 0.0019 0.0022 0.0025 0.0038 0.0054 

Ho g/L 96 <0.002 0.0008 0.0030 0.0009 0.0002 0.0003 0.0004 0.0006 0.0009 0.0010 0.0011 0.0015 0.0019 

Er g/L 80 <0.002 0.0014 0.0110 0.0027 0.0002 0.0002 0.0004 0.0008 0.0014 0.0017 0.0019 0.0030 0.0043 

Th g/L 92 <0.005 0.0025 0.0100 0.0033 0.0007 0.0009 0.0014 0.0021 0.0029 0.0031 0.0035 0.0046 0.0058 

U g/L 0 0.93 16.9 70.389 14.8 1.193 1.981 5.43 15.124 21.37 23.1 25.441 31.48 47.38 
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INITIAL WATER LEVEL LOGGER DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure 2. Water level logger data from shallow sites in the Bist-Doab: Tanda, 

Bhogpur, Karpurthala, Sultanpur, Saroya and Nakodar  
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