STATISTICAL MODELLING - BASIC STATISTICS

1.0 INTRODUCTION

In many problems in hydrology, the data consists of measurements on a single random variable; hence
we must deal with univariate analysis and estimation. The objective of univariate analysis is to analyse
measurements on the random variable, which is called sample information, and identify the statistical
population from which we can reasonably expect the sample measurements to have come. After the
underlying population has been identified, one can make probabilistic statements about the future
occurrences of the random variable, this represents univariate estimation. It is important to remember
that univariate estimation is based on the assumed population and not the sample, the sample is used
only to identify the population. Statistical analysis of univariate data requires several components:

i) Select a model: here this is the probability distribution function or
p.d.f.
ii) Obtain a sample: this consists of a set of n independent observations

on or measurements ¢f a random variable.

iii) Fit the selected distribution model with the sample data; for most
applications the graphical, method, least square method, method of
moments or method of imaximum likelihood are generally used.

iv) Perform goodness of fit tests for selecting the best fit distribution for
the assumed population; use either the graphical method or the
analytical statistical tests.

'

V) Use the best fit frequency distribution mode! to make probability
statements about the likelihood of occurrence of values of the random
variables.

In case the hydrologic variable is not random, the statistical analysis discussed above can not be used
to make the predictions at different probability levels. Test of independence may be performed to
examine whether the hydrologic variable is random or time dependent. In order to describe the time
dependent characteristics of a hydrologic variable, a time series analysis is generally carried out. A
time series model can be formulated and calibrated from analysing the data on hydrologic variable
in which time is considered to be an independent variable. Future values of the time deperndent
variable may be predicted from the calibrated time series model. Methods used to analyse time series
are also being used to analyse spatial data of hydrologic systems.

In statistical analysis of multivariable data, the functional forms of the relationships are studied.
Linear regression analysis may be used as one of the ways to develop the suitable form of the multiple
variable models wherein a dependent variable takes on values caused by variations in one or more
independent or predictor variables. Such models are found to be more useful for predicting the
hydrological variables using the predictor variables if they are known.

In this lecture, statistical analysis of univariate and multivariate data has been discussed. Some of the
important statistical parameters are described along with the definitions of some statistical terms.
Furthermore, various theoretical frequency distributions, commonly used for statistical modelling of
the random hydrologic variable, are also discussed. Simple linear regression and/or multiple linear
regression analysis are used to study the functional forms of the relationships consider-ing the
multivariable data. This lecture note also covers the procedures involved in the simple linear
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78 Statistieal Modelling - Basie Statisties

regression and multiple linear regression analysis. For further details about the various aspects of
statistical analysis, one may refer the literature given in the end of the lecture note as a bibliography.

2.0 DEFINITIONS OF SOME STATISTICAL TERMS
In this section of the lecture some of the important statistical terms are defined:

Population; A population is a collection of persons or objects €.g. (i) the pupils in a school, the
workers in a factory, the people in a country, (ii) motor cars produced in a factory. Each unit of the
population has many different possible attributes associated with it. These attributes might be: (i)
height, volume or weight which are measurable on a scale, or (i) colour, condition which may not
be numerically measurable.

Sample data; Sample data are available data from the observation ot an event.

Random events: Events whose occurrence is not influenced by the occurrence of the same event
earlier.

Probability density function: Probability density function (P.D.F.) is the probability of occurrence of
an event.

Cumulative density function: Cumulative density function (C.D.F.) is the probability of occurrence
of all the events that are equal to or less than an event. '

Probability paper: A probability paper is a special graph paper on which the ordinate usually
represents the magnitude of the variate and the abscissa represents the probability P, or the return
period T. The ordinate and abscissa scales are so designed that the distribution plots more nearly a
straight line permitting better definition of the upper and lower parts of the frequency curve. The
probability paper is used to linearize the distribution so that data to be fitted appear close to the
straight line.For example, the extreme value and the log normal probability papers are used for
linearization of the extreme value and log normal distribution.

Plotting position: Determining the probability to assign a data point is commonly referred to as
determining its plotting position.

3.0 SAMPLE STATISTICS

In any analysis of statistical data in general and of hydrolytic data in particular, certain calculations
are usually made in order to determine some of the basic properties inherent in the data. For instance,
the sample mean and variance are two statistics defining the most important characteristics of a given
set of statistical data. In general sample statistics provide the basic information about the variability
of a given data set. The most useful sample statistics measure the following characteristics:

(i) the central tendency or value around which all other values are clustered,

(ii) the spread of the sample values around mean,

(iii)  the asymmetry or skewness of the frequency distribution, and

(iv)  the flatness of the frequency distribution.

These statistical properties are determined by sample statistics as described below:
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3.1 Measure of Central Tendency or Measures of Location

In Statistics various measures of location are described. Some of the important measures include the
following:

(i) Mid range:
It is the average of the minimum and maximum values ot the sample (or population) i.e.
Miid:ange = Minimum value + Maximum value (D)
2.0
(ii) Mode:
It is the value in the sample (or population) having most frequent occurrences i.e.
Mode = Most frequent value ....(2)

(iii) Median:
It is the middle value of the ranked values for a sample (or population) i.e.

Median = Middle value of the ranked values es2i{3)
(iv) Mean:
If X;, X, X; ... X, represent a sequence of observations, the mean of this sequence is

determined as the ratio of sum of values and number of values:
XZI/NZX- ¢ 3w 4

Here X represent the sample mean, Population mean is generally represented by u.
3.2 Measure of Dispersion or Variation
Some of the important measures of dispersion or variation include:

(i) Range:
It is the difference between maximum and minimum values i.e.

Range = Max. Value - Min. Value ...(5)

(ii) Interquartile Range:

It is defined as I - I}, where I, is the value separating the lowest quarter of the ranked data
from the second quarter and I separates the third and fourth quarters of the ranked data. In other
words, interquartile range between the 25% and 75% cumulative frequency values contains 50% of
the values.

(iii) Mean Deviation:
Dispersion about the arithmetic mean is mean deviation. Thus,
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Mean Deviation = —N R ....(6)

(iv) Variance:
Variance represents dispersion about the mean. Mathematically for sample it is expressed as:

N 2
Z; (X %)
Vari = §tedd (T
ariance N )]
(v) Standard deviation:
The unbiased estimate of population standard deviation (8) from the sample is given as the
square root of the variance i.e.

S =1 1/(N—1)£:(X}—)?)2] i .(8)

(vi) The coefficient of variation Cy is a dimensionless dispersion parameter and is equal to the
ratio of the standard deviation and the mean:

C= 81X .(9)
This coefficient is extensively used in hydrology particularly as a regionalisation parameter.

The range and mean deviation have the same units (dimension) as the original data. The variance
has the square of the units of the original data and hence can not be directly compared with the
data. Therefore, the standard deviation is used because its dimensions are that of the data.

In many samples of hydrological data, especially in flood hydrology the largest value is very
much larger than the second largest. Therefore the range R might not be a good indicator of the
scatter inherent in the data as a whole.

The mean deviation is a good measure of spread but can not be handled easily in mathematical
statistics because of the absolute value sign while the same applies to the interquartile range. The
variance is more easily handled mathematically and holds a prominent place. The interquartile
range is easy to evaluate but is very difficult from a mathematical point of view and hence is not
much used even though it is quite good at describing spread.

33 Measures of Symmetry
If the data are exactly symmetrically displaced about the mean than the measure of symmetry should
be zero. If the data to the right of the mean (larger) are more spread out from the mean than those

on the left then, by convention, the asymmetry is positive and vice versa for negative asymmetry.

(i) Interquartile measure of asymmetry:
The interquartile measure of asymmetry (I,) is defined as:

I, = |[3-1,|-|[1-1,] ....(10)

where, 1, I, and I, are the lower quartile, median and upper quartile respectively.
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(ii) Third Central Moment:
The third moment of the sample data about the mean is given by:

z

M:%J (X - 3 c... (1)

il
|

If the data are symmetrical this is zero. Otherwise it is positive or negative.

(iii) Skewness Coefficient:

The skewness coefficient or coefficient of skewness represents a non-dimensional measure the
asymmetry of the frequency distribution of the data. An unbiased estimate of the coefficient is given
by:

N
Ny (X,-x)°
JX; ) . L)

i (N-1)(N-2)S°

-]

The skewness coefficient has an important meaning since it gives indication of the symmetry of the
distribution of the data. Symmetrical frequency distributions have very small or negligible sample
skewness coefficient C, while asymmetrical frequency distributions have either positive or negative
coefficients. Often a small value of C,, indicates that the frequency distri-bution of the sample may
be approximated by the normal distribution function since C; = 0 for this function.

Note that because of the third Central Moment has dimension equal to the cube of the data, it is not
of direct use. It also depends on the units of the original data. The coefficient of skewness does not
have this disadvantage and is therefore preferred. The interquartile measure of symmetry (I,) is also
not dimensionless.

34 Measures of Peakedness or Flatness

The Kurtosis coefficient measures the peakedness or the flatness of the frequency distribution near
its centre. An unbiased estimate of this coefficient is given by:

N
NZZ (X{X)‘i (12)
o

) (N-1) (N-2)(N-3)8*

Cx

A related coefficient called the excess coefficient denoted by E is defined by:

Ezck'?’ ) (14)

Positive values of E indicate that a frequency distribution is more peaked around its centre than
the normal distribution. Frequency distribution is known as LEPTOKURTIC. The negative
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values of E indicate that a given frequency distribution is more flat around its centre than the normal.
Frequency distribution is known as PLATYKURTIC.

The kurtosis for a normal distribution is 3.

Normal distribution is said to be MESOKURTIC. Both kurtosis and excess coefficient are seldom
used in statistical hydrology.

3.5 Extreme Data Values

For frequency analysis, the data items should be random and independent. The observed data
of various hydrological variables generally exhibit some time dependence. Therefore, as such the
frequency analysis should not be carried out with such records. It has been observed that the extreme
data values fulfill the requirement of independence and randomness. Therefore, these extreme values
re used in frequency analysis.

The highest and lowest values may be obtained from the record of hydrological variables
considered for a specific duration. For example: (i) annual maximum peak flood series may be
obtained from the annual flood records of various years, (ii) annual low flow value for d-days
duration may be obtained considering the lowest d-days duration flows for the year.

4.0  STANDARD ERRORS OF SAMPLE STATISTICS

Because of the short period of record the statistics calculated from the sample are only estimates of
the true or population values which would be calculated if an infinitely large samples were available.
The reliability of the statistics calculated from the sample can be judged from the standard errors of
the estimate (SEE). Statistical Theory states there is about 68% probability that the true of population
value of each statistic is within one standard error of estimate of the value calculated from the
available data.

The standard errors of mean, standard deviation and coefficient of skewness are given below:

Se (X) =S/ yN o.(15)
Se (8) =S/ VZN ....(16)
Se (C,) =/6N(N-T) /[ (N-Z) (W T) (N:3) ] sl 1T,

The standard error of estimate for each moment becomes smaller as a longer length of record
becomes available for use in the analysis.

If the Frequency Analysis is to provide useful answers, it must start with a data that is relevant,
adequate and accurate.

As a preliminary step the basic data should be screened and adjusted to remove, as far as possible,
any non-conformities that may exist. The following are some of the important considerations:
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(i) Effect of man made changes in the regime of flow should be
investigated and adjustment be made as required.

(ii) Changes in the stage discharge relation render stage records non
homogeneous and unsuitable for frequency analysis studies. It is
therefore preferable to work with discharges and if stage frequencies
are required, refer the results to the most recent rating.

(iii)  Any useful information contained in data publications and
manuscripts should be made use of after proper scrutiny.

5.0 GRAPHICAL PRESENTATION OF GROUPED DATA

For the graphical presentation of grouped data in the form of histograms and cumulative histograms
of frequency (or relative frequency or probability), a frequency table is prepared. In this table the
range of the data variable is divided into a number of intervals of convenient size and the number of
frequency f of values occurring in each interval is entered alongside. This table provides a very
valuable summary. If the class intervals are made very large the table is made compact but loses
detail. If the intervals are too small the table may be too bulky and not succinct enough. For the
choice of class interval, the following criteria may be considered as guideline:

(a) Brooks and Carruthers rough guide:

No of classes < 5 log (no. of values) ...(18)

(b) Charlier’s rule of thumb:

_ Max. value - Min. value

w 0 ....(19)

where, w = size of class interval. Number of classes generally 15 to 25.
The frequency table can be prepared using the following steps:
(i) Order the variable (X;) in increasing or decreasing order of magnitude.

(ii) Select a number of class interval (NC) and the size of the class interval AX. In this regard
the guidelines given above may be followed.

(iii)  Divide the ordered observations X; into NC intervals (or groups).

(iv) Determine the absolute frequency n; by counting the observations that fall within the jth class
interval for j=1....NC.

W) Determine the corresponding relative frequencies as ny/n, j=1....NC.

(vi) Compute the cumulative relative frequencies Fj, j = 1, .... NC. These cumulative frequencies
approximate the probabilities as:

Fj = F (X < x) if order is increasing, or
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F; = F (X > x) if order is decreasing
(vii)  Prepare the plots for the relative frequencies as well as cumulative relative frequencies on
simple graph papers taking the group interval as abscissa and the relative frequencies or
cumulative relative frequencies as ordinate.
6.0 STATISTICS USING GROUPED DATA

Some of the important sample statistics which can be derived using the grouped data are given below:

(i) Mean (m): It is the first moment about origin and given as:

NC
Z;fixr'
= B

NC

m ....(20)

Note that the first moment about the mean is zero.
(i) Variance (8%): It is the second moment of the grouped data about the mean. Mathematically, it

is expressed as:

1
(N-1)

S?= Y (x;-m)?f; s wss (21)

NC
i=1

where,
X; is the mid point of ith class interval
f; is no. of values in ith class
N is total No. of values.

The standard deviation is the square root of the variance.

(iii) Coefficient of Variation: It is a non-dimensional parameter and expressed as the ratio of standard
deviation and mean, computed for grouped data.

(iv) Skewness: It is the third moment about the mean and expressed as:
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NC
_fo(xs’m)3
= NC

20

Iy ce. . (22)

(vi) Coefficient of skewness: It is the same as defined earlier in the text except the third moment and
standard deviations computed for grouped data are utilised.

(vi) Kurtosis: It is fourth moment about the mean and computed as:

NC
Efi(xi"m)4
_i=1

m,= i v 2 KEB)

(vii) Coefficient of Kurtosis: It has the same meaning as defined earlier except the fourth moment
about the mean and standard deviation used should be computed using the formulae for grouped data.

7.0 PROBABILITY DISTRIBUTIONS

A distribution is an attribute of a statistical population. If each element of a population has a value
of X then the distri-bution describes the constitution of the population as seen through its X values.
It tells whether they are in general very large or very small, that is their location on the axis. It tells
whether they are bunched together or spread out and whether they are symmetrically disposed on the
X axis or not. These three are described by the mean, standard deviation and skewness.

Distribution also tells the relative frequency or proportion of various X values in the population in
the same way that a histogram gives that information about a sample. These relative frequencies are
also probabilities and hence the distribution tells us the probability, Pr(X < x), that the X value on an
element drawn randomly from the population would be less than a particular value x. Knowing
Pr(X <x) for all X values, the laws of probability may then be used to deduce the probability of any
proposition about the behaviour of a random sample of X values drawn from the population.

When the population is sufficiently large the histogram of its X values can be made with very small
class intervals and the histogram can be replaced by a smooth curve, the area enclosed by any two
vertical ordinates being the relative frequency or probability of X values between those ordinates.

Because of this probability interpretation, a relative frequency distribution is also called a probability
distribution and the curve describing it is called a probability density function (p.d.f) whose
cumulative function is called the distribution function (d.f.). Fig. 1 shows a typical shape of p.d.f.
and d.f,
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7.1 Continuous Probability Distributions

A large number of frequency distributions are available in literature. Here the normal, log normal
(two parameters), Extreme Value type-I (Gumbel or EV1), Pearson type-Ill, Log Pearson type-III,
General extreme Value, Gamma and Exponential distributions have been discussed. The probability
density functions (P.D.F.), cumulative density functions (C.D.F.) and other properties of these

distributions are given below:

Norma] Distribution:

P.D.F.:f(x)=

1 1 1Ly 2
e (5]

1 y 1 X-U 2
oD. . T om—— —
C.D.F.: F(x) . n[oexp[ 2 (EH)Y
Parameters:  p = location parameter
o = scale parameter
Reduced Variate: Z = x(;u
1 22
PDF.: f(z) = ——e >
V2
CD.E :F(z)=- f_i_e =¥,
Yo V2T
1 1, log x-u
00 = — —exp[-5(— )7
o,V2Zmx o,

Mean of the reduced variate: z = 0
Standard deviation of reduced variate o, = 1
Coefficient of skewness of the reduced variates = g, =0

Z
Log Normal Distribution (Two Parameters):

1. 1 log x-p2
PDF.: fx)= — e -5(—==—r
- xp [ -5 ( AL
1 1,log x-u,.,
C.D.F.: Fix) = e -=( ———Y)4]dx
oy\/ZTr,,f, W= =41
where,
y = log, x
¢ = Mean of Y series
oy = Standard deviation of Y-series

... (24)

...(26)

wsk )

...(28)

+(29)

....(30)
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Parameters:  u, = location parameter
o, = scale parameter

log x-
Reduced variate Z = %ﬂ ....(3D
y
1 22
PDF.:f(z) = ——e 7 s(32)
V2
C.D.F.: F(z) = f— P ..(33)
s
Mean of the reduced variate: z = 0
Standard deviation of reduced variate: ¢, = 1
Coefficient of skewness of the reduced variates = g, = 0
Gumbel Extreme Value (Type-I) Distribution(EV1):
P.D.F. f(x) - - exp[(X2) - exp (-( 1)) . (34)
<« %

CDF.: Fx)=¢ ™ ...(35)

Reduced Variate : z = % ...(36)

P.D.F.: f(z) = exp (-z-exp(-z)) ...(37)

CDF.:F(z) =e A ...(38)
Mean reduced variate Z = 0.5772 -
Standard deviation of reduced variate @, = E = 1. 2825
Coefficient of skewness of reduced variate g, = 1.14
Pearson type-III Distribution (PT3):

— V—le *(X“Xn)/p
P.D.F.:f(x):(x *o) - §38)
BY VY

NATIONAL INSTITUTE OF HYDROLOGY, ROORKEE 11




88 Statistical Modelling - Basic Statisties

* oy )Vl B
C.D.F.F(x):f(x x.,)YeW dx
i Y

Parameters:  x, = Location parameter
B = scale parameter
Y = shape parameter

. XX
Reduced variate Z = £
B
1 :
PD.F.: f(z) = (z)Y1e =
1B V¥
& 1 ] )
CDF.:F@z) = [——(z)"le™
[IBI\/?

Mean of the reduced variate: z = vy
St. Deviation of the reduced variate: o, = /¥
Coefficient of skewness of the reduced variate: g, = 2/ ¥

Log Pearson Type-III Distribution (LP3):

(logx-y,)" e (oswr vl

Blvy %

P.D.F.:f(x)=

C.D.F.: Fx) = xff(x)dx
yo

Il

Parameters:  y, = Location parameter
B = scale parameter
v = shape parameter

logex_yo
B

Reduced variate; Z =

P.D.F.: f(z) = ﬁl——(z) Y-lg 2

By
z
CDF.:F@z) = [ f(2)dz
Mean of reduced variate = z = y
Standard dev. of reduced variate: o, = /Y

Coefficient of skewness of reduced variate: g, = 2/ /¥

General Extreme Value Distribution:

. (40)

...(41)

....(42)

....(43)

. (44)

....(45)

....(46)

...(47)

....(48)
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- [ 1-K( ZE) VK
P.DF.:f (x) = L1k EHyjarmae ! ... (49)
o
C.D.F.: F(x) = Exp [ -(1-K( %) ) VK] ....(50)
Parameters:  u = Location parameter
« = Scale parameter
K = Shape Parameter
If K = 0 it leads to EV-I distribution,
K < 0 it leads to EV-II distribution
K > 0 it leads to EV-III distribution
GEV reduced variate : w = x—;ﬁ sedd 1)
Here w = (1, - kz)/K
Z = EV-I reduced variate
Gamma Distribution:
It is a special case of PT3 distribution.
/ y-1, x/B
PDE:fig = Z) €™ .. 432}
BY V¥
X
¥-1, x/B
CDE:Ew = [ (XL g - (53)
s BYVY
Parameters: 8 = Scale Parameter
v = Shape parameter
Gamma Reduced Variate z = % ....(54)
P.D.F.: f2) = ——(z)¥le . (55)
BIvY
4
C.D.F.:F(z) = IL(Z) Vlg = ....(56)
> IBIVY
Mean of the reduced variate: Z =
St. Deviation of the reduced variate: o, = Y
Coefficient of skewness of the reduced variate : g, = 2/ /Y
Exponential Distribution:
“{X-%
PDF. f() = Lo X% ..(57)
LR
CD.F.:F(x) = 1-e T" :(38)
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Parameters: x, = Location Parameter
B = Scale Parameter

X-x
Reduced Variate : z = B e ....(59)
P.D.F.: f(z) = e* ....(60)
C.D.F.: F(Z) = 1-¢* ....(61)

Mean of the reduced variate: z = 1
St. Deviation of the reduced variate o, = 1
Coefficient of skewness of the reduced variate : g, = 2

7.2 Discrete Probability Distributions

The use of discrete probability distributions is restricted generally to those random events in which
the outcome can be described as success or failure, i.e there are only two mutually exclusive events
of an experiments. Furthermore, the successive trials are independent and the probability of success
remains constant from trial to trial.

The binomial or Poisson distributions can be used to find the probability of occurrence of an event
r times m n successive years.

Binomial Distribution:

This apply to populations that have only two discrete but complementary events, for example rainy
and non-rainy days. The probability of occurrence of the event r times in n successive years is given
by:

|
Pr,n:nC,P’Q"":?,(Z—‘_r)jp’-q”" ... (62)

where, P, , = probability of a random hydrologic event of a given. magnitude and exceedence
probability P occurring r times in n successive years. Thus, for example:

(a) The probability of an event of exceedence probability P occurring Z times in n successive
years is:

n!

Pz,n: (n_Z)lZI p q_ -..-(63)

(b) The probability of the event not occurring at all in n successive years is:
Pon = q" = (1-p)° o (64)

(c) The probability of the event occurring at lease once in n successive years:
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Pp=1-q"=1-(l-p)" ....(65)
Example:
Analysis of data on maximum one day rainfall depth at a station indicated that a depth of 280
mm had a return period of 50 years. Determine the probability of a one day rainfall depth
equal to or greater than 280 mm occurring (a) once in 20 successive years, (b) two times in
15 successive years, and (c) at least once in 20 successive years (Subramanya, 1984).
Solution:

Here, P = 1/50 = 0.02

(n=20,r=1

20!
P = Torqr * 0-02 x (0.98)"

= 20x 0.02 x 0.68123
= 0.272

(b) n

15, 7= 2

15!
Py1s = 13757(0-02)% x (0.98) %

: 1_5_% 14 ¥ 0.02 x 0.02 x 0.980 - 0. 0202

(c) Using Eq. (65), P, = 1-(1-0.02)2° = 0.332

Poisson Distribution:

The terms of a binomial expansion are a little inconvenient to compute in any large number. If n is
large (>30), p is small (<0.1) and mean np is constant then binomial distribution tends to Poisson
distribution:

p - Ne?
S Y

where, A = np
The condition for this approximation are:

1. The number of events is discrete.
*2. Two events cannot coincide.
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3. The mean number of events in unit time is constant.
4. Events are independent.

Thus, it can be applied to following situations of rate events with p relatively small and n relatively
large:

() Determining the probability of droughts in a given time period.

(ii) Determining the probability of number of rainy days at a given location.

(iii)  Determining the probability of rare flood event of the 1 in 100 year type.

(iv) Determining the probability of reservoir being empty in any one year out of a long period of
record. '

T Common Probability Functions

Probability functions which are frequently used in hydrologic analysis include the normal the student
t, the chi-square and the F distributions, whereas the last three are used primarily for support in
making statistical tests of hypothesis, the normal distribution is used for prediction as well as support.
Since these distributions serve primarily a support function, the discussion here will centre on
obtaining critical values from tables provided in the Appendices.

Normal Distribution

The probability density function and cummulative density function for Normal distribution are
described in section 9.7.1 . Here p and o are the population parameters of the distribution. It can
be shown that the best estimates of p and ¢ are the sample mean (X) and standard deviation (S),
respectively. For computing probabilities based on sample statistics, X and S can be substituted for
u and o respectively. Probabilities could be computed integrating the probability density function
over a range of values of x. However, since there are an infinite number of values of y and o (or X
and S), numerous such integrations would become very tedious. The problem can be circumvented
by making a transformation of the random variable x.

If the random variable x has a normal distribution, a new random variable z can be obtained after
transforming the x values as follows:

X
z= 3 ....(66)

Here random variable z will have a mean and standard deviation of 0 and 1 respectively. z is
called the standardized variate or normal reduced variate. Using the above transformation the
p.d.f. may be expressed as a function of z and the resulting p.d.f. is called the standard normal
distribution. Since there is only one standard normal distribution, probabilities can be computed
using p.d.f. of the standard normal distribution and placed in tabular form as a function of z (see
Appendix-I). The table is structured with values of z at increments of 0.1 down the left margin
and at increments of 0.01 across the top. The cumulative probability from -oo the desired value
of z is given within the table. For example the probability that z is less than 0.23 is 0.5910. Also
the probability that z is between -0.47 and 0.23 equals (0.5910-0.3192) or 0.2718. The figure
shown at the top of the table provides a good understanding of the relation-ship between the
probability and the value of z. The table can also be used to find the value of z that corresponds
to a certain probability. For example for a probability of 0.05 in the left tail, we enter the table
with 0.05 and find the corresponding value of z, which is -1.645. Since the distribution is
symmetric, 5% of the area under the curve f(z) lies to the right of a value of z of 1.645.
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Student t-distribution

The student t or t, distribution is similar to the normal distribution in that it is symmetric. However,
it differs from the normal distribution in the sense that it is a function of a single parameter v, which
is often called the degrees of freedom and controls the spread of the t-distribution since it is a
function of the parameter v, which is a positive integer, there are many t distributions. Thus the table
of t values has a slightly different structure than the normal table. In the table of Appendix-II, the
value of v is given in the left margin, the probability in the right tail of the distribution is given across
the top, and the value of the t distribution is given within the table. For example, for v = 7 and a
probability of 0.05, the t value is 1.895. Since the t distribution is symmetric, 5% of the area in the
left tail is to the left of a t value of -1.895 for v = 7. For the case where one is interested in 5% of
the area but with 2.5% in each tail, the critical t values would be -2.365 and 2.365 for v = 7. One
final point, it is usually acceptable to use the normal distribution in place of t-distribution for v> 30.

Chi-Square Distribution

The Chi-Square (x?) distribution is similar to the t-distribution in that it is a function of a single
parameter n, the degrees of freedom; however it differs from the t distribution in that the distribution
is not symmetric. The table of chi-square values (Appendix-III) is identical in structure to the t table,
with n down the left margin, the probability across the top, and the value of the random variable (x%)
in the table. For 11 degrees of freedom, 5% of the area in the left tail is from 0 to 4.575. For 17
degrees of freedom, there is a probability of 0.025 that x* will be between 30:191 and oo.

F-distribution

The F-distribution is a function of two parameters, m and n. To obtain F values from Appendix-IV,
the value of m is entered along the top of the table and the value of n along the left margin. The value
of F corresponding to the appropriate probability in the right tail of the distribution is obtained from
the table. For example if m = 10 and n = 20, there is a 5% chance that F will be greater than 2.35.
Note that the table is not symmetric.For m = 20 and n = 10, the critical value for 5% in the right
tail is 2.77. Thus the values of m and n must not be switched.

8.0 SIMPLE LINEAR REGRESSION

Form of the equation : Y = a + bX

Regression Coefficients:

b= 32 (x, ) (Y, 9)/ 3 (x, ) oo 67)
1 =1 1 =1

a =y-bx ....(68)
Coefficient of determination (r%):
r? = [ (x,-%) (y;-7) 12/ (Y (x-%)2Y (¥i9)?) e..(69)
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Coefficient of correlation (r):

ro=yr?-= 3 (x;x) (i ¥ (X ()Y (x;9) D) V2 ~a - 70)

Efficiency (EF):

EF = 1_% .(T1)
where, '
§2 =3 (yi¥i)¥(n-2) . (T2)
5,2 =3 (yi¥)?* (n-1) . (73)
Inferences on Regression Coefficients:
3
(i) Standard error of a(S,) = S( %+ﬁ) vz ..(74)
(ii) Standard error of#b(Sb)= 8Ly (%, 2y M2 ....(75)

(iii) Confidence intervals on a:
1:1 = a-‘t (_1-6!/2),(11‘2)3111 ....(76)
Uy = B+ (1 42y, (n—Z)Sa .07
(iv) Confidence intervals on b:
1b = b_t(l-aJZ),(n-Z)Sb ....(78)
Up = b+ (1 a2y, (n2)Sb wwin(T9)
where, I, & 1, denote lower confidence limits on a & b respectively. u, and u, denote upper
confidence limits on a & b respectively. « is the confidence level, and t;_ .5 n2) represent t
values corresponding to (1-a/2) confidence limits and (n-2) degrees of freedom (t values are given
in Appendix-III in tabular form).
(v) Test of hypothesis concerning a:
Hypothesis H, : a = a, versus H, : a # a, is tested by computing:

t = (a-a,)/S, ....(80)

HO iS l'ejccted if l t | > t(]_m)‘ (n_z)

(vi) Test of hypothesis concerning b:
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Hypothesis H, : b = b, versus Hy, : b # b, is tested by computing:
t = (b-b,)S, ....(81)
H, is rejected if | t| >t 4m) 2
Significance of the overall regression:
Hypothesis H, : b = 0 is tested by computing:
t = (b-0)/S, o §82)

H, is rejected if | t | > . 4n) (n2) . and the regression equation explaining a significant amount
of variation in Y.

Confidence intervals on Regression line:

L=y,-S,. .t (1-a/2), (n-2) wivo(B3)
U=Y, 4.t 1-ar2), (n2) ...(84)
where,
Yk o a+D.X.k ..(85)
2 1/2
XX
5, =s| L Z )" ... (88)
L X (xx)?
= standard error of § 5
L and U represent lower and upper confidence limits.
Confidence intervals on an individual predicted value of y:
L' = Y-S5t (1-ar2y, (n2) -..-(87)
U’ =y +S; E (1-a/2), (n-2) ....(88)
_ = 1/2
s’; =8 1+l+£¢ ... (89)
* R Z (x;-x)?

Example: The precipitation and runoff for a typical catchment for the month of July are given below
in tabular form:
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Year Precipitation Runoff
1953 42.39 13.26
1954 33.48 3.31
1955 47.67 15.17
1956 50.24 15.50
1957 43.28 14.22
1958 52.60 21.20
1959 31.06 7.70
1960 50.02 17.64
1961 47.08 2291
1962 47.08 18.89
1963 40.89 12.82
1964 37.31 11.58
1965 37.15 15.17
1966 40.38 10.40
1967 45.39 18.02
1968 41.03 16.25

(a) Develop the rainfall runoff relationship in the form: Y = a+b X; where Y represents the
runoff variable and X represents precipitation variable.

(b) What percent of the variation in runoff is accounted for by the developed regression
equation.

(c) Compute the 95% confidence interval on a and b and test the hypothesis that a = 0 and
the hypothesis that b = 0.500 for the above regression.

(d) Calculate the 95% confidence limits for the regression line. Calculate the 95% confidence
interval for an individual predicted value of Y.

Solution:
(a) The form of the regression:

Y=a+bX

The regression coefficients are:

CAEEDOY) 569 43

b - 570. 0559

= 0. 648

.i_:l(xi_sz

a =y-bx =14.63-0.648 x42.94 = -13. 1951

-~ The regression equation is: Y = -13.1951 + 0.648 X
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(b) The percent of variation in Y is accounted for by the regression is computed as the
coefficient of determination (r?) multiplied by 100.

[é(x,- ) (y; »)1?
X(x; %) X(y;y)?

P

r_g(-’ci’x_) (yiy) [_};(xi_x_) (yiy)

> X
P £y, 9)?
S (x %) (v, )
. ~0.648 x 09-432 _ 66

* 3630714

Thus 66 percent of variation in Y is explained by the regression equation. The remaining 34 percent
of variation is due to unexplained causes.

The coefficient of correlation (r) may be computed as:

Ex-H09
(@02 L0010

= gquare root of coefficient of determination
=,/0.66 =0.81
Note:0 <r?P<land-1< r<1
(c) (i) Computation of 95% confidence intervals on a and b. The steps are:

- Compute the standard error of the regression equation using the relation:
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Y
@ _ LPT 0 -
(n-2) 162 14 O

S =297

- Compute standard error of a (S,):

2 1/2

. 1, 42.94%42.94 V2
‘2'97(1_” 570 . 0550 ) =23

- Compute standard error of b (Sy):

s 2.97
S - = = 0. 125
— /2 (570.0559 )12
i=1

- Compute t (1-a/2), (n-2) ﬁ'om the t—table Whel‘e = 0.05, n"2 = 14.
TherCfore, t (1-0.025), (16-2) = t 0.975, 14 =~ 2.14.

- Compute 95% confidence intervals on a:

Iy = a-tg.am, @m2) - S

= -13.1951 - 2.14 x 5.39
= -24.73

u, = a + t(l-ﬂ(fl). (n-2) - Sa

-13.1951 + 2.14 x 5.39
-1.66

[

- Compute 95% confidence intervals on b:

b =b- tqan), @2 S

= 0.648 -2.14 x 0.125 = 0.38
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U = b+ t w2 w2 - Sb
= (0.648 + 2.14 x 0.125 = 0.92

(ii) Testing the hypothesis H, : a = 0 versus a # 0

_a-0.00 _ -13.1951 _ _
- Compute ¢ = S = 5 39 2.4

a

- Since t (14, 2y = tog7s,14 = 2.14
and |t | >tgg95 4, We reject Hy:a = 0

Testing the hypothesis H, : b = 0.5 versus H, : b # 0.5

_b-0.5 _ 0.648 -0.50 _
- Compute ¢ = 35, - 0 135 =1.184

- Since |t| < 1.184, we cannot reject H,,.

From the above tests, it is observed that the intercept is significantly different from zero. However,
the slope is not significantly different from 0.5.

Comment: The significance of the overall regression can be evaluated by testing H,: b =0.
Under this hypothesis,

_50.00 _ 0.648 _
S, 0. 125 o184

Since | t| >ty995 14, We reject Ho. The regression equation is explaining a
significant amount of the variation in Y.

4

(d) (i) Computation of 95% limits for the regression line:

- Compute the stardard error of Y}, as:

~ 2 1/2
Sy, = § %+H(Lx_)_
Y(x;x)*
i=1

L (x,42.94)27"

i {
=2.974¢ * ~70. 0559

N)
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(x,-42.94)2]?

Sy, = 2.97|0. 0625

570 . 0559

L = -)Tkis)fk' t (17%)'(’172)

U=y, + 8§, t(p%),(n&)
No |X ¥ Y L U
1 42.39 13.26 14.27 12.67 15.87
2 33.48 3.31 8.50 5.52 11.48
3 47.67 15.17 17.69 15.66 19.72
4 50.24 15.50 19.36 16.85 21.87
5 43.28 14.22 14.85 13.25 16.44
6 52.60 21.20 20.89 17.86 23.91
7 31.06 7.70 6.93 3.39 10.47
8 50.02 17.64 19.22 16.75 21.68
9 47.08 22.91 17.31 15.38 19.25

10 47.08 18.89 17.31 15.38 19.25
11 40.89 12.82 13.30 11.62 14.98
12 37.31 11.58 10.98 8.79 13.16
13 37.15 15.17 10.87 8.66 13.09
14 40.38 10.40 12.97 11.24 14.70
15 45.39 18.02 16.21 14.50 17.93
16 41.03 16.20 13.39 11.72 15.06

(ii) Computation of 95% confidence limits for individual predicted values of Y.

- Compute the standard error of individual predicted values as:

4 __)2 1/2
s, = S[te L, ZeX)”
Lwx)?
i-1
1/2
) 1 +(xk~42.94)2]
- 2‘97[1 16 '~ 570 0559

(xk—42.94)2}”2

= 2. 97[1. 0625 + 5700559
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- Compute 95% confidence limits for individual predicted values of Y.

I =y, -
L'=y-S;, t

-8y, (n2)
/ ~
U' =Yy, - La-gy, (o)

(x,-42.94)2 "2

I = - + = -

L 13. 1951 +0. 648 x, -2.97 1. 0625 570 0559 2. 14
No |X Y Y I i
1 42.39 13.26 14.27 7.71 20.83
2 33.48 3.31 8.50 1.47 15.52
3 47.67 15.17 17.69 11.02 24.37
4 50.24 15.50 19.36 12.52 26.20
5 43.28 14.22 14.85 8.29 21.40
6 52.60 21.20 20.89 13.84 27.93
7 31.06 7.70 6.93 -0.35 14.21
8 50.02 17.64 19.22 12.39 26.04
9 47.08 22.91 17.31 10.66 23.96

10 47.08 18.89 17.31 10.66 23.96
11 40.89 12.82 13.30 6.72 19.88
12 37.31 11.58 10.98 4.25 17.70
13 37.15 15.17 10.87 4.14 17.61
14 40.38 10.40 12.97 6.38 19.56
15 45.39 18.02 16.21 9.63 22.80
16 41.03 16.20 13.39 6.81 19.97

These confidence intervals are plotted in Fig. 9.1.
Extrapolation:

The extrapolation of a regression equation beyond the range of x used in estimating a and b
is discouraged for two reasons. First, as can be seen from Fig. 9.1, the confidence intervals on the
regression line become very wide as the distance from x is increased. Second, the relation between

Y and X may be non-linear over the entire range of X and only approximately linear for the range
of X investigated. A typical example of this is shown in Fig. 9.2.

9.0 MULTIPLE LINEAR REGRESSION
Form of the equation:
yp =B X+ Baxia + B Xy
Yo = By %oy + B2 Xop + B Xpp

Yo =B X1 + B2 X2 +"'18p Xnp
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where, y; is the ith observation on the dependent variable.
)4
I = ZBJ Xi,j ....(90)
J-=1
p = number of independent variables.

In matrix notation

Y X
= ...(91)
(nxl') — (mp) (pxI)
Correlation matrix R, of the independent variables:
Let Zi.j = (Xi,j - xj )/S] (92)
where, x_j and S; are the mean and standard deviation of the j* independent variable:
= [Zl._]] ..(93)
So the correlation matrix is:
R =27 Z/(n-1) = (R;;] ....(94)
where, R is the correlation between the i and j™ independent
variables. R is a symmetric matrix since Rij = R;;
Regression Co-efficients:
B (£n- X __ ¥ ..(95)

()~ (pn) (mp ) (pan) (nxl)

X’ is transpose of matrix X of size (pxn).

Coefficient of Determination (R?):
R? = (BX'Y-nY?)/ (Y'Y-nY?)

...-(96)
Here, @’ is transpose of vector @ of size (1xp), and
Y’ is transpose of vector Y of size (1xn)
Coefficient of Correlation (R):
R = square root of coefficient of Determination.
Efficiency (EF):
EF =1-3 . (97)
¥y
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where,

§* =3 (vi¥y:)?¥ (np) ..-(98)
Sy =Y (i)Y (n-1) ....(99)

Inferences on Regression Coefficients:
(1) Standard errors of 3,
Let C = X’ X, then C"!' = (X’ X)'!, and
Var (B;) =S5 = G;'S? ....(100)
where, C;' is the ith diagonal element of (X’X)™!
S = G;i'S? ....(101)
(ii) Confidence intervals on B;

LB,, = B; -t (1—a/2),(n--p)Sﬁ.-

Us, = Bit (1-a/2), (n-p) OB ...(102)

1

(iii) Test of hypothesis concerning ;:

Hypothesis H, : 8; = 3, versus H, : B; # B, is tested by computing:

_ (B.l _Bo)
Sp,
H, is rejected if | t| > t4n) (p)

t ....(103)

(iv) Test of hypothesis that the ith independent variable is not contributing significantly in
explaining the variation in the dependent variable hypothesis H, : 8; = 0 versus H, : 8, # 0 is
tested by computing: )

t =B;/Sp ....(104)

H, is accepted if |t| < t1-ar2), (nep):
In such a situation it is advisable to delete the ith independent variable from the model.

Significance of the overall regression:

Hypothesis H, : 8, = 8; = .. B, = 0 versus H, : at least one of these 8’s is not zero is tested
by computing the test statistic:
F:QBIXIY) -n Y*)/(p-1) . ....(105)

(YYBXY)/ (n-p)
H, is rejected if | F| exceeds Fi-a), @-1), m-py Which values are given.in Appendix-IV in tabular
form.
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Confidence Intervals on Regression Line:
L = Y t(l ~a/2), (n-p) SY

S

U=Y+ 102y, (np)S¥,

where,

Yy - Xk B
SYf:S X X'X) X,
Confidence Intervals on individual Predicted Value of Y:
L = Yt (1), (n-p) S,
U= Y+ (1-a/2), (n;p)SY,¢
§%y, = SH1X(XX) 'X,)

10.0 ABSOLUTE AND RELATIVE SENSITIVITIES
yi = ,61 Xi.l + ,82 Xi,2 + ... + ﬁp xi'p
Absolute Sensitivities are given by:

S—( )J ..p

Linear Sensitivity equation:

8 .
Ay, = ( -8—;;]) ij = 1,2:.p

Relative Sensitivities:

X
2§ =
(Sx ) y ji=1,2...,p..

Example:

...(106)

...(107)

...(108)

...(109)

...(110)

..(111)

(112)

il d-13)

..(114)

..(115)

.-.{(116}

The mean annual peak flood in (Q) in thousand of cumec, catchment area (A) in thousands
of square kilometere and average annual maximum 24-hour rainfall (I) depth in cm for some of the

gauged catchments of a typical region are given below:
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No. Q A 1
1 15.50 | 1.250 1.7
2 8.50 [ 0.871 2.1
3 85.00 | 5.690 1.9
4 105.00 | 8.270 1.9
5 24.80 | 1.620 2.1
6 3.80 | 0.175 2.4
7 1.76 | 0.148 3.2
8 18.00 | 1.400 2.7
9 8.75 | 0.297 2.9
10 8.25 1 0.322 2.9
11 3.56 | 0.178 2.8
12 1.90 | 0.148 2.7
13 16.50 | 0.872 2.1
14 2.80 | 0.091 2.9
(a) Estimate the regression coefficients for the model: Q = 5, +6, A + 5 I and also estimate
R%.
(b) Test the hypothesis that the regression equation is not explaining a significant amount of the
variation of Y.
(c) Test the hypothesis Ho : 8, = 0
(d) Test the hypothesis Ho : 83 = 0
(e) Calculate the 95% confidence limits on ;.
(f) Calculate the 95% confidence limits on regression line at the A = 4000 square kilometre and
[ =2.0cm.
Solution:

(a) Since Q = B; +8; A + 31

or

yi =6 . X+ By X2t B3 X3
Vo =B - Xo1 + By Xgp + B3 Xp3
ya =61 X3p F By X372 + B3 X33

Via = B1 - Xpaq + By Xia2 + B3 Xyas

In matrix notation:

= X

B

(14;1) (14x3) (3x1)
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here, 0 = Y
Xl,l =X2'1 =X3'l == e w e X14,l = 1.0
X2 = A X3 =1
X0 = Ay X5=1
X2 = Ay X3 =11y
Y1 X1 X1, X3
Y2 X2,1 Xz,z Xz,s
Voo [78 s W X, X, X;
Vi Xia,1 Xia,2 Xig, 3]
X Xy X oo o0 Xy
. X
1,2 42,2 + - - 14,2
(3x14)
X3 X3 -0 -0 Xy s

14.0 21.33 34.30
=121.33 108.741 43.34
34.30 43.34 86.99

3.71678 -0.18094 -1. 37537

X'X)! =|-0.18094 0.02028 0.06124
(X'X)

-1. 37537 0.06124 0. 52332
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XY = |Bx; 5.9 = (B 5.y, = (1465 . 8927
;5.9 |Zx;w, 1 | 627.800

1y

XX 1.y Yy, [ 304 . 14 l

Since B = (X'X) XY =|13. 1510

1. 6570 ]
0. 0112

Therefore, the parameter estimates are:

By =L 657,B, = 13. 1510, and B; = 0.0112
Thus the regression equation is:

Q = 1.657 + 13.151 A + 0.0112 1

Now R? - (B'X'¥ -ny?)
(Y'Y -ny?)

_ [19,788.911 - 14(21.7229)%] _ o og7
[19, 960 . 066 - 14(21. 7229 )?]

This means that 99% of the variation in Y is explained by the regression equation.

The ANOV table for this example would be:

Source d.f. S.S. m.s.
Mean | 6,606.381 -
Regression 2 13,182.600 6591.30
Residual 11 171.09 15.554
Total 14 19,960.066
‘From the ANOV table R? = 13, 182 . 60 =0.99

(19,7960 . 066 -6, 606 . 381 )

and variance of the regression equation = $? = 15.554
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Therefore, the standard error of the regression equation is: S = 3.94
Comments:

If a large number of significant figures are not carried in computing (X’X)! matrix, significant errors
can result. To demonstrate this, the elements of the X'X and X'Y matrices were rounded to two
decimal places resulting in estimates for 8 of 8, = 1. 10; B, = 12.24, and B; = 5.28.

Thus number of significant figures that are carried in the calculations should be as large as practical.

In reporting the results, the number of significant figures should be reduced. The reported results
on the regression of the above example might be:

Q=166+ 13.15A + 0.011

(b) Testing the hypothesis that the regression equatlon is not explaining a significant amount of the
variation of Y. This H, is equivalent to Hy : 8, = B3 = 0 versus H, - at least one of

B, or By #0.

The test is conducted by calculating the F-stastic as:

_ Mean square due to regression _ 6591 .30
Residual ~— mean square e 55 (from ANOV Table )

From the table given in Appendix-IV, critical value of:

F(l-n), (p-1), (n-p) ~ F, 95, 2, 1=3.98
Since the computed F-statistic exceeds the critical F, Ho is therefore rejected. It indicates that the
regression equation is explaining a singificant amount of variation in Y. Rejection of Ho does not
imply that all the independent variables considered are important - it only implies that at least one of
these variables is explaining a significant amount of the variation in Y.
(c) Testing the hypothesis H, : B, =0 vs. H, : B, #0.
- For f,, t- statistic may be computed as:

_ BB
Sﬁ

2

here B, = 13. 151, B, =0, and S‘Bz is computed using the relation:
SZB; = C,1. 82

here C = X’X and C! = (X’X)"L.

Here, S,82 = 0.0208 x 15.554

= (0.0208 x 15.554)12 =0.562.
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Lo 13,151 -0

0.5 -t

Since critical value of t |_o2) @py = t0.975,11 from the table is 2.201, therefore |t | > tg7s ;.

Hence H,, is rejected indicating that catchment area is explaining a significant amount of the variation
inY.

(d) Testing the hypothesis H, : B; =0 vs. H : B; #0

For (3, t-statistic may be computed as:

{ B3 *33

Sa

H3

here B; = 0. 0112 and Sp, computed using the relation:

Sp.2 = Gy :5% = 10,5233 x 15, 554

Sg, = (0.5233 x 15.554)V2 =2, 85
3

_ 00112 -0
[ = —W———O.OM

Since |t| < t 0.975,11 (=2.201), we can not reject Ho. The mean annual maximum 24-hour rainfall
depth is not explaining a significant amount of the variation in the mean annual peak flow.

(e) 95% confidence limits on B, are calculated using the equation:

I =B, - Sﬁ:"(l-afz).(w)

U = BZ + S,Bz' A (1-a/2);("'.P)

I =13.15-0.562 x 2.201 = 11.91
w=13.15 +0.562 x 2.201 = 14.39

(f) 95% confidence limits on regression line at A = 4000 square kilometer and I = 20 cm is
computed using:

Ir =Yk =t (1w2y, (npy- Sy,

Ur = ¥s € s, tnoy Sy,
here ¥, = 1.6570 + 13.151 A + 0.0112 I

1.6570 + 13.151 x4 + 0.0112x 2
54.28

I

Sy? = 52 (X)X,

Xg = (1.0, 4.0, 2.0)
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Xg (X’X)? X', = 0.16529
Here (X'X)™ is computed as given in part (a) of this example.
s §; % = 15.554 x 0.16529

Sy, = 1.60

oo lr = 54.28 - 2.201 x 1.60 = 50.76

Ur = 54.28 + 2.201 x 1.60 = 57.80

Comments:

The hypothesis H,, : 8, = 0 and 83 = 0 weze both tested in this example as though the tests
were independent. In fact 8, and 35 are not independent. The Cov (f5,, (85) can be determined from C{gl 52
as 0.0612 x 15.554 = 0.9519. The correlation between 3, and 85 can be estimated from Cov
(B B3)/ Op . 0, 23 0.9519/0.562 (2.85) = 0.59. The test of H, : 8; = C is made relative to the
full model which includes all of the 3’s. The acceptance of H, implies that §; = 0 given that 8, and
B, are in the model. In general, if there are p s and H, : 8; = 0 is tested for each of them with
the result that K of the hypotheses can be accepted, one can not eliminate these K variables from the
model on the basis of this test alone since each of the individual H, : §; = 0 assumes all of the other
p-1 8’s are still in the model. To eliminate K variable at once, the test must be based on the F-
statistic computed using the equation:

F-{&-2)K 117)
Q/ (n-p)
where, Q, = sum of squares due to regression on the full model with (p-1) degrees of freedom;
Q,*= Sum of squares due to regression on the reduced model with (p-K-1) degrees of
freedom,; -
Q; = Residual sum of squares on the full model with n-p degrees of freedom.

The statistic F will have an F distribution with K and n-p degrees of freedom. H, is rejected if F
exceeds F(l-a). K, n-p*

As an example of the application of the above equation, the H, : 8; = 0 will be tested. The
ANOV for the full model is given during the solution of this example. The reduced model is simply
Y = B, + B, X, where X is the watershed area in thousand of square km. Since this is a simple
regression situation, we can compute the sum of squares due to regression from

b ¥ (X -X)(y;,y)whereb = X(x,-x)(y;¥)/ X(x;-x)?2. The result of this calculation
is the sum of squares due to regression for the reduced model is 13,182.60.

Fo(2Q)/K (13,18 .60 - 13,182.60)/1 _
) Q/ (n-p) 171 . 090 / 11 '

Since F 95 1, 13 = 4.84 so we accept H, : 8; = 0.
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Since H, : B3 = 0 was accepted, the next logical step is to eliminate I from the model and consider
only A. In so doing the resulting regression equation is:

Q=169+ 13.15A

STEPWISE REGRESSION:

Most commonly used procedure for selecting the best regression equation is stepwise regression. This
procedure consists of building the regression equation one variable at a time by adding at each step
the variable that explains the largest amount of the remaining unexplained variation. After each step
all the variables in the equation are examined for significance and discarded if they are no longer
explaining a significant amount of the variation. Different steps involved in the stepwise regression
are as follows:

(i) Add the first variable as the one which has highest simple correlation with dependent variable.

(ii) Add the second variable as the one which explains the largest variation in the dependent
variable that remains unexplained by the first variable added.

(i) ~ Test the significance of first variable and retain or discard depending on the results of this
test.

(iv)  Add the third variable as the one that explains the largest portion of the variation that is not
explained by the variables already in the equation.

%) Test the variables in the equation for significance.

(vi) Repeat the steps (iv) & (v) until all of the variables not in the equation are found to be
insignificant and all of the variables in the equation are significant.

This is a very good procedure to use but care must be exercised to see that the resulting
equation is rational. Of course, the real test of how good the resulting regression model is depends
on the ability of the model to predict the dependable variable for observations on the independent
variables that were not used in estimating the regression coefficients. To make a comparison of this
nature, it is necessary to randomly divide the data into two parts. One part of the data is then used
to develop the model and the other part to test the model. Unfortunately, many times in hydrologic
applications, there are not enough observations to carry out this procedure.

With regard to extrapolation, the comments given relative to simple regression are equally
applicable to multiple regression. In multiple regression, an additional problem arises. It is some
times difficult to tell the range of the data.

11.0 MULTIVARIATE ANLAYSIS

11.1 Principal Components Analysis

In multiple linear regression analysis a dependent variable is dependent on several other variables
which are considered to be independent. When data are collected on these independent variables,
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these variables are many times correlated. This correlation indicates that some of the information
contained in one variable is also contained in some of the other remaining independent variables. The
objective of the principal components analysis is transform the original correlated variables into
uncorrelated or orthogonal components. These components are linear functions of the original
variables. Such a transformation can be written as:

Z=XA ....(118)
where, Z is an nxp matrix of n values for each of p components,
X is an nxp matrix of n observations on p variables. Since we are dealing with

variances and covariances, all x’s will be assumed to be deviations from their
respective means to that X is a matrix of deviations from means.

[

is a pxp matrix of coefficients defining the linear transformation i.e. matrix of
characteristic coefficients.

Other notation:

Z-4,% .. 2 =% 0,451 8 Gaset8 § =1%o up

1

Z%],i-1,2,3,...n

Since the original p variate set of observations contained in X contains correlation, it might be
possible to characterise the variance of X with ¢ < p orthogonal components. Thus it is desired to
construct Z so that each component, Z; (an nx1 column vector) explains the maximum amount of the
variance of X left unexplained by the first j-1 components. In this way it may be found that the first
q components explain most of the system variance and that the last p-q components explain little of
the system variance.

The principal components alongwith their correlation with the variables are computed in the following
steps:

(i) Compute the variance-covariance matrix of X i.e. S using the relationships:

§ = [Sij]i = l, 2. ...p;j = 1,2; ...p

_ 1
Sij = n—l;XKiXKi ....(119a)
or, S = X'X/(n-1) ....(119b)

(ii) Compute the total system variance v defined as the sum of the variances of the original
variables using the relationships:

P
V = Trace S§=Y 8§, ....(120)
i

(iii) Compute the characteristid®toots, \ (also known as lagrangian Multiplier or Eigen value)
solving the following equation:

|S-N| =0 L(121)
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where, I is identity matrix.
(iv) Compute the coefficients of the characteristic vector for the first principal component solving:
(S-MDa=0 (122)

Subject to the constraint: {:ai, 2=1

ii=1
(v) Repeat step (iv) to compute the coefficients of the characteristics vector corresponding to the
other principal components.
(vi) Compute the values for principal components using:
Z=XA sk L23)

where, A is matrix of characteristics coefficients obtained from steps (iv) and (v).

(vii) Compute the elements of correlation matrix between the variables and the principal
components using the relationship:

Cor (x;.z) = N2 a,/S; ' ...(124)
For example the correlation between x, and z, is:

Cor (x5.2)) = N2 ay,/S, ....(125)
Some important properties of principal components:
(i) z; and g are uncorrelated for i = j

(li) Var (Zl) = a’i S & = )\i ....(126)

i) Ay = Ny = A,

P P

(iv) V. =Trace S = Y A = EVar(z_’.) (127)
= K=

(v) z = X A, where, z = (z,,2,, ... Z,) and A = (a,.3,, ... gp)

(vi) Fraction of the total variance accounted for by the j'™ principal component is Ajftrace S.

Example:

Consider the data in the following table. Let X be a 13x3 matrix made up of 13 observations on

A, S and L. Compute the principal components of X based ¢n the covariance matrix., Compute
the correlation between the variables and the components,
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RO PREC | A S L P D RS F RR

17.38 | 44.37 | 2.21 | 50.00 | 2.38 | 7.93 0.98 |0.38 | 1.36 | 332.00

14.62 | 44.09 | 2.53 | 7.00 | 2.55 | 7.65 1.23 | 0.48 | 2.37 | 55.00

1548 | 41.25 | 5.63 | 19.00 | 3.11 | 11.61 |2.11 | 0.57 |2.3] 77.00

1472 4550 | 1.55 | 6.00 |1.84 | 5.31 |0.94 |0.49 |3.87 | 68.00

18.37 | 46.09 |5.15 [ 16.00 | 4.14 | 11.35 [1.63 | 0.39 |3.30 | 68.00

17.01 |[49.12 |2.14 | 26.00 | 1.92 | 589 | 1.41 | 0.71 | 1.87 | 230.00

18.20 | 44.03 | 534 | 7.0 473 | 12,59 | 1.30 | 0.27 | 0.94 | 44.00

18.95 | 48.71 | 7.47 | 11.00 |4.24 [12.33 [2.35 |0.52 | 1.20 | 72.00

13.94 | 4443 |2.10 | 5.00 |2.00 |6.81 1.19 | 0.53 | 4.76 | 40.00

18.64 | 47.72 | 3.89 | 18.00 | 2.10 | 9.87 1.65 | 0.60 | 3.08 | 115.00

17.25 | 48.38 | 0.67 | 21.00 | 1.15 | 3.93 0.62 | 0.48 | 2.99 | 352.00

17.48 | 49.00 | 0.85 | 23.00 | 1.27 | 3.79 0.83 | 0.61 [3.53 | 300.00

13.16 | 47.03 [ 1.72 [ 05.00 | 1.93 | 5.19 0.99 |0.52 | 2.33 | 39.00

Solution:

S is computed from equation (119).

4.465 - -4.519 2.177
S =|-4.519 155.769 -2.955
2.177  -2.955 1.322 |

| S-AI | is computed as:

4.465 -1 -4.519  2.177
(S-M) =|-4.519 155.769 -1 -2.955
2.177  -2.955 1.322-A

| S-NL | = (4.465-M)(155.769-\) + (-4.519)(-2.995)(2.177) + (2.177)(-4.519)
(-2.955) - (2.177)? (155.769-N) - (4.519)% (1.322-\) - (4.465-N)(-2.955)?
=)
A - 161.548\% + 872.130M - 171.154 = 0

The solution to this cubic equation are:
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A, = 155.963
Ny = 5.387
As = 0.207

Note that T\, = Trace S = 161.557

The first principal component accounts for 100\,/Trace S = 100 (155.963)/ 161.557 = 96.54 percent
of the total system variance. The coefficients of the characteristic vectors can be computed from
equation (122). For example for the first principle component we have:

(S - M) a, =0

4. 465 -155 . 963 -4. 519 2.177 211
-4. 519 155 . 769 -155 . 963 -2.955 ay| =0
2. 177 <2.'955 1.322-155.933 | la,,
or

“151.498a,, -4.519a, +2.177ay =0
4.519a,, - 19a, -2.955a; =0
2.177a, -2.955a, -154.641a; =0

Solving these three equations simultaneously for a,;, a,;, and a3, results in:

3.21 = "5143331 and a“= 1.5503331.

Using the constraint that a%;;, + a%,+ a’;;= 1, the solution is a;;= 0.30, ay;= -.999 and a3; =
.020. Similarly for A, and A; we get:

451
892

.892 ay
. 452 a23

036 ay
004 a5

ap
a3

Thus,

.030 .892 - 452
A=1(-.999 .036 .004
.020 .451 .892

The values for the principal components can now be calculated from:

Z=XA
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The correlation matrix between the variables and the components can be computed from equation
(124). For example the correlation between ¥, and z, is:

Cor (x,,Z) = M'* ay/8, = 155.963 12 (-0.999)/155.769 V> = -0. 9995

The resulting correlation matrix is:

0.178 0.979 -0.097
-1. 000 0.007 0©.000
0:212 0.911 0.353

The above example illustrates that using the S matrix in a principal coraponent analysis presents some
problems if the units of the X variables differ greatly. In the above example, the magnitude of the
observations associated with the second variable were much greater than those associated with the
other two variables. Consequently the variance of x, was much greater than either Var (x,) or Var
(x3). X, accounted for 100 Var (x,)/Trace S or 96.4% of the system variance. This means that the
first principal component is merely a restatement of x,. This can also be seen from the fact that the
correlation between x, and z;, is 1.000.

Principal Component Analysis for Standardized Variables:

In most hydrologic studies the problem of non-commensurate units on X’s has been handled by
standardizing the X’s through the transformation (x; -x;)/S;. The covariance matrix of the
standardized variables becomes the correlation matrix 1 e. S=R. The principal component analysis
is then done on R. The total system ’variance’ now becomes Trace R = p since R has ones on the
diagonal.

The principal component analysis for standarized variables involves the following steps:

(i) Compute the standardized variables ¥ using the relation;

y; = 2 ....(128)

(ii) Compute the elements r;; of correlation matrix R using the relationship:

R=[r;;] =r’r/(n-1) ....(129)
- (129)
where, R is a symmetrical matrix since i = i

(iii) Compute the total system variance, V as:

V = TraceR = P ....(130)
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(iv) Compute the characteristic roots, A solving the following equation:
IR-M | =0 ...(131)

(v) Compute the coefficients of characteristic vectors corresponding to each principal components
solving:

(R-XNI)a; =0 - (132)

Subject to the constraint: fﬁa i =1

i=1

(vi) Compute the numerical values of principal components as:
Z=3Xa ....(133)

(vii) Compute the correlation matrix between the standardized variables and components, cor (y;,
z;), using the relationship:

cor (y_‘.,Zj) = lj”zaj-j ....(134)

These correlations are sometimes called factor loadings. The factor loadgings can be used to
attach physical significance to the components. If a particular component is highly correlated with
1, 2, or 3 variables, then the component is a reflection of these variables. For example, in a
study of watershed geomorphic factors, it might be found that a component is highly correlated
with the average stream slope and the basin relief ratio. This being the case, that particular
component might be termed a measure of watershed steepness.

Example:
Repeat the above example using R instead of S.

Solution:
1.000 -.1713 . 8958

R=|- 1713 1.0000 -.2059
.8958 . 2059 1.0000
IR-AT| = (1-A)3-(1-1) (.8768435 ) +. 06343748 =0

which has solutions:

A, = 1.9692
A, = 0.9273
A; = 0.1035

In this formulation z, accounts for 100 (1.9692)/3 or 65.64% of the system ’variance’ while z, and
z; account for 30.91% and 3.45% respectively.

NATIONAL INSTITUTE OF HYDROLOGY, ROORKEE 41



118 Statistical Modelling - Basie Statisties

The corresponding characteristic vectors are:

.679 .208 -.704
4= (9-19-213) =(-. 265 .964 .029
.684 .167 .710

The factor loadings computed from \,12 a jj are:

. 953 .200 -.226
-.372 .928 .009
. 960 .161 .228

Since component 1 is highly correlated with both area and length, this component might be called a
'size’ component. Likewise component 2 might be called a slope component. In terms of explaining
the “variance’ of R, component 3 could be eliminated since it explains only 3.40% of the variance
and is not correlated with any of the variables. We cannot eliminate any variables, however, since
component 1 is sirongly dependent on X, and X5 while component 2 depends on X,.

In terms of explaining the variance of R, we have reduced our problem from one of considering a
13x3 X matrix with correlations to a 13x2 Z matrix without correlations (assuming Z, is discarded).

The values for the components are computed from:
Z=XA
where

-.046 -2.69 -0.16
-.030 -.076 -0.01
1.16 0.20 0.47
-0.77 -0.84 -0.63
0.94 -0.04 1.37
-0.49 0.76 -0.56
AX=[(x,-,' _x‘j)/s}.] =|1.03 -0.76 1.88
2.03 -0.44 1.46
-0.51 -0.92 -0.49
0.34 0.12 -0.41
-1.18 0.36 -1.23
-1.10 0.52 -1.13
-0.69 -0.92 -0.55
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-1.13 2.47 0.28 |
-.02 -0.80 0.18
1.06 ©.52 -0.48
8. 93 -1.07 0,07
1.58 0.39 0.31
0.92 0.54 -0.03
Z-XA- [{2.19 -0.20 0.59
2.49 (.25 -0.41
-0.44 -1.07 -0.02
-0.08 0.12 -0.52
-1.74 -0.10 -0.03
-1.66 -C.09 -0.01
-0.60 -1.12 -0.07

11.2 Multiple regression on principal components

Many times a principal components analysis is the first step in the development of a prediction model
for some dependent variable, Y. Once the principal components are derived, they are used as the
independent variables in a multiple regression anlaysis with the dependent variable, Y. Because of
the differing units usually present in the original independent variables, the principal components are
generally abstracted from the correlation matrix.

The steps involved in performing a multiple regression on principal components are outline here:

(i) Standardize the independent variables and centre the dependent variable so that X = [x;] and Y
= [y;].

where,

By =l gl g, =T

i S; i

where, Y; is the ith observation on Y. Y is the mean of Y, X;; is the ith observation on jth variable
and X; and S; are mean and standard deviation of jth variable. Centring Y is not necessary. It
eliminates the need for an intercept and simplifies notation.

(ii) Compute the characteric roots A; and corresponding vectors a; using the procedure described in
the previous section of this lecture. Then determine the matrix of principal components Z from Z
= X A with A being a p x p matrix whose jth column is aj, the characteristic. vector.

(iii) Develop the regression model:
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i

Y=ZBor Y =,i1ﬁjztj ....(135)
j=

where, Y is an n x 1 vector whose elements are the n observations of the centred dependent variable,
Z is an n x p matrix whose elements, Z;; represent the ith value of the jth principal component.

(iv) Estimate 8 using the following relationship:

_ ;XY
B; n-1)n, s ¢ ws (136)
(v) Estimate the variances and covariances of 3, i.e.
Cov (B;, B;) = O for i # j ....(137)
Vi . __d j = (138)
ar (B;) = (n——l)ljfor i =j

where, o is the standard error of the regression equation. Cov (8;, B) =0fori #j
indicates that 8, is independent of Bj fori = j.

(vi) Perform t-test to judge statistical significance of B; with null hypothesis: H, : B; = 0 (note
that 8, = 0). The t-test statistics is computed using relationship:
==zt /
a
- _EX ... (139)

¥ (n~I)chr

There is no reason to believe before the regression is performed that this test statistic will be non-
significant for small values of N;. Therefore, the regression should be performed on all of the
components and then the components that prove to be non-significant can be eliminated.

(vii) Transform the resulting regression equation into an equation in terms of the original X variables.
This can be done since:

- - X
XL — }’l' - y', xl_‘f == §JT_J_
j
Z,-j = f:a ,q)(:k and st are constant. Thus the regression equation becomes:
K=1
K= X) ....(140)

Ty = E jg:l Ps Jga"j 8
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Which may be further simplified by collecting the different terms as:

Y, =B+ LB X, ... (141)
Jj=l

where, the §*’s are constants. If only q (q<p) components are retained in the final regression
equation and the components are rearranged so that the first g-components are retained, the first
summation in Eq. (141) would run from 1 to q; however, the second summation would still run from
1 to p. This means the summation in Eq. (141) wouid run from 1 to p. It also means that even
though the equation contains only q components, all p of the original variables must be measured to
predict Y.

Advaniages & Limitations of Regression Principal Components

In the linear regression on principle components B; is independent of 8 for i #j . Therefore the
numerical value for the B’s retained in the regression will not be altered by eliminating any number
of other B’s . This is the distinct advantage of having an orthogonal matrix of independent varaibles.

A second advantage of having independent f3 ’s is that the interpretation of §’s in terms of the
independent variables is greatly simplified. Thus if some hydrologic meaning can be attached to a
component through an examination of the factor loadings, hydrologic significance can also be attached
to the Unfortunately in most hydrologic applications of principal components analysis, a clear
and distinct interpretation of the principal components has not been possible. This in turn means the
hydrolBgic significance of the is unclear as well.

Another advantage for using regression on principal components as compared to normal multiple
regression is that the resulting regression coefficients are more stable when applied to a new set of
data because of coefficients are fitted on the basis of only statistically significant orthogonal
components. This could imply that using an equation based on regression on principal components
for prediction on a sample not included in the equation development would have a smaller standard
error on this sample than would a normal multiple regression equation. If this is the case, it would
be an important advantage for the regression on principal components technique. Adequate
demonstration of this hypothesis needs to be developed, however. :

A disadvantage of using principal components in a regression is that even if all but one of the
components is eliminated, all of the original variables (the X’s) must still be measured since each
component is a function of all of the X's.

Some of the original X variables can be eliminated from the analysis before any regressions are
performed by examining the factor loadings and eliminating variable that are not highly correlated
with any of the components. The remaining X variables are then resubmitted to a principal
components analysis with the multiple regression being performed on the new components. This
procedure has advantage of reducing the number of variables that must be measured to use the
resulting regression equation. It has the disadvantage of eliminating X variables rather arbitrarily
(there is no statistical test for the significance of the factor loadings) without ever having them in a
position to determine their usefulness in explaining the variatiion in the dependent variable Y.
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11.3 Factor Anlaysis

The purpose of factor anlaysis is to partition a p-variate observed vector into some factors common
to all of the p variables and some factors unique to each of the p variables. A factor model might
be written:

X =G F +H U

v wie o {LADY
pxl pxm nxl pxp pxl

where, X is a p-variate vector of observed variables, G is a matrix of coefficients, F is a vector of
common factors, H is a diagonal matrix of coefficients, and U is a vector of unique factors. A
common application of factor analysis in hydroiogy has been conducted by ignoring the unique factors
and considering the common factors. Further discussion about the application of factor analysis in
hydrology may be found elsewhere (Matala and Reichor, 1967; and Wallis, 1967).

11.4 Cluster Analysis

The main objective of a regional analysis is to develop regional regression models which can be used
to estimate the hydrologic variables at ungauged sites. Hydrologic data from several gauging stations
in hydrologically homogeneous regions are collected and analysed to obtain estimates of the regression
parameters. Identification of these hydrological homogeneous regions is a vital component in any
regional analysis. One method used to identify these regionc is a multivariate statistical procedure
known as cluster.

Cluster anlaysis is a method used to group objects with similar characteristics. Two clustering
methods are used for this purpose. The first group of procedures are known as hierarchical method,
and they attempt to group objects by a series of successive mergers. The most similar objects are
first grouped and as the similarity decreases, all subgroups are progressively merged into a single
cluster. The second group is collectively referred to as nonhierarchical clustering techniques and, if
required, can be used to group objects into a specified number of clusters. The clustering process
starts from an initial set of seed points, which will form the nuclei of the final clusters.

The most commonly used similarity measure in cluster anlaysis is the Euclidean distance defined by:

1/2

Dy, = oo (143)

P

= 2
Y (Zgy - 2)
k=1

where D;; is the Euclidean distance from site i to site j, p is the number of variables inlcuded in the
computation of the distance (i.e. the basin and climatic variables, and zy is a standardized value for
variable k at site i.

In many applications the variables describing the objects to be clustered (discharges, watershed areas,
stream lengths, etc.) will not be measured in the same units. It is reasonable to assume that it would
not be sensible to treat say, discharge measured in cubic meter per second, area in square kilometer
and stream length in kilometer as equivalent in determining a measure of similarity. The solution
suggested most often is to standardize each variable to unit variance prior to anlaysis. This is done
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by dividing the variables by the standard deviations calculated from the complete set of objects to be
clustered. The standardization process eliminates the units from each variable and reduced any
differences in the range of values among the variables.

To get a feel for how cluster analysis works, consider six precipitation stations and their associated
annual precipitation in mm:

Station 1 2 3 4 3 6
Precipitation 1000 1200 600 | 700 (500 (1100

It is desired to see if these stations can be grouped into homogeneous groups based on the average
annual precipitation :

The first thing that is done is to standardize the precipitation values. For this set of data, the mean
is 850 and the standard deviation is 288. Exhibit contains the data and results. Equation (143) is
used to calculate D;;. For example D, , is /(0. 52 - 1. 21)? which equals (0.52 - 1.21) or 0.69.
The results for all of the D, ; are shown in Table A of Exhibit 1.

The next step is to find the minimum value of the similarity measure, Di'j. This value is seen to be
0.35. The value 0.35 appears several times. The pair (3,4) was arbitrarily chosen as the first similar
pair. Table B of exhibit 1 contains the D; ; values from Table 1 except for the (3,4) row. This row
contains the minimum of D; ; and Dyjforj =1,2,5, and 6. For example Dy, is 1.39 and D, ;
is 1.04. Therefore, the (3, 4), 1 entry in Table B is 1.04. Other values in the (3, 4) row are
similarly determined.

Again the minimum entry in Table B is found to be 0.35 corresponding to the (1, G) pair. Thus (1,
6) is clustered as in Table C and entries for Table C are determined from Table B in the same manner
as entries in Table B were determined from Table A. The next step results in (1, 6) and 2 being
clustered to form (1, 2, 6). This is followed by (3, 4) being clustered with 5 to form (3, 4, 5).

Exhibit 2 is similar to Exhibit 1 except the value of precipitation for the third station is changed from
600 to 1050 mm. Carrying through the anlaysis as was done for Exhibit 1 results in forming the
clusters (4, 5) and (1, 2, 3, 6).

In Exhibit 3, the third station value is changed to 1800 mm. The cluster results are (1, 2, 4, 5, 6)
and 3. In all of these analyses, the D, jentry is a measure of the similarity that exists. For example
in Exhibit 3, the D; ; values of 0.22 indicate strong similarity. The values of 0.44 shows that stations
4 and 5 are not as similar as are stations 1, 2, and 6. The value 0.67 shows that the cluster (4, 5)
and (1, 2, 6) are less similar than either 4 and 5 or 1, 2, and 6. Finally the value 1.33 shows that
3 is not very similar to the cluster (1, 2, 4, 5, 6).

Clustering may stop when there is a significant jump in the similarity measure. In Exhibit C one
might conclude with three clusters (1, 2, 6), (4, 5), and (3), or with two clusters (1, 2, 4, 5, 6) and
3.

Exhibit 4 extends the anlaysis to consideration of two measures of the stations being considred,
precipitation and potential evapotranspiration. Again Table A was constructed from equation (143).
For example the D, , entry is calculated from standardized values of:
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12—\/( -0.11 -0.33)* + (-1.21 121)2 or 2.47.
The analysis is completed based on Table A in the same manner as for Exhibits 1-3. Here a
satisfying clustering doesn’t appear to exist. It looks as though 2 and 6 might be clustered but
possibly the other stations can not be clustered.

Exhibit 5 is based on the rati of precipitation over potential evapotranspiration. Using this system
measure, 2, 4, and 6 certainly form a cluster. Depending on the purpose of the analysis, one might
conclude that: (1, 3) and (2, 4, 5, 6) represent the final clustering.

12.00 REMARKS

Statistical analysis of hydrological variables provide useful information about the nature of
distribution, the data on the hydrological variabless follow. It may be used to predict the magnitude
and associated frequency. Regression techniques are being widely used for developing the prediction
equations for different hydrological variables. These prediction equations are useful for estimating
the dependent hydrological variables, which are difficult to be monitored, based on the independent
variables which can be easily monitored. Multivariate analysis techniques such as principal
component analysis, cluster anlaysis techniques, etc. are also applied for solving many of the
hydrological problems.
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Normsl Distribution Probabilities

TABLE- 1

007

LX)

VAR D 0 O CE 2 F UM E AP e P ALIG s Bl O A = (P e (B R B NS ™ (WA O VWG i OGNS S -G LW 0
[alel-Tel bt atalal d O W o= o WP (DA BN P WP P o O P I L E S S e R P NI AR e e g SO N- VO =N O RS0 00
QOO GOIDMNOO e me AR 4 WV O 0~ Om & i -1 8 (VO FIR Lot Lo Lol Rl B Dl P WAV B, LT L N D L - U s
D000V OVAOOOODOVL IO GO L) e = AR FIFM 1 IVIA O O OR A o Ue e Do e eor toe 00 00 ceroranr

@ 5 8 8 % 8 8 8 S 8 8 88 8 2 ¢ 08 8 4 4 S8 % 8 s 6 80 6% S S A ESs 4 EYEE Qe et s PR s s

FAE A O SO O O Q0 ~ VWA 2 @I A J A O OO O O P 2O ) QN0 D N OO0 VWG 7= N P ) 8 = e 0 DO A OF
OOOD™ mNAM G Ve o DA O O~ MAOc LFo e AC M OO 4 O OO0 B QOMNPINES O ARl P WAL S 0 O o U
OO0000COTAO0r &= rume 4 vi 40 O J O e 38 NI OGP~ W0 AN - S 0O RNe N0
OO0 OOU OO VO OO M I « & e Nine s e e g I LUV USROS PR PSR U BO B rRBR UL
. > 2% 5 8 5 8 8 88 88 8 8N es s s aseed s eeesEssseeeEBeseseRssaeeB LS rnessssEses e

O00O0GO0 OO OOF == Aririg Vika) (344 D0 AA e ViGN OO S e N e LA PR R T T - - 2 - - s g
DOCOC OO0 TGO COQOMOLLID & m v, RIRS L S VA OOOr A RN MnOnND o0 o0 00000000 NO0O00
MR e e e B O B T B B L L S a8 2 s % E e S 4 e a4 e % EE e e s s

P U A P B AP (D FRAA T P U OV O O~ W F F R 0 9 UM ¢ A e G DA 010 D rR D R e 2 O
DOOO T mAMNFIA OO = /AG v — O &) 0 R 4w 5 T o 2P AP G O O P AR I P D A RV O LM 4 S M O P mEio o o 0
OO OO0 CHI (I DD = v AurY 4 v e 3 4 DO MBI AG 1A PG S P $F OFVAR = P 4 O O P We e & 00 O O Curoor

CUDDOOOOLULLINTIOUIOILRICL
e 8 % 8 w4 4 8 a8 s a e w e P I e

e e PIr R e a AV DA N0 00 00000000000 000D 0000
R N R R R A

" d OB ORI O 2SN QR QU O B o= A QU o N = O Qw0 QIO 7 PV O NN VO 8 A0 0 IO e 2 hiar O
O OO =AiF ) 2 O AL AU O i N U e P U e= OO0 0 0 OMWNFI R0 MY = G0 UGN 40 4RO O auie e v O
0000VOOONOI00 rme R FI Y 4 URBIODMN S M N A OO VA AR 3 P BN = N WO R OO O RO
DOO0CCO00C UOOCHHIT OLOC LI mr e~ A ACIFmUd S SN OUs~+ se s R8I0 000CCOR 000 cocOoONRGNUOO

e $ 8 68 ¢ 5 % 48 9 60 6 es s e s 8 el S s EE TSN LA e R PRI 8 ee

" OWrY Qe OWVA PP~ Py S0 7 W D QN Q= O JPANAMLHIS L) 4 IS MNP E e e @ 0N IRV Jdesy g .
QOO et 4w P O A DO 0 A = SR VDG = 2 DN 4 7 DN e DITIPIMID NN O (A B P AP ) Ay S 4R Rk b O
DONOOOCOOONLINDE =AM 1w OGN 4 LN RNt U E TP N LTSS AT X G- IIAIP Fwn O P m) TR R AR T O

LT LY L DO
P e se e e e s A s e

DOC0O0OCOOOOCNIONICH (IO F v« o= = MfANE i J J Jnwn GGk e fa
S 2 S C S 0 e 8 B N S8 S S8 e wes et e s tE e * 8 48 8800 sn

P OO I AT A O ONND O P R  La o U ate slata b VLS LTINS Tons DA o Ll T b btk LS B PR R e ol ol Lo I L B

OOOO =M dnA G RO~ UMr e MO 00— OFiN g ONO0 B &N - O e O w0 O M e P WOa) O FED A O S O o no o e o

OO00OLOL IO v AU s d v O U AN AL D0 MIP-L) o e i Fa J 7 =1 PP P O DO e DR AW B O IR DR Ok

0OOCOUO0 OCOOCOUOCLULOL S s mAMNANE FId IV OOR R - foee o000 00U covwoocCrOoOCOOCOOUCOCUL
e e e B

@ % s 8 8 8 8 8 P 4 b a8 s N o PR S e # % 4% & 8 4 B E s B e A ®EE e Be s e pAE s ..

A OO TVID P J O O o A D PO NS G D 1) O AN A DN O F P O O 4 QO O LN - O D uP- s s
DOOO™ =M S e O & AN e e e PO A S Aeryfam) A nre i FF e O ONA R AN U0 Y N O 88 O O
D OD00COGOOD ™ rmr AfM 4t U 0 = MNAOM SO~ N0 S0 O0 M 004 VWU DA O WA GG C O
00 CODOODO000 00 OD0OOO OO0« =« rRANMMmA T 4 P P L E T T P

e 2 S S S B 8 8 S8 B B8 S A0 P 68 IS PLETEEFEEFA LAt R 44 e 888 s e A e e .

AR O PO O D F O T R O v A = A D0 OO O PR OO TN = O — Q00U RN M- P08 D 4 DOTCRN DnniAs ~ =k
COCQr =R 7 OO M NN A A O O BOVNON I 004 M= N0 r ~0M00S04 004~ N OO0 NI OF W00 0 &
00000000 C O~ r v ANA LN OA G = MAROMAO IO JWONNG N O - F 0DONM 4NODOO> GG
000000000000 D000 000 OO Ur r+ =AANAFIFIE 4 SNNO 0 O U000 00 000 200808 00000000 oo

. 86 8 8 5 8.8 65 8 880 88 REs 288 00PITEsTIeEeSeRRIArIIRSI Sttt eRAEstORiene

@ % # % 3 2 3 8 8 e 4 aa e e e e S e ELae

..sl..?..ruﬂ'.lllg.t‘cz\n-’l?.h....tl._..(alnu?l.\‘Lul;ht((lnur.u‘u..‘\;.\-)b?59C125l5?890’§k507‘°"—125&
e u .4 8 8 B L B B A 8B P 6B S S Eese S Eseen sse bemss e W s e e s s s e s e E S ma w e oww 8 s s
A B B g o s A e B g = L E L e e e P N R e
AR R R B



129

APPENDIX-II
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1-Distribution Probabillties
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