STOCHASTIC MODELLING OF RAINFALL

1.0 INTRODUCTION

For appropriate planning and operation of water resources projects, long term historical records of
stream flow are required. Where the historical records of stream flow are short, the generation of
synthetic sequences of stream flow provides alternate data series for planning decisions. There are
also applications when interest of hydrologists extends beyond the length of the available historical
record of the rainfall. Only probabilistic models, applied to existing series of measurements, can
provide such an extension. Because of continuous development and short stream flow record,
observed stream flow data are generally not representative of current catchment conditions. On the
other hand, rainfall records are generally longer than stream flow records and are also generally not
affected by the developments in the catchment. Also, for a given length of record the statistical
characteristics of rainfall can be defined with relatively less error than in the case of stream flow and
hence can be used with stochastic data generation models. The generated rainfall can be used as input
to deterministic models for synthesis of stream flow data.

All statistical calculations performed on hydrological data, no matter how sophisticated, will reduce
the amount of information included in the original record. A synthesis, which is a result of all
statistical operations, is nothing but a useful way to practical aplications. Yevjevich (1972) suggested
that hydrologic time series can be modelled by a deterministic component and a stochastic component.
The deterministic component is composed of trends, jumps and periodicities whereas the stochastic
component is reflected by the randomness of the hydrologic variable (Figure 1a and 1b).

2.0 DATA GENERATION

Data generation techniques or Monte Carlo simulation have been widely used in hydrology. These
range from generating large samples of data from known probability distributions to studying the
probabilistic behaviour of complex hydrological processes. The value of the model depends on its
ability to generate new rainfall series which correctly reproduce in a statistical sense characteristics
that are observed in the historical series.

2.1 Stochastic Models

A stochastic model is a probabilistic model having parameters that must be obtained from observed
data. Stochastic models contain random components. These random components contain random
elements. If a stochastic model is to be used to generate hydrologic data, methods must be available
for generating the random elements of the models.

Random element is usually thought of as an element selected in a fashion such that each element in
the population has an equal chance of being selected. More generally a random element can be
selected from any probability distribution as long as the elements are independent of each other.

2.2 Stochastic Rainfall Models
Models of point rainfall time series have potential application to a range of hydrological problems like

the generation of rainfall across a range of time scales for hydrological design and the disaggregation
of large time interval data for short duration application.

NATIONAL INSTITUTE OF HYDROLOGY, ROORKEE



222 Stochastic Modelling of Rainfall

Rainfall is a natural process which results from the interaction of complex atmospheric processes.
Because of the complexity of the process , rainfall cannot be described in purely deterministic terms.
The rainfall process also contains periodic components due to the seasonal variation within the year
and persistence in both time and space. One way to produce a rainfall pattern sysnthesis consists in
the mathematical simulation of rainfall series. Two different approaches are available, either a
deterministic or astochastic procedure. A deterministic approach would use hydrometeorological
information about atmospherical conditions and known physical laws in order to model situations
when rainfall can occur. This approach includes, for example the numerical model developed by
Georjakakos (1987). Another example is the model developed by Collier and Hardaker (1996) and
Andrieu, et al (1996). Such models contribute to the basic understanding of rainfall generating
processes, but can hardly find application in practical hydrology problems because they require data
of a large number of geographical, oceancgraphical and meteoroiogical parameters.

Because of the complexity and strong dependence upon initial conditions of the precipitation process,
a stochastic approach is likely to be preferable to a purely physical model. In surface water
hydrology, Monte Carlo simulations are applied assuming the rainfall process and certain catchment
characteristics to be stochastically varying in space and time. In an effort to provide more concise
models of daily rainfall, several investigators have proposed stochastic models describing both rainfall
occurrence and the distribution of rainfall amounts at a point in space.

In the beginning of the twentieth century the study of stochastic structure of time series of rainfall data
began. It was observed that the wet and dry weather sequences have persistence. Mathematical
rainfall simulation models have traditionally used a stochastic approach for generation of space time
rainfall fields. This is partly due to the lack of knowledge regarding the physical mechanisms which
govern the spatial and temporal variability of rainfall and partly due to the difficulties in finding
sufficiently detailed spatial rainfall data with the desired temporal resolution. The stochastic models
constitute an important step forward as regards the parameterisation of the spatial and temporal
character of the rainfall fields. The statistical properties of the observed rainfali can be used in the
generation of future events. Mathematical models which can produce rainfall seriess are called
stochastic models.

Several stochastic models have been developed during the last two decades for the daily rainfall
occurrence. Early studies assumed that each storm was made up of a random number of rain cells
which occur in space and time according to a three dimensional point process and the resulting rainfall
could be described by a Poisson process. Later studies, however, considered rainfall to occur in
clusters and used the Neyman-Scott model in place of Poisson models. Cluster centers in the Neyman
Scott model are not rain cells, but are just points around which the density of cells is larger than in
other regions. Each cluster has associated with it a number of rain cells which is a random variable,
independent and identically distributed for each cluster center. In the cluster process the number of
cells in a storm is randomly distributed and the cell arrival times are exponentially distributed.

Recently, the use of Poisson cluster process in stochastic modelling of rainfall has been investigated
by several authors. The cell arrivals are modelled by a Poisson cluster process i.e. storm arrivals
form a Poisson process and a cell arrival distribution is assigned to each storm; the depth and duration
of the cell are modelled by exponential distributions.

The methodology used for generation of daily rainfall consists of two parts : the first determines the
occurrence of dry and wet days and the second generates the rainfall depth on wet days. For
reproducing the occurrence of the rain events, the techniques as discussed in the following sections
have been used.
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2.2.1 Markov Chain

Many hydrologic time series exhibit significant serial correlation. That is, the value of the random
variable under consideration at one time period is correlated with the values or the random variable
at earlier time periods. The correlation of a random variable x at one time period with its value k
time periods earlier is denoted by p , (k) and is called the kth order serial correlation. If p , (k) can
be approximated by p , (k) = p X (1), then the time series of the random variable x might be
modelled by a first order Markov process. A first order Markov process is defined by the equation:

Xivr = px T 0,(1) (X5 - ) + € 44 (1)

where, X; is the value of the process at time'i , p, is the mean of X, p, (1) is the first order serial
correlation and ¢, , , is a random component with E (¢) = 0 and Var (¢) = o®. This model states
that the value of X in one time period is dependant only on the value of X in the preceding time
period plus a random component. Further it is also assumed that e ; , ; is independent of X. If
the distribution of X is N (u,,0,”) then the distribution of € is N(0,0, 2y, random value of X,
can now be genrated by selecting ¢ ; , , randomly from a N (0, o, ?) distribution.

Thus a model for generating X s that are N (i, 0,2) and follow the first order markov model is:

Kior = e + 00(1) ;- ) + & 41 0 102 (1) (&

The procedure for generating a value for X ; , , is to estimate p, , o, and by X, S, and r, (I)
respectively and then select t; , , at random from a N (0, 1) distribution and calculate X;, ; based
on X, S, and r, (1) and X, In this approach events are considered to belong to a certain number of
states. No rain is one state and the other states which are wet may be only one or several. The
probability of a day belonging to a certain state is dependent on the occurrence of belonging to a
certain state is dependent on the occurrence of several previous states.

Equation (2) generates normally distributed X s with a mean of y, variance of axz and first order
serial correlation of p , (1). For a first order Markov process, the lag k serial correlation p , (k)
is given by:

px (k) = pc k(1) 3)

Thus, the correlogram exponentially decays from p, (0) = 1 to p, (%) = 0 according to equation
(3). If an oserved correlogram has this property, the Markov model may be an appropriate
generating model.

Haan et. al. (1976) developed a stochastic model based on a first order Markov Chain to simulate
daily rainfall at a point. The model uses historical rainfall data to estimate the Markov
transitional probabilities. The model was said to be capable of simulating daily rainfall records of
any length based on the estimated transitional probabilities and the frequency distribution of
rainfall amounts.

Roldan and Woolhiser (1982) and Woolhiser and Roldan (1982) used a first order Markov chain
as the occurrence process and a mixed exponential distribution for the daily rainfall. The model
was reported to have performed better than other alternatives.
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224 Stochastic Modelling of Rainfall

2.2.2 Transition Probability Matrix Method
The essential features of this method are:

(i)  the range over which rainfall is expected to vary is divided into set of discrete
intervals.

(ii) a matrix corresponding to the intervals is built up from the observed rainfall
sequences by tabulating the number of times the observed data went from state i to
state j denoted by n ; ; as follows :

Final state
Starting state

0 1 2 3
0 Do |Re1 . |Roz |Pos
1 Do |y M2 (M3
2 Do |n,, |n,, (M3
3 N3, N3 |03 033

(iii)  the m x m transitional probabilities matrix is p = [p;] which is given by

Final state
Starting state

0 1 2 3

FO pOO. Po 1 p02 pgg

1 Pio |P11 Piz |P13
2 P20 p2[ p22 P23
3 Pso |P31 |Psz2 |P33

where, pgy =Ny /(Moo +Ng; +ngy +...... ) (4)
D=0 jgd Mg W yqg FRisFsinees ) (5)
and so on each p ; § being obtained by dividing n;; by the corresponding row total of the n;.

(iv)  After the transitional probabilities are estimated the next step is the simulation of
rainfall using appropriate distribution. The synthetic sequences were generated by
dividing the rainfall into a number of classes (intervals). The sequence of states are
built up by selecting a pseudo random number between 0 and 1 and then assigning
the state according as the value of u is less than or greater than py; + p,, and then
moving to the next state and so on

After trying as many as 13 classes Haan et. al. (1976) found six classes to be a reasonable choice.
Srikanthan and Mc Mohan (1982) used seven classes. The rainfall in the last class was generated
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using a shifted exponential distribution. Haan et. al. (1976) used a multi state 7 x 7 Markov chain
model and employed a uniform distribution for each of the wet states except for the last for which
an exponential distribution was assumed. The model was tested on data of seven rainfall stations in
Kentucky. A separate transition probability matrix was used for each month. The class distribution
for the states in the Markov chain were found by using geometric progression. The comparison of
simulated rainfalls with observed rainfalls indicated that the model generated rainfalls exceeded the
historical rainfalls on an average by about 2.5%.

2.2.3 Alternating Renewal Process

This process consists of alternating wet and dry spells. Wet spells are assumed independent and
belong to a particular distribution. Similarly dry spells are assumed independent and belong to
another distribution. Further, the two random sequences independent. The following definitions

apply :

(i) A wet spell is a sequence of wet days bounded on either side by a dry day.

(ii) A dry spell is defined likewise
(iii) Spells are assigned to the periods ( usually months or seasons) in which they begin.
(iv) A day is defined as wet if the rainfall exceeds a threshold value 6 mm

The first two assumptions could be satisfied by analysisng data on a monthly or seasonal basis. The
third assumption is checked by computing the correlation between wet and dry spells in each month.

Several distributions can be fitted to the data to model the lengths of wet and dry spells. Commonly
used distributions for wet and dry runs are ; the truncated negative bionomial distribution (TNBD)
and the shifted negative bionomial distribution (SNBD). The probability density function of the
TNBD is given by:

P(x-Kfea2l) - [K1 '(11:52’ (6)

in which x is the random variable, k is the length of the spell and p and r are parameters (0 < p <
1:-1 < r). If the rainfall is modelled on monthly basis, 24 parameters are required to be estimated
for equaton (6) for the whole year. In general, the development of rainfall model based on the
alternating renewal process requires long data series so that sufficient number of wet and dry spells
could be included. Data of 25 to 30 years when used for only a season are known to have performed
well.

The model for rainfall amounts must be one which describes the distribution of rainfall amounts on
days when it rains. The distribution is highly skewed and since the wet day is defined as a day on
which rainfall exceeds a threshold value & mm, a shifted or truncated distribution would model the
rainfall amounts well.

The shifted two parameter gamma distribution (SGD) has been frequently used to fit the rainfall
amounts. The probability density function of this distribution is given by:
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Fiipy = ”yve’;.pv("yk) (7)

in which y is the rainfall amount, T is the gamma function, and » and \ are parameters.

The mean rainfall of a wet spell depends on the length of the spell (Buishand, 1978 ). To account
for this, three types of rainfall are distinguished. These are :

(1) wet spells with a solitary wet day (type 0)

(i) a wet day with one adjacent day also wet (type 1)

(iii) a wet day with both adjacent days wet (type 2)

The probability density function in Eq. (7) is derived separately for each type of wet spell for each
month. The estimation of parameters p and r in Eq. (6) and » and A in Eq. (7) is done using the
method of maximum likelihood.

The generation of daily rainfall sequences is carried out in two steps. First, the lengths of wet spells
and dry spells are generated by coupling a uniform random number in the interval (0,1) to the
cumulative distribution function of TNBD. For wet spells of type 0, type 1 or type 2 the appropriate
random gamma variates are generated to obtain the values of daily rainfall.

2.3 Siudies in India

In India, Seth and Obeysekera (1979) used the transition probability matrix method for generation of
daily rainfall data in the Naula catchment of Ramganga basin in Uttar Pradesh. Singh and Kripalani
(1982) studied the dependence in daily rainfall of 12 stations and in daily rainfall of 10 meteorological
regions during the summer monsoon by analysing the rainfall as stochastic point process by fitting
several types of models like log model, Markov chains of order 1 and 2 to station data.

Rao and Reeves (1991) used the alternating renewal process model for simulation of daily rainfall
during monsoon season for one station in western India. They used the TNBD in their study. The
authors mentioned that in addition to simulating the monthly means and variances of the historical
series well the model also predicted the distributions of the west and dry spells of different lengths
adequately. Ramasastri (1993) applied the transition probability matrix and alternating renewal
process models for generating daily rainfall sequences using data of historical rainfall series of Jaipur
in Rajasthan.

3.0 GENERATION OF DAILY RAINFALL DATA - CASE STUDY

Generation of daily rainfall data has been done for one station Jaipur in east Rajasthan. Using 30
years (1961 - 1990) of historical rainfall data, ninety years of data are generated by the Transition
Probability Matrix Approach. The statistical parameters used for comparison of historical and
simulated series are:

(i) mean and standard deviation of monthly rainfall
(ii)  ayerage number of wet days (daily rainfall > 1. 0 mm)
(iii)  magnitude of maximum daily rainfall during the 30 years historical and simulated rainfall
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The comparison was done only for the monsoon season since rainfall during the remaining part of the
year is not significant.

For generation of daily rainfall data with the Transition Probability Matrix ( TPM ) method , seven

classes of rainfall were used. After a few trials with different values for the class limits, the
following class boundaries have been decided.

Table 1 : Class Boundaries (Trial I)

Cl_ass Boundary
in mm
Class
Number | Lower Upper
1 0. 001 0.9
2 1.0 2.9
3 3.0 6.9
4 7.0 14. 9
5 15.0 30. 9
6 31.0 62.9
7 63.0 o0

Depending on the highest observed rainfall and the average number of rainy days in each month,
varying number of classes have been used for different months. If the number of classes is k , the
upper class boundary for the kth class will be infinity. All the class boundaries given in Table I
above, therefore, apply only to a month where all the seven classes have been used. The classes used
in different months are given below:

Mon |Jan | Feb | Mar | Apr | May [Jun |Jul [ Aug | Sep | Oct | Nov | Dec
class | 4 4 3 3 5 6 7 7 6 4 4 4

Using the TPM model with the Box Cox Transformation for the last class and the apropriate number
of classes for different months as above, pinety years of data has been generated. The generated data
has been split into three samples of 30 years each and the different parameters for comparison with
the historical series have been computed and averaged. The results are presented in Table 2 (a ) to
Table 2 ( ¢ ). The mean and standard deviation of the monthly rainfall computed from the generated
daily rainfall data compared well with those of the observed series. The mean number of wet days
(days of daily rainfall more than 1.0 mm )
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Table 2(a) : Mean and Standard Deviation of Historical and Simulated
Rainfall for Monsoon Months - Station: Jaipur
Method : TPM Trial I Units : mm

Month Historical Simulated (I) | Simulated (IT) | Simulated (III)

Mean | s.d. Mean | s.d. Mean | s.d. Mean | s.d.
June 58.6 [74.0 |81.4 |66.1 49.1 31.9 |62.3 |54.3
July 227.1 | 181.4 | 250.6 | 125.8 | 198.3 | 122.0 | 175.4 | 115.3
August | 209.3 | 74.6 |221.1 |72.3 |221.0 | 98.0 |213.5 |94.4
Sept. 746 |74.2 [69.3 [39.7 |70.6 |49.6 |92.0 |55.6

Table 2 (b) :

Average Number of Wet Days* for Monsoon Months

Method : TPM Trial I Station : Jaipur

Month Historica | Simulated - | Simulated Simulated
1 ) (In) (III)

June 4.4 5.0 5.0 4.4

July 12.4 12.3 11.7 11.7

August 13.0 13.4 13.9 13.9

September | 5.6 59 5.7 6.5

Season 35.4 36.6 36.3 36.5

* A day with rainfall of 1.0 mm or more

Table 2(c) : Magnitude of Maximum Daily Rainfall During 30 years

To generate the extreme rainfall matching with the observed maximum one day rainfall another trial
has been made by changing the limits of the last class and making modifications to retain seven

Method : TPM Trial I Station : Jaipur Units : mm

Historical | Simulated Simulated Simulated
(4] aIn (I11)

287.0 130.4 168.0 160.8

in July in June in July in July

classes. The limits of the seven classes have been taken as given in Table 3.
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Table 3 : Class Boundaries (Trial II)

Class Boundary
4 mm
Class Lower Upper
Number
1 0. 001 0.9
2 1.0 6.9
3 7.0 14. 9
4 15.0 30.9
5 31.0 62.9
6 63. 0 124. 9
7 125. 0 )

The 90 years generated data have been divided into three samples of 30 years each as in the case of
Trail I. The results of comparison are presented in Table 4 (a) to Table 4 (c). It may be seen that
the generated data with class boundaries as in trail I was able to generate extreme rainfall values
comparable in magnitude to the observed extreme one day rainfall at Jaipur in July 1981. Also, the
mean and Standard deviation and the number of wet days in the different months of monsoon season
were comparable with the corresponding statistical parameters of the historical data.

Mean and Standard Deviation of Historical and Simulated
Rainfall for Monsoon Months - Station : Jaipur

Table 4 (a) :

Method: TPM Trial II  Units : mm
Month Historical Simulated (I) Simulated (I) Simulated (I)
Mean | s.d. Mean | s.d. Mean | s.d. Mean | s.d.
June 58.6 |74.0 |73.7 |70.7 80.7 |654 |[|745 |57.1
July 227.1 | 181.4 [224.6 | 1469 |265.9 | 168.2 |230.3 | 134.7
August 2093 |74.6 | 2219 |118.5 |219.5 | 79.8 1929 | 78.2
September | 74.6 74.2 71.7 59.7 78.9 60.4 78.1 60.2
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Table 4 (b) : Average Number of Wet Days* for Monsoon Months

Method: TPM Trial I  Station : Jaipur

Month Historical | Simulated (I) | Simulated (Ii) | Simulated (III)
June 4.4 5. 49 5:1

July 12.4 127 12.2 12.5

August 13.0 12.6 13.7 13.4
September | 5.6 6.3 6.5 6.2

Season 354 36.7 37.3 37.2

*

day with rainfall of 1.0 mm or more

Table 4 (c) : Magnitude of Maximum Daily Rainfall During 30 Years

Method: TPM

Trial II

Station : Jaipur Units : mm

Historical

Simulated (I)

Simulated (II)

Simulated (III)

287.0

255.0

252.7

277.8

4.0 CONCLUDING REMARKS

The performance of a stochastic model is judged to be satisfactory if the model parameters preserve
as much of the rainfall characteristics as possible. In any application of data generation methods, it
must be kept in mind that data generation cannot improve or overcome faulty data. At best one can
generate a set of data having statistical properties equal to the properties of the sample used in

estimating the population parameters. In addition to this, data stochastically generated is subject to
the same sampling errors as natural data.
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FIGURE 1. B SEVERAL REALIZATIONS OF A STOCHASTIC PROCESS.
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