STOCHASTIC MODELLING IN HYDROLOGY

Any time series can be expressed as a linear combination of a trend component, a periodic
component, a dependent component, and an independent residue component in the form:

Time series = trend component + periodic component + dependent
stochastic component + independent residue
component 1)

When the components are nonlinearly related, the relationship can often be made linear by taking
logarithms. Time series analyses involves the decomposition of the series in to constituent
components.

A series may be stationary or nonstationary. Some nonstationary series may be made stationary by
suitable treatment.

PRELIMINARY TESTS
Trend analysis

A steady and regular movement in a time series through which the values are, on average, either
increasing or decreasing is termed a trend. This type of behavior can be local, in which case the
nature of the trend is subject to change over short intervals of time, or, on the other hand, we can
visualize a global trend that is long lasting. Long term trends are more appropriate to the study of
hydrological time series.

Tests for detection of trend

A number of tests exist for the detection of a trend, e.g. the turning point test, Kendall’s rank
correlation test (Kottegoda 1980), and regression test for linear trend.

i} Turning point test

In an observed sequence x,t = 1,2,3....,N, a turning point or p occurs at time t=i if x is
either greater than x and x or less than the two adjacent values. The number of turning points p in
a series is expressed as a standard normal variate in the form:

£ om PP )
vVar (p)
: T . 2(N-2
where, p = the expected number of turning points in a random series = 3
‘Var(p) = the variance of p = 16 1\;629

N = the number of observations.

ii) Kendall’s rank correlation test:

This test is also based on the proportionate number of subsequent observations which exceed
a particular value. For a sequence x ,x ..... , X. The standard procedure is to determine the number
of times, p, in all pairs of observations (x ,x ;j > i) that x is greater than x ; the ordered(i,j) subsets
are (i=1,} =2,3,4,.....,N), (i=2,j=3,4,5,....,N),...,(I=N-1,j=N). The test is carried out using the
statistic t defined as:
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The statistic is then expressed as a standard normal variate in form:
PAPRORE. it )
vVar (1)

where, ’F_ = the expected number of t if the series is random (0,if random);
and var(T) = its variance :

_ 2(2N+5)
IN(N-1)
The computed standard normal variate is then compared with the standard normal variates from
published tables at a given level of significance. If the calculated value of z is within the region of

acceptance, the hypothesis of no trend is accepted. If a trend is detected, it can be removed by
Afitting a regression equation. An approximate model for describing trend is the polynomial type:

X, =%, +oyt +ap & +ot +.eennee. +a, t" + g - (5)

in which g is a residual term.
iii) Regression test for linear trend:

This is an alternative type of test to be used if it is thought that the trend is approximately
linear. Standard methods of linear regression are used for the purpose. If we refer to equation (4),
the hypothesis to be tested in this case is o = 0.The first step is to estimate a and and its variance
which are denoted by & and &, respectively; the statistic t = &/ o, is then tested.
Periodicity analysis
Detection of Periodicity
Detection of periodicity can be made by ;he auto-correlation (time-domain) and/or spectral
(frequency-domain) analysis. If the series is periodic, the auto-correlogram will also be periodic. In
the spectral density function, periodicity will appear as a peak at a frequency corresponding to the

periodicity. The auto-correlation function and the spectral density function assuming stationarity, arz
given by:

arlE XD (x.-D)
L XX -B?

(6)

rk:

and

i
G(f)=2Atro+2E rcos(2nfk) + r,cos (2rrfk)} (7)
K=1
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where,
r, = the serial auto correlation coeff. at lag k;
X, = the observation at time t ;
G(f) = the raw spectral density function;
f = frequency;
At = time interval between two observation; and
M = the maximum lag considered in the auto-correlogram

Representation of periodicity

If periodicity exists, it can be represented by a Fourier Series. The trend, if any, is assumed to have
been removed at this stage. The Fourier series representation takes the form:

m-p#%ﬁi cos (2m v/p) +B; sin (2m 7/pj | (8)

where,
m, = the harmonically fitted means at period t(t =1,2,..p);
p = the population mean;
h = the total number of harmonics considered(=p/2 or (p+1)/2
depending on whether p is even or odd);
p = the period; and
A;, B; = Fourier coefficients of i harmonic.
i = integer index identifying harmonic

It is to be noted that the period p is referred to the first harmonic. For other harmonics, the
arguments of the trigonometric function in eq. 10 are 2x7/(p/i). The best estimate of the Fourier
coefficients can be obtained by minimizing the £(m, - x,), as given below:

A =I%i:?xrcos (2mr/p),i=1,2,....,h.

B,.=I%5:x,,sin (2w r/p) i =1,2, .u. ., h.
=P (-

x, =B % x +p(i-1)

For monthly data p=12, and therefore h=6. But for the most practical purpose, it may not be
necessary to expand the Fourier series up to the maximum number of harmonics. By examining the
cumulative periodigram, it is possible to determine the relative significant of each harmonic and thus
obtain the maximum number significant harmonic h* (Salas et al. 1980). The cumulative periodigram
P;, defined in the following, will show a rapidly rising part upto h* and increase slowly thereafter
upto its maximum value of unity at h.

NATIONAL INSTITUTE OF HYDROLOGY, ROOREEE



236 Stochastic Modelling in Hydrology

oo

P = (12)

1 Y
p,.%(xf 1)

where,
i = 1 toj, in decreasing order of magnitude
p = the estimate of m is the mean of x

Now the periodic component 'm,’ should be deducted from the series X, which resulted in the
following new series "Z,’:

Z, =X, -m (13)
where,
Z, = data series at time t, after removal of trend and periodic components.
m, = periodic component of series X

In general, time series of environmental derivation fall into one of the following four categories

1. Time series that are composed of some periodicity, a certain degree of randomness, plus a
mean with a time trend. Series of this type might be observed in cases where stream water
quality is monitored over a relatively long period of time in an area experiencing industrial
development.

2. Time series that are largely periodic and may include several distinct frequencies. Stream
water temperature and tidal behavior generally result in time series of this type.

3. Time series that are composed of some periodicity and some degree of randomness. An
example of this type can be found in the time.records of dissolved oxygen in a river or
estuary.l |

4.  Time series that appear to be characterized almost entirely by random variation. Over a
relatively short period of time, the avefage daily sewage flow to a waste treatment plant might
yield this type of time series.

It must be emphasized that the categorization of a time series is dependent not only on the length of
record but also on the particular statistic of the parameter of interest which is used. For example,
although the average daily sewage flow may give a time series of type (4), the hourly flow may
exhibit behavior that would assign it to type (2) or (3).

Modelling of Stochastic Component

The stochastic component of the series is obtained by substracting the periodic component defined by
Fourier series from the trend free series. The remaining series may have only dependent stochastic
component or independent stochastic component or both the dependent and independent stochastic
components. Before the further analysis it isnecessary to test the series for dependency or
independency.
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General Steps in Model Building

The main object of Box-Jenkins analysis is to find a good model that describes how the observations
in a single time series are related to each other. An ARIMA model is an algebraic statement showing
how a time series variable (z) is related to its own past values (z,,, z,,, Z.3, ....... ). Consider the
algebraic expression:

Z, =C+2Z, +a, (14)

Equation (14) is an example of an ARIMA model. It says that z, is related to its own immediately
past values (z.;). C is a constant term. ®, is a fixed coefficient whose value determines the
relationship between z, and z, ;. The a, is a probablistic "shock" element.

The term C, &, z,,, and a, are each components of z,. C is a deterministic (fixed) component, ¥,
Z,y is a probabilistic component, since its value depends in part on the value of z,,, and, a, is a
purely probalistic componeat. Together C and 7 z represent the predictable part of z while a is a
residual element that cannot be predicted within the ARIMA model. However, the a term assumed
to have certain statistical properties.

The process of model building development by Box and Jenkins involved three basic stages, e.g.

identification, estimation, and diagnostic checking. The three stage procedure is summarised
schematically in Fig. 1.

Stage 1l:Identification Choose one or more ARIMA | <
models as candidates

Estimate the parameters
Stage 2:Estimation of the model (s) chosen
at stage 1

Check the candidate
Stage 3:Diagnostic checking model (s) for
adequacy
if yes Is model if no
Forecast < satisfactory?
Fig.1

Stage 1: Identification
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At the identification stage we use two graphical devices to measure the correlation between the
observation within a single data series. These devices are called as estimated autocorrelation fuction
(abbreviated acf) and an estimated partial autocorrelation function (abbreviated pacf). The estimated
acf and pacf measure the statistical relationships within a data series in a somewhat crude (statistically
inefficient) way. Nevertheless, they are helpful in giving us a feel for the patterns in the available
data.

The next step at the identification stage is to summarize the statistical relationship within the data
series in a more compact way than is done by the estimated acf and pacf. Box and Jenkins suggest
a whole family of algebraic statements (ARIMA models) from which we may choose. Equation (14)
is an example of such a model.

We use the estimated acf and pacf as guides in choosing one or more ARIMA models that seem
appropriate. The basic idea is this: every ARIMA model, say as eqation (14), has a theoretical acf
and pacf associated with it. At the identification stage we compare the estimated acf and pacf
calculated from the available data with various theoretical acf’s and pacf’s. We then tentatively choose
the mode!l whose theoretical acf and pacf most closely resemble the estimated acf and pacf of the data
series. Note that we do not approach the available data with a rigid, preconceived idea about which
model we will use. Instead, we let the available data "talk to us” in the form of an estimated acf and
pacf.

Which ever model we choose at the identification stage, we consider it only tentatively: it is only a
candidate for the final model. To choose a final model we proceed to the next two stages and perhaps
return to the identification stage if the tentatively considered model proves inadequate.

Stage 2: Estimation.

At this stage we get precise estimates of the coefficients of the model chosen at the identification
stage. For example, if we tentatively choose equation (14) as our model, we fit this model to the
available data series to get estimates of f and C. This stage provides some warning signals about the
adequacy of our model. In particular, if the estimated coefficients do not satisfy certain mathematical
inequality conditions, that model is rejected.

Stage 3 : Diagnostic checking

Box and Jenkins suggest some diagnostic checks to help in determining whether the estimated model
is statistically adequate or not. A model that fails these diagnostic tests is rejected. Furthermore, the
results at this stage may also indicate how a model could be improved. This leads us back to the
identification stage. We repeat the cycle of identification, estimation, and diagnostic checking until
we find a good final model. As shown in fig.1, once we find a satisfactory model we may use it for
forecasting purposes.

The iterative nature of the three-stage Box-Jenkins modeling procedure is important. The estimation
and diagnostic-checking stages provide warning signals telling us when, and how,a model should be
reformulated, We continue to reidentify, reestimate, and recheck untill we find a model that is
satisfactory according to several criteria. This iterative application of the three stages does not
guarantee that we will finally arrive at the best possible ARIMA model, but it stacks the cards in our
favor.

Analytical tools for ARIMA Modelling
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The two analytical tools estimated autocorrelation function (acf) and estimated partial auto-correlation
function (pacf) are very important at the identification stage of the Box-Jenkins modelling procedure.
They measure the statistical relationship between observations in a single data series. These are most
useful when presented in their graphical forms as wellas in their numerical forms.

i. Estimated autocorrelation function

The idea in autocorrelation analysis is to calculate a correlation coefficient for each set of
ordered pairs (Z,, Z, ) of the same series and the resulting statistic is called an autocorrelation
coefficient which is represented by the symbol r,. The graphical representation of autocorrelation with

the lag k is called auto correlogram.

An estimated autocorrelation coefficient (r,) is not fundamentally different from any other sample
correlation coefficient. It measures the direction and strength of the statistical relationship between
ordered pairs of observations on two random variables. It is dimension less number that can take on
values only between -1 and +1, value of -1 means perfect negative correlation and a value of +1
means perfect positive correlation. If r, =0 then Z,_, and Z, are not correlated at all in the available
data.

The standard formula for calculating autcicorrelation coeff, 1_s given by equation (6). Equation (6) can
also be written more compactly since z, is defined as (z, -z ), substituting accordingly and (6)
becomes:

n-k
E Zr Z: -k

-
—

ry = (15)

tg= |

(Z)*

1
—_

[

Box and Jenkins (1976) suggest that the maximum number of useful estimated autocorrelations is
roughly N/4, where N is the number of observations.

ii. Estimated partial autocorrelation functions

An estimated partial autocorrelations functions (pacf) is broadly similar to an estimated acf.
The estimated pacf is used as a guide along with the estimated acf in choosing one or more ARIMA
models that might fit the available data.

The idea of partial autocorrelations analysis is that we want to measure how z, and Z, ., are related
but with the effects of the interesting z’s accounted for (i.e adjusting the impact ofany z’s that fall
between the ordered pairs in question). The estimated partial autocorrelations coefficient measuring
this relationship between Z, and Z, ., is desinged by statistic kk.

The most accurate way of calculating partial autocorrelation coefficient is to estimate a series of least
square regression coefficient. But this mettod is complicated and require a large amount of calculation
and computer memory requirement as the number of lag increase. There is a slightly less accurate
though computationally easier way to estimate the f coefficients. It involves using the previously
calculated autocorrelation coeffecients(r ).

As long as the data is stationary the following set of recrusive equations gives fairly good estimates
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of the partial autocorrelations.

kz—%q}
rk K -I,jrk—]
= j=l
D =
1 qu"i"’ r
(k =234, ... )

where,

Pk = Rpay O By (18)

k=234,..... L i=1,23,. k.

For an independent series,the population correlogram is equal to zero for k=0. However samples of
independent time series, due to sampling variability, have r, fluctuating around zero but they are not
necessarily equal to zero. In such case it is useful to determine the probability limits for the
correlogram of an independent series. Anderson (1941) gave the limits:

ru9sy = L5 R (19)
and
r,(99%) = —122:23 (20)

for the 95 percent and 99 percent probability levels respectivaly and N is the sample size.

The another way of testing the independecy is to calculating the T-value for each r, to measure its
statistical significance. Any absolute t-value larger than 2 indicates that the corresponding r, is
significantly different from zero. The t-statistic for r is:

_ Tk " Pk
e S(ry)

(21)

where,
r, = calculated value of autocorrelation at lag k
px = hypothesized value (= zero)
S(r,) = estimated standard error which is determined by the following formula
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k-1 '
Stry) = (1+2 Erﬁ] (23)
=l
the t-statistic for ®,, is:
3, - @
E(D z oo KK (24)
(P ) S(3,.0)

where,
S(®,,) = estimated standard error which is given as:

Sl = N2 (25)
Modelling of Different ARIMA Models and Their Associated Charcteristics
Identification

At the identification stage we compare the estimated acf and pact with various theoretical acf"s
and pacf"s to find a match. We choose as a tentative models from the ARIMA process whose
theoritical acf and pacf best match the estimated acf and pacf. In choosing a tentative models we
keep in mind the principle of parsimony i.e we want a models that fits the given realization with
the smallest number of estimated parameters.

Table 2 state the major characteristic of theoritical acf’s and pacf’s for stationary AR ,MA, and
mixed (ARMA) process.

Table 2: Primary distinguishing characteristics of
theoritical acf’s and pacf’s for stationary process

Process acf pact
AR Tails of towards zero exponential | cuts off to zero. (after lag p)
decay or damped sinewave)
MA Cuts off to zero (after lag q) Tails off toward zero
exponential decay or damped
sine wave).

ARMA Tails off toward zero. Tails off toward zero.

The ARIMA models of higher order (i.e., order greater than 2) do not occur often in practice. The
characteristics of commonly used processes with their mathematical expressions, and their associated
condition are discussed below:
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AR processes

All AR processes have theoretical acf’s which tail off toward zero. This tailing off might follow a
simple exponential decay pattern, a damped sine wave, or more complicated decay or wave patterns.
But in all cases, there is a damping out toward zero. An AR theoritical pacf has spikes up to lag p
followed by a cutoff to zero, where p is the maximum lag length for the AR terms in a process; it
is also called the AR order of a process. Mathematically,the commonlly used AR processes are
represented as follows:

AR(1):The common algebraic form of a stationary AR(1) process is:

zZ=c+ ¥z, + g (26)
in backshift form this can be written as follows:

(1-8,B)z, =a 27)

The estimated AR coefficients must satisfy the stationary requirement, according to which absolute
value of ®, should be less than one i.e:

|®| <1 (28)

AR(2): The algebraic and backshift form of AR(2) process are given as:
Zy = c + @1 Zy + @2 Zia = al (29)
(1-$,B-8B)z, =a (30)

For an AR(2) process, the stationary requirement is a set of three conditions:

|®,| <1 (31)
$ +& <1
d +3 <1

MA processes
An MA process has a theoretical acf with spikes up to lag q followed by a cutoff to zero, where q
is the maximum lag, also called the MA order of the process. Furthermore, an MA process has a
theoretical pacf which tails off to zero after lag q. This tailing off may be either some kind of
exponential decay or some type of damped wave pattern. In practice, q is usually not larger than
two for nonseasonal data.The mathematical expressions for MA(1) and MA(2) processes with their
invertibility conditions are given below.
The algebraic form of MA(1) and MA(2) processes are:
z,=c¢c-0 8, +a4 (32)
z, =c-0,a, -0, a, +a 33)

In backshift form the MA(1) and MA(2) processes can be written as:
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(1-0,B)a, =2z, (34)
(1-0,B-8,B)3 =2, (35)

The MA processes must satisfy the invertibility conditions which are identical to the stationary
requirements on AR coefficients. -

For MA(1) process, invertibility requires that the absolute value of ¢, be less than one:
1041 <1 (36)
For MA(2) process the invertibility requirement is a set of conditions on ¢, and ¢,:
| 0] <1
0, +6,<1
0,-0,<1 (37)
ARMA processes:

Mixed processes have theoretical acf’s with both AR and MA characteristics.The acf tails off
toward zero after the first q-p lags with either exponential decay or a damped sine wave. The
theoretical pacf tails off to zero after the first p-q lags. In practice, p and q are usually not larger
than two in a mixed mode! for nonseasonal data.

The mathematical expressions for ARMA(1,1) and ARMA(2,2) processes are as follows:

z=c+ ¢, 7, -0, a, +'a.t (38)
z=c+ ¢, 2y -0, a, + ¢, z, -0, a, + a 39)
The backshift form of ARMA(1,1) and ARMA(2,2) are:
(1-¢; By z, =(1-8; B)g, (40)
(1-¢, B-¢, B)z, =(1-6, B-0, B)a, (41)

The ARMA(1,q) and ARMA(2,q) processes should satisfy the stationary requirement of AR(1)
and AR(2) processes respectively. Similarly, the ARMA(p,1) and ARMA(p,2) should meet the
invertibility requirements of MA(1) and MA(2) processes respectively, as explained earlier.

Estimation

At the identification stage we tentatively select one or more models that seem likely to provide
parsimonious and statitically adequate representations of the available data. In making this
tentative selection, a rather large number of statistics (autocorrelation and partial autocorrelation
coefficients) were calculated to make proper judgement. For example, with N observations about
N/4 autocorrelation and partial autocorrelation coefficient were calculated. Estimating so many
parameters is not really consistent with the principle of parsimony. This nonparsimonious
procedure is justifiable only as an initial, rough step in analyzing a data series. The broad
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overview of data contained in the estimated acf and pacf is that it gives a right direction to identify
one or more appropriate models.

ARIMA coefficients estimation can be made by three different criterion discussed as below:

i) Method of moments
ii) Method of least square
iii) Method of maximum likelihood

When selecting an estimator or a method of estimation the two important properties should be
considered. It is preferable to have both desirable properties: an unbiased estimator and a minimum
mean square error (MSE) estimator. In some cases an estimator may be unbiased but it may not be
minimum MSE estimator. In other cases it may be the opposite. Furthermore, estimators often are
biased and do not have a minimum MSE. Therefore, when selecting among alternative estimators,
a criteria is to select the estimator with the smallest bias and the smallest MSE. When this is not
possible, the analyser must judge which of the two properties is more desirable for a particular case
and select the estimator accordingly.

Box and Jenkins (1976) favour estimates chosen according to the maximum likelihood (ML) criterion.
Mathematical statisticians frequently prefer the ML approach to estimation problems because the
resulting estimates often have attractive statistical properties. However, finding exact ML estimates
of ARIMA models could be cumbersome and may require relatively large amounts of computer time.
For this reason, Box and Jenkins suggest the use of least squares (LS) criterion.If the random shocks
are normally distributed then LS estimates are either exactly or very nearly ML estimates.

The estimation of parameters by the method of moments is usually not difficult to obtain and it is
simpler than the estimation by the other methods. Except for the estimatate of the mean, the moment
estimates of other parameters are usually biased, although adjustments can be applied to make them
unbiased. Moment estimates are asymptotically efficient when the underlying distribution is normal.
For skewed variable though, the moment estimators generally are not asymptotically efficient.

As, in the actual field problems lower order ARIMA models are used, quite successfully. Hence in
present study the ML criterion (Box-Jenkins,1970) is used for estimating the model parameters.

Diagnostic Checking

At this stage we decide if the estimated model is statistically adequate. Diagnostic checking is related
to identification in two important ways. First, when diagnostic checking shows a model to be
inadequate, we must return to the identification stage to tentatively select one or more other models.
Second, diagnostic checking also provides clues about how an inadequate model might be
reformulated.

The most important test for the statistical adequacy of an ARIMA model involves the assumption that
the random shocks are independent. A statistically adequate model is one whose random shocks are
statistically indepedent, meaning not autocorrelated. In practice we can not observe the random shocks
(ap), we do have the residuals (4, ) calculated from the estimated model. At the diagnostic checking
stage we use the residuals to test hypothesis about the independence of the random shocks.

The basic analytical tool at the diagnostic checking stage is the residual acf. A residual acf is basically
the same as any other estimated acf. The only difference is that we use the residuals (4, ) from an
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estimated model instead of the observations in a realization (z,) to calculate the autocorrelation
coefficients. To find the residual acf we use the same formula( ), but we apply it to the estimation
stage residuals:

nf(‘ff 75) (éuk*a_)
r(a) = 2L — (42)
Z(‘i:70_)2

=1

The @, in parentheses on the LHS of (42) indicates that we are calcualting residual autocorrelations.
The idea behind the use of the residual acf is this: if the estimated model is properly formulated, then
the random shocks (4, ) should be uncorrelated. If the random shocks are uncorrelated, then our
estimates of them (4, ) should also be uncorrelated on average. Therefore, the residual acf for a
properly built ARIMA model will ideally have autocorrelation coefficients that arc all statistically
Zero.

t-test

Having calculated and plotted the residual autocorrelations, it is important to determine if each is
significantly different from zero. The Bartlett’s approximate formula,as introduced earlier in eq.(23),
to estimate the standard errors of the residual autocorrelations. When applied to residual
autocorrelations, the formula is:

P 1/2
S[r,(d)] = (1+2E rj(é)z) N2 (43)
=1

Having found the estimated standard errors of r, (4 ) from equ. (43), the null hypothesis H, : oy (a)
= 0 for each residual autocorrelation coefficient can be tested. The symbol p and the a in parentheses
indicate that we are testing a hypothesis about the random shocks in a process. We do not have p,(a)
values available, but we have estimates of them in the form of the residual autocorrelations ry (4 ).
We test the null hypothesis by calculating how many standard errors (t) away from zero each residual
autocorrelation coefficient falls:

r,(a)-o
] oA 6 . T 44
S [1p(3) ] e

In practice,if the absolute value of a residual acf t-value is less than (roughly) 1.25 at lag 1,2,and
3,and less than about 1.6 at larger lags, we conclude that the random shocks at that lag are
independent. We could be wrong in this conclusion, of course, but we always run that risk when
miaking decisions based on sample information (Pankratz,1983).

If any rgsidual acf t-value is larger than the critical value suggested above, we tentatively reject the
null hypothesis and conclude that the random shocks from the estimated model are correlated and that
the estimated model may be inadequate. We then tentatively identify a new model and estimate it to
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see if our suspicion is justified.
Chi-squared test

This is the another way of diagonostic checking, in this the following joint null hypothesis about the
correlations among the random shocks-

Hy:p;(@) =py (@) = connenn. = pg (a) = (45)

with the test statistic

0 - N(N+2)é(N—k) 1y }(4) (46)

where N is the number of observations used to estimate the model. The statistic Q* approximately
follows a chi-squared distribution with (K-m) degree of freedom, where m is the number of
parameters estimated in the ARIMA model. This approximate chi-squared test is sometimes referred
to as a Ljung-Box test. If Q* is large (significantly different from zero) it says that the residual
autocorrelation as a set are significantly different from zero, and the random shocks of the estimated
model are probably autocorrelated. We should then consider reformulating of the model.

Modelling of Independent Stochastic Component

After indentification of the seasonol stochastic component, it was separated from the series. The new
series after separation, is called as the independent stochastic component. The modelling of
independent stochastic component is done by fitting the probality distributions. Now the question
arises that which probability distribution should be fitted to the given data. The choice is wide, and
it is likely that several probabilty distributions will fit the data equally well; the decision which to use
must then be subjective. This is particularly true if the sample of data volume is small, since tests for
the goodness of fit of possible distributions will have little power(i.e. these will be high probability
of accepting the hypothesis that the data are consistent with the given distribution, even when this
hypothesis is false).

Fitting a probability Distribution

A probability distribution is a function representing the probability of occurence of a random variable.
By fitting a distribution to a set of water quality data, a great deal of the probabilistic information in
the sample can be compactly summarized in the function and its associated parameters. Fitting
distributions can be accomplished by the method of moments or the method of maximum likelihood.

i. Method of Moments

In this method it is considered that the good estimates of the parameters of a probability
distribution are those for which moments of the probability density function about the origin are equal
to the corresponding moments of the sampple data. If the data values are each assigned a hypothetical
mass equal to their relative frequency of occurence(1/n) and it is imagined that this system of masses
is related about the origin x=0, then the first moment of each observation x about the origin is the
product of its moment arm x and its mass y , and the sum of these moments over all the data is the
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sample mean, given as follows-

N =
Ly, =% (47)

1
LN TN

X
N

This is equivelent to the centroid of a body. The corresponding centroid of the probability density
functions is-

y:fxf(x)dx (48)

a

ii. Method of Maximum Likelihood

In this method it is considered that the best vatue of a parameter of a probability distribution
should be that value which maximizes the likelihood or joint probability of occurence of the observed
sample. Suppose that the sample space is devided in to intervals of length dx and that a sample of
independent and identically distributed observation Xx;, X, ...., X, is taken. The value of the
probability density for X = x, is f(x;), and the probability that the random variable will occur in the
interval including x; is f(x; )dx. Since the observations are independent, their joint probability of
occurence is given by the product:

{f(x,) dx} { f(x,) dx.}....{f(x,)dx} L'g'lf (x;) ] dx®

and since the interv size dx is fixed, maximising the joint probability of the observed sample is
equivalent to maximising the likelihood function:

L%f (x:) ] (48)

Because many probability density functions are exponential, it is sometimes more convenient to
work with the log-likelihood function-

In(L) = %1n[f(xi)] (49)
i=1

The method of maximum likelihood is the most theoritically correct method of fitting probability
distributions to data in the sense that it produces the most efficient parameter estimates-those which
estimate the population parameters with the least average error. But, for some probability
distributions, there is no analytical solution for all the parametrs in terms of sample statistics, and the
log-likelihood function must then be numericallly maximized, which may be quite difficult. In genral,
the method of moments is easier to apply then the method of maximum likelihood and is more
suitable for practical analysis.
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Various Probability Distributions for Hydrologic Variables

In this section, a selection of probability distributions commonly used for hydrologic variables is
presented.

i. Log-normal Distribution
This has the following functional form:

1
yoZm

= = 2
(logze,v2 H) ]dy,0<y<a (50)
()

f(y) = exp

The properties of this distribution are-
i) that the variable Y = log, y has a normal or ganssian distribution with mean m and variance o2.
i) that is unimodal, skewed, with a ‘tail’ extending to right.

ii. The two-parameter Pearson Type III (gamma) distribution:
This has the following functional form:

I.)p-lexp(— % )dy

f(y)dy = e ==

, 0<y<a,p>1

al'p

Some properties of this distribution are:

i) that its shape is determined by the two parameters a and p-

i) that its mean is ap and its variance a® p.

iii) that it is unimodal for p> 1, skewed, with a ‘tail’ extending to the right.

The parameters a and p may be estimated by the method of moments or by the method of maximum
likelihood.

iii. The three Parameter Pearson Type III distribution:

This distribution has the following functional form:

1
f(y)dy = Ef_p(y_%

p-lexp{f():—a)]dy,a<y<a,a>0 (52)

which is determined by the three parameters, p, «, and 0. These may be estimated either by the
method of moments or the method of maximum likelihood.
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