UNCERTAINTY ANALYSIS OF HYDROLOGIC AND WATER
QUALITY MODELS

Typically hydrologic and water quality models are complex collections of algorithms combined in
such a way as to mathematically mimic some hydrologic system. We might write a generic model
as:

O= fLEBG+E (D

where, O represents the outputs being modeled, I represents the inputs to the model such as
rainfall, temperature, etc., P represents the parameters required by the model and e represents
errors associated with the modelling process.

One axiom of stochastic processes is that any function of a random variable is itself an random
variable. Thus if any of the variables in I and/ or P are uncertain and known only in a
probabilistic sense, then O is also uncertain and can be known only in a probabilistic sense. What
this means in the context of hydrologic and water quality modelling is that if we are uncertain
about I or P, then we are uncertain about O as well. Uncertainty is transferred from the inputs
to the outputs.

As added complication with hydrologic and water quality models is that in general there are
several uncertain parameters. We must be sure in any uncertainty analysis dealing with more
thana one variable that we do not violate relationships that exist among the input parameters. If
parameters tend to vary together in real life, then we must preserve this joint variability structure
in our uncertainty analysis. We are talking about the correlation structure among the independent
variables. Those of you who have worked with hydrologic and water quality models and
attempted to find optimal parameters values known what I mean when I talk of a correlation
structure among the parameters. Optimal values of one parameter are dependent to a certain
degree on values assigned to the correlated parameters. Correlation and its computation are
discussed in Haan (1977).

UNCERTAINTY ANALYSIS

Determining the uncertainty to assign to input parameters is one of the major hurdles that must be
addressed in the overall evaluation of uncertainty associated with hydrologic and water quality
modelling. If we are fortunate, the user manual will provide some guidance in estimating
parameter values. Using this guidance and our own experience, we must come up with a single
best estimate or expected value for each of the parameters. We need to investigate limits on
parameters and suggested ranges of parameter values. If the parameters is a physically
measurable parameter, we need to look into the literature and see what kind of variability is
reported for the parameter. Our goal is to come up with the following quantities in order of
priority:

1. Expected value
2. Variance
3. Distributional shape

Typically one might find a table of suggested values that give average values and ranges for the
parameters under a variety of conditions. What can be done is to take the suggested value as the
expected value or mean parameter estimate. The range might be taken as 2 or 3 standard deviations.
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For example a table of Manning’s n for a natupal stream that is winding with pools and riffles might
show a minimum of 0.035 and a maximum of 0.050. From this several possibilities are available.
We might assume a uniform distribution with = 0.035 and = 0.050. This assumes any value in the
interval is as likely as any other and that values outside the interval are not possible. We might
assume a triangular distribution with the minimum at 0.035, maximum at 0.50 and mode at 0.042.
We might assume a normal distribution with mean = 0.042 and a standard deviation of 0.015/2 or
0.0075. This latter assumption would, of course, allow for values smaller than 0.035 and larger than
0.050. If we can only estimate x, we might take Cy, = 0.2 or 0.3 and then s = Cy X.X and s are
more important than the pdf that is used.

Assessing the correlation structure among parameters is much more difficult. For physical parameters
such as bulk density, K %OM, % clay, etc., we might find some field data from which the
correlation matrix might be calculated. In other cases we might have to rely on a rational analysis
of the parameters. In the case of pseudo physical parameters or parameters designed to describe
something physical but which in themselves are not physically measurable, one has to resort to
experience and assumptions.

At this point it is apparent that considerable work may be involved in gathering the data required to
characterize the uncertainty in each parameter and the parameters as a whole. One would not want
to go to all this work unless in fact the parameter was important to the process being modeled. If a
parameter has little impact on the output of a model, we don’t want to spend a great deal of time
estimating that parameter or worrying about uncertainty in that parameter.

SENSITIVITY ANALYSIS

The processes for identifying important parameters include sensitivity analysis. We desire to
determine the sensitivity of model outputs to changes in values for model inputs. Two types of
sensitivity coefficients are used. One is called an absolute sensitivity coefficient or simply the
sensitivity coefficient, S, and the other a relative sensitivity coefficient, S. These are given by

S

1}

90 s =90 P (2)
aP

where, O and P represent particular model outputs and parameters respectively. S gives the absolute
change in O for a unit change in P while S gives the % change in O for a 1% change in P.
Graphically the terms in these relationships are shown below.

Obviously for most hydrologic and water quality models, numerical procedures must be used since
analytic partial derivatives can not be obtained. Thus one has to approximate the above derivatives
by

N
|
R
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where, P is given by (P; + P,)/2 and O is given by (O; + 0,)/2. When evaluating these partial
derivatives, all other parameters are set at their expected values. The derivatives are also taken about
the expected value of P.
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I prefer the relative sensitivity coefficients since they are dimensionless and can be compared across
parameters while the absolute sensitivity coefficients have units of output over input and can not be
directly compared across noncommensurate parameters.

Parameters can be ranked on the basis of their relative sensitivity coefficients and only the most
sensitive ones retained for further analysis.

FIRST ORDER ANALYSIS

As has been previously indicated, FOA can be used to estimate the variance of a function or model
in terms of the variance of the various parameters that go into the model. FOA equations are
relatively simple to apply; however, the basic assumptions that are made must be kept in mind.
Again these assumptions are that f(X°) is nearly linear and that (x, - x,%)/2 is small for I=1 to n.
This latter assumption is often expressed in terms of a C, being less than 0.2 or some other fixed
value,

We can put the results of the above development of FOA in terms of hydrologic modelling using the
notation previously adopted for a general hydrologic model

Q=f(d By +e

where, O represents model outputs and P represents the parameters of interest. The resulting
estimates for the mean and variance are:

E(0) = FUAL) (4)
2 (of By Y
Var (0) = Y — i ] Var (P)) (5)
=1 t P
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The expression for the variance appears to be quite complex and is unless the parameters are
independent. The last term of the Variance expression contains Cov (P; ,P;). If P; and P; are
independent then this term is zero. If P; and P; for all I and J are independent, then the Variance
expression reduces to:

Var (O) fj

=1

P,

A

(m )] Var (P) -
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Recognizing the definition of the absolute sensitivity coefficients given by equation 2, this becomes

P :
Var () = Y. S Var (P) (7)
5]

where S, is the absolute sensitivity with respect to P;.

The fraction of the total variance due to the ith parameter is given by

S? Var (P,
7 - . Var (P)

1

, (8)
Y8} Var (P)
1

F, can be used to identify which parameters are the largest contributors to uncertainty in the output
based on the FOA. Notice that F; combines parameter uncertainty in terms of parameter variance and
the sensitivity of the model to the parameter. Thus FOA has some very attractive features.
Unfortunately, Taylor series expansion we use is truncated and thus is only an approximation for E(Q)
and Var(O). FOA is said to be valid for those situations where the model is nearly linear in the
parameters of interest and the C, on P; is small. This can be seen from the following illustration.

We also note that FOA produces only estimates for the E(O) and Var(O). If we want to look at
probabilities of the O being in certain ranges, we must make pdf assumptions regarding the O. For
example if we take O to be normally distributed with a mean of E(O) and a variance of Var(O), we
can calculate probabilities of O in any range and we can put confidence intervals on Q. Other pdf
assumptions can be made as well.

FOA is computationally efficient requiring only 2p + 1 model runs for a model in which p parameters
are under consideration. For example, with 6 parameters, 13 model runs are required.

MONTE CARLO SIMULATION

MCS is a sampling procedure in which possible values for the input parameters are selected at random
from appropriate pdfs and used in the model to produce estimates of the outputs. MCS is more
complete than FOA and does not require assumptions of linearity and small parameter variances. It
does require assumptions on the parameter pdfs and is computationally intensive generally requiring
1500 or more model runs. The approach illustrated in the following figure is actually quite simple
in concept. After defining the probabilistic structure of the parameters, a parameter set is selected
at random from the appropriate multivariate pdf. The model is run with these parameters and the
output noted. This entire process is repeated many times (~ 1500) resulting in many (~ 1500)
estimates for the outputs. These outputs are then analyzed probabilistically. The means and variances
are calculated. Appropriate pdfs or probability plots are prepared and probabilistic statements made.
Confidence intervals can be read directly from probability plots without making a distributional
assumption about the outputs.
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The importance of individual parameters in determining the uncertainty associated with a particular
variable can be assessed by computing the correlation between the model outputs and the input
parameters. Those parameters that are highly correlated with the model outputs are obviously
important since changes in the values of these parameters will result in a corresponding change in the
outputs from the models. On the other hand, if the correlations between outputs and parameters is
low, the parameter is not very influential in determining the outputs.

Two checks that should be incorporated into any MCS are an examination of the correlation structure
of the randomly generated parameter values and an examination of the pdfs of the randomly generated
parameter values. The correlation structure of the parameters must statistically match the target
correlation structure. If the intent was to generate independent rvs but in fact a high degree of
correlation ends up in the generated parameters, the output variance will be incorrectly estimated.
For example consider p1 and p2 as two parameters that are positively correlated with the model
output but are uncorrelated with each other. If the generated "random" values of p1 and p2 are
significantly positively correlated, the variance and the uncertainty in the output of the model will be
exaggerated.

The fraction, F;, of the total variance in model output attributable to the ith parameter based on a
MCS can be estimated by computing

! .
g (9)

where r,; is the correlation between the output and the ith parameter and p is the number of uncertain
parameters. This is a very rough approximation and may be used for guidance only. If the output
variance. is judged to be excessive, equations 8 and 9 can be used to determine which parameters are
the biggest contributors to this uncertainty. Attempts can then be made to reduce the variance on
these influential parameters by getting better estimates for then.

Equation 7 can be used to estimate how much variance a particular parameter can have and still
achieve a target variance on O. For example if V, is the target variance, the target variance on
parameter p; can be estimated from

P
Var (p) = VeY S Var(p) (10)

The variance reduction calculations provide guidance only. They are not exact (obviously) since
neither FOA or MCS is exact. Furthermore, it is not always possible to reduce the variance of the
input parameters. The results of a MCS can be subjected to a multiple regression analysis in a further
effort to identify the important input parameters. Regression coefficients relating a model output to
the input parameters that are not statistically significant are likely of little importance in determining
the model outputs.
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SAMPLE SIZE IN MONTE CARLO SIMULATION

Since Monte Carlo simulation (MCS) is a sampling procedure, one can expect that if several different
simulations are made, they will each produce a different estimate for the mean of the process. Based
on sampling theory and the assumption that the estimated mean from a MCS is approximately
normally distributed, it is possible to estimate the sample size required to achieve a given level of
accuracy in the estimate of the mean. If X is the mean and S,? the variance of the output from a
MCS, the variance of the mean is S, /n where n is the sample size. Letting w be the acceptable
tolerance in the estimated mean at a (1-)% confidence level. The (1-)% confidence intervals on X
are given by:

X zi, X z—ﬁl (11)
Vo Vn)

where, z is a standard normal variate corresponding to a probability level of «/2. These confidence
intervals can be written in terms of the sample required to insure that the width of the confidence
interval does not exceed a set level say w.

= 8 - 8 S,
w = {X+z—f] = (X—z—f] =222
v Vn Vi
where z is the standard normal deviate. This result can be solved for n resulting in

2
- (ZZSX) (12)

w

In using this relationship, we can make a few MCS runs, calculate S,, and then determine n. For
example if 10 simulations result in an estimated standard deviation of 5 units and it is desired to be
95% confident that the mean is estimated to within 3 units, the required number of simulations can
be calculated recognizing that z,_ g = z 975 = 1.96 from

2
- (2(1.936)(5)) - 43

Therefore an additional 33 simulations are required. The following figure shows the expected change
in the width of the 95% confidence intervals as a function of the sample size for this example with
an assumed mean of 10 units.

We can also base the sample size requirement on the desired degree of accuracy for estimating a
percentile from the distribution rather than the mean. We can rank the simulation outputs from
smallest to largest so that x; <x, <.. <x,,. Here x, is an estimate for X, where p=1/m. Morgan and
Henrion (1990) state that the sample values x; and x, constitute the o confidence interval where
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1=mp-z/mp (1-p)  k=mp+ z/mp (-p) (13)

and z is the deviation enclosing probability « of the standard normal distribution the value of X; I8
rounded down and x, is rounded up.

Consider that we want the « confidence interval on the pth fractile X, given by (x;, x, ) where x; is
an estimate of X;_and x, is an estimate of X, +p- That is we want « confidence of X, being between
the sample values used as estimates of the (p-p)th and the (p+p)th fractiles. The sample size
requirement can be determined by nothing that I = m(p-p) and k = m(p+p) or k-1 = 2m p. From
equations (13)

k- 1=2z/mp(1-p)
equating these two expressions for k-I, we get
7 B
m = p(l-p)| = (14)
o p)( A P)

As an example, the 95% confidence that the 90th percentile, X.o , is between estimates of the 85th
and 95th percentiles can be determined. Here p =0.05 and z = 1.96 so that

: 3
= 0.90 ¥ (1-0.90 £ | - 144
m = 0.90 ¥ (1-0.90) ¥ ( 0.05]

It should be noted that this result is independent of the shape of the distribution.

A case study the application of First order uncertainty analysis is described.

UNCERTAINTY ANALYSIS OF DISSOLVED OXYGEN MODEL USING FOA

First order uncertainty analysis of the basic Streeter Phelps Dissolved Oxygen Sag equation is
presented in this section. The relationship among the parameters affecting the in-stream dissolved
Oxygen concentration is given by Equation 1:

D= 120 (K oKy, p oK (15)

in which D = dissolved oxygen deficit (C; - C) in milligrams per liter; C; = dissolved oxygen
saturation limit, in milligrams per liter; C = dissolved oxygen concentration, in milligrams per liter
K, = reareation rate coefficient (base €, per day); Ky = deoxygenation rate coefficient (base e, per
day); L; = initial instream total ultimate biochemical oxygen demand, in milligrams per liter, D, =

initial instream dissolved oxygen deficit, in milligrams per liter; and t = time of travel from D, to
D (days).
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Basically the first order uncertainty analysis will provide a measure of the uncertainty of the
dependent variable, D in terms only of the uncertainty in the dependent variables: K,, Ky, Ly, D,
and t; i.e., percentage of the scatter of dissolved oxygen deficit predictions around the true deficit at
any point along the sage curve can be assigned to reach of the independent variables.

Taking the partial derivative of D with respect to each of the independent variables.

oD &
2 e (16)
K t i
9D _ _Td_ gk ghy (17)
D, K, K,
_ ) r
b Ky Lo (e_k"' - e”k;) + ——Kd 7 Dofe‘k‘ (18)
aKa (K‘{Kd)z (K‘-,_Kd)z
. -k,
oD _ K, L, (e,‘,{‘: ) e_k",) B K, L,te (19)
K, (K, K, KK,
K, L ) Y i
%‘?‘ﬁ“ﬂ"“lfde’“)-ffdboe“ (20)
a d s .

The first-order approximation to the total uncertainty in the dissolved oxygen deficit is given by Eq.
21. '

bl
Sp= (Y, |GPY"? (21)
£l

The terms of Eq. 21 are defined by Eq. 22.

oD oD oD
pBD g o 8D g, g OOy
C’l aDa SDG’ (:2 (aLv) Lo 6‘13 aKd X,
c-9g .00 (22)

t
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NATIONAL INSTITUTE OF HYDROLOGY, ROORKEE




Uneertainty Amalysis of Hydrologic and
413 Water Quality Models

For Eqgs. 21 and 22, the symbol § represents the standard deviation of particular variable. Thus, Eq.
21 shows that each of the independent variables contributes to the dispersion of D in a manner
proportional to its own variance, $2, and proportional to a factor which is related to the sensitivity
of changes in D to changes in the independent variable.

Application of the method of first order uncertainty analysis to the BOD-DO system requires estimates
of mean parameter values and standard deviations of D, L, Ky, K, and t.

DATA SELECTION AND DEVELOPMENT

The independent variables of Eq. 15 are subject to wide variations from stream to stream or even
from reach to reach of the same stream. Global or even regional mean values and standard deviations
would be difficult to estimate and would probably not permit useful conclusions to be drawn.
Therefore, because of the nature of the data requirements for the uncertainty analysis, calculations
were restricted to particular, individual stream segments. However, a wide range of parameters
values and combinations was selected to permit study of the relative importance of the variables, for
a variety of stream conditions. The steps used in the development of the basic data are outlined
below: ‘

1. Four classes of streams, defined by the self-purification ratio, f = K, /K, were selected.
A range of reaction rate coefficients was selected for each of four stream classes based on in-
stream depth and velocity. Formulas considered for reaction were from the literature. For
the data range examined, the O’Connor-Dobbins equation proved to be most relevant for
stream classes, 1, 2 and 3 while that of Churchill, et al. was best suited for stream class 4.

3. Subsequently, deoxygenation rate constants were calculated for each pair of K.. The range
of data for the variables used in the analysis is shown in Table 1.

TABLE 1 - Ranges of Data by Stream class

Stream-Class f K, K4 v H
description (dimensionless) | (per day) | (per day) (meter/sec.) | (meters)
Sluggish 1.25-1.50 0.05-0.10 | 0.033-0.08 | 0.03-.015 3.05-6.10
Low-velocity | 1.50-2.00 0.10-1.00 | 0.050-0.67 | 0.03-0.15 0.92-3.05
Moderate- 2.00-3.00 1.00-5.00 | 0.500-2.50 | 0.15-0.61 0.61-1.52
velocity
Swift 3.00-5.00 1.00-10.0 | 0.200-3.33 | 0.61-1.83 0.61-3.05

4, The initial dissolved oxygen deficits were defined. A maximum allowable dissolved oxygen

DO deficit of 4 mg/L was selected to permit a wide range of initial deficits. D, values of 0,
1. 2 and 3 mg/L were assigned to each stream segment defined by a pair of K, and K, values
derived previously. ‘

5. With reaction coefficients defined, the maximum allowable instream ultimate oxygen demand
can be calculated from Eq. 15. A listing of allowable value L, in milligrams per liter for the
variable range examined is given in Table-2.
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TABLE 2 - Allowable Ultimate BOD Loading Rates as Function of Initial DO Deficit

Self- Values for Initial Dissolved Oxygen Deficit,
purification | D, in milligram per liter

ratio ‘f’

0 1 2 3
1.25 12.0 11.2 10.0 8.0
1.50 14.0 12.4 11.2 9.6
2.00 16.0 15.2 14.0 12.0
3.00 20.0 20.0 18.4 16.4
5.00 30.0 29.6 28.0 25.2
6. In all, a set consisting of 80 hypothetical stream segments defined by values for K, Ky, D,

and L, was constructed. The time of travel to the point of maximum DO deficit, the critical
time t. was calculated for each of these.

7. To eliminate effects of possible interdependence among the basic data of the 80 original
stream segments, 160 additional segments were developed. Eighty segments were obtained
by increasing all of the L, values by 50% while all other parameters were held constant.
Another 80 segments were derived by increasing of t values by a factor of two of three while
keeping all other parameters constant. Thus, a total of 240 hypothetical stream segments was
included in the uncertainty analysis. An example of these data for some representative
segments is presented in Table 3.

8. To complete the data requirements for the uncertainty analysis, knowledge about the
distribution of parameter values for each stream segment was needed. This information must
take the form of a standard deviation for each of the five independent parameters. In
practice, this information is probably difficult, if not impossible, to develop without extensive
monitoring. However, for the hypothetical case studied, the required standard deviations
were derived from published sources. Standard deviations of + 1.0 mg/L for L, and + 0.2
mg/L for D, were assumed to be the same as for the laboratory analysis of these parameters.
Churchill, et. al., (1962) indicated a possible range of 15% error for their equation.
Therefore, to allow for a somewhat wider scatter in this analysis, an uncertainty of + 20%
was assumed for both K, and K;. An estimate for the standard deviation of travel time is
elusive. S, was assumed to be + 10% of (Carter and Anderson 1963). Fortunately the
analysis to follow will demonstrate that travel time estimates do not contribute a significant
portion of the total scatter in D.

The respective estimates of parameter standard deviations are included with the basic data and in
Table 3.

CALCULATION OF UNCERTAINTY MATRIX

For each line of data in Table-3, which represents a set of mean parameter values for each stream
segment, a corresponding set of five partial derivatives was calculated by Egs. 16-20. The values of
the partial derivatives were multiplied by the appropriate standard deviation of the respective
parameters, also from Table-3 as described by Eq. 22. Eq. 21 then gave the total uncertainty of
dissolved oxygen deficit for each line of data from Table 3.
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TABLE 3 : Representative Stream Segment Data for Uncertainty Analysis

Segment | K, K, Ly D, t t Syd Ska
number | per day | per day | mg/L mg/L | days days per day | per day
(a) Stream Class 1
1 0.08 0.01 12.0 0.0 11.2 1.0 0.016 0.02
2 0.08 0.10 11.2 1.0 10.0 1.0 0.016 0.02
3 0.08 0.10 10.0 2.0 8.6 1.0 0.016 0.02
4 0.08 0.10 8.0 3.0 6.2 1.0 0.016 0.02
(b) Stream Class 2
5 0.50 1.00 16.0 0.0 1.4 0.8 0.100 0.20
6 0.50 1.00 15.2 1.0 1.2 0.8 0.100 0.20
7 0.50 1.00 14.0 2.0 1.1 0.8 0.100 0.20
8 0.50 1.00 12.0 3.0 0.8 0.8 0.100 0.20
(c) Stream Class 3
9 1.67 5.00 20.8 0.0 0.33 0.20 0.334 1.00
10 1.67 5.00 20.0 1.0 0.30 | 0.20 0.334 1.00
11 1.67 5.00 18.4 2.0 0.26 | 0.20 0.334 1.00
12 1.67 5.00 16.4 3.0 0.19 | 0.20 0.334 1.00
(d) Stream Class 4
13 3.33 10.0 20.8 0.0 0.17 0.10 0.666 2.00
14 3.33 10.0 20.0 1.0 0.15 0.10 0.666 2.00
15 3.33 10.0 18.4 2.0 0.13 0.10 0.666 2.00
16 3.33 10.0 16.4 3.0 0.10 | 0.10 0.666 2.00

The contributions from the five independent parameters to total uncertainty of dissolved oxygen deficit
were readily calculated for the 240 stream segments. Percentage contributions by variable to the total
uncertainty are given in Table 4 for each stream segment shown in Table 3. The relative importance

of the respective independent parameters to the prediction of dissolved oxygen deficits is easily seen
by inspection.

ANALYSIS OF THE UNCERTAINTY MATRIX

Examination of Table 4 reveals some general patterns as characterised by percentage contributions
to uncertainty. The parameters of initial deficit, D, and deoxygenation coefficient, K, are shown
to contribute most to uncertainty in the dissolved oxygen deficit for Type 1 streams. For stream
Types 2 through 4, K is of primary importance, although the reareation coefficient, K, is seen to
exhibit a more significant role, especially at higher levels of the instream initial deficit. The
significance of the initial deficit suggests the importance of post-aeration of waste waters prior to
release to the stream. '

Manipulations on insteam ultimate biochemical oxygen demand (UBOD) values, L,, demonstrated
only minor effects on the uncertainty analysis by slightly increasing the importance of the parameter
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Ky. Variations of the travel time, t, imposed a shift in parameter importance as a function of whether
- or not t exceeded the time of flow, t, to the point of maximum deficit. The major shift from K
to K, as the most influential parameter in the uncertainty of DO deficit predictions was caused by
increasing travel times beyond the critical travel time. Thus, the most important parameter of the
BOD-DO equation is seen to correspond to the predominant aspect of the oxygen balancing
mechanism for the portion of the DO sag curve where deoxygenation exceeds reareation, the
uncertainty analysed shows that K is the most influential parameter, generally. However, for the part
of the sag curve where reareation exceeds deoxygenation, K, is generally the most influential
parameter from the uncertainty analysis.

Similar responses were observed when analyses were made for situations using S,y =41%; S,,=35%;
and §,4=41%; and S, =10%, respectively. The latter cases were examined to address the situation
for which empirical formulas are used to estimate the deoxygenation and reareation coefficients for
a particular stream. Standard deviations for such prediction have been given for the deoxygenation
coefficient and for the reareation coefficient.

TABLE 4 - Percentage Contributions to Uncertainty in DO Deficit (S*)

Segment Percent of Sp? Contributed By:
number
D, L, K, Kq t
(a) Stream Class 1
| 44 7 0 40 9
2 47 & | 1 38 6
3 52 8 3 33 4
4 59 10 6 24 1
(b) Stream Class 2
5 2 10 15 69 4
6 2 10 22 64 2
7 2 11 31 56 1
8 2 12 41 45 0
(c) Stream Class 3
9 1 6 20 70 3
10 | 6 27 64 2
11 1 6 36 56 0
12 1 6 46 47 0
(d) Stream Class 4
13 1 6 19 70 3
14 1 6 27 64 2
15 1 6 36 57 0
16 1 6 46 47 0
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SUMMARY OF STEPS IN AN UNCERTAINTY ANALYSIS

L. Estimate the best parameter values for the situation being modeled.

2. Define the correlation structure among the input parameters.

3. Estimate the variances of the input parameters.

4, Conduct a sensitivity analysis and select parameters to be used in the uncertainty analysis.
FOA

5. Conduct a FOA to estimate the variances for the model inputs of interest.
6. Calculate the fraction of the total variance attributable to each parameter.
7 Assume a pdf for the model output and calculate confidence intervals.

MCS

8. Determine the pdfs appropriate for the input parameters.

9 Perform a MCS.

10. Calculate the correlation matrix and a multiple regression on the MCS results.
11. Plot the MCS generated outputs as probability plots.

12. Determine appropriate pdfs for the outputs.

13. Determine confidence intervals on the outputs.
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