STATISTICAL WATER QUALITY MODELLING (WITH SPECIAL
EMPHASIS TO PHOSPHORUS MODELLING)

One of the most important aspects of environmental deterioration of inland waters is the progressive
enrichment of waters with nutrients resulting in the mass production of algae, and other undesirable
biotic changes. Many factors influence the level of plant biomass in an aquatic ecosystem including
light, temperature, mixing, grazing, carbon dioxide gas, and nutrients, but, only some are controllable
by man as a practical and economical method for decreasing plant productivity.

Although estimates have been made of the variety of nutrients, namely, nitrogen, phosphorus, iron,
manganese, molybdenum and other trace elements, that may become limiting to algal communities
(Goldman, 1965), it is probably only the geochemically rare (in relation to algal growth and plant
growth requirements) macronutrients, namely nitrogen and phosphorus, which control the
development of aquatic blooms (Goldman, 1965; Hasler, 1947: Hutchinson, 1957, 1973: Sawyer,
1960). Phosphates are frequently a limiting factor for both aquatic and terrestrial natural ecosystems.
The addition of phosphorus to such ecosystems from anthropogenic sources frequently thus leads to
increased algal productivity. The fertilization and resulting increased productivity in aquatic
ecosystems leads to conditions which decrease the beneficial uses of water. The consequences to
water uses include:

1. Aesthetic and recreational interferences-algal mats, decaying algal
clumps, odours, and discoloration may occur;

2. Large diurnal variations in dissolved oxygen (DO) can result in low
levels of DO at night as a result of algal respiration, which in turn
may result in the death of desirable fish species;

3. Phytoplankton and weeds settle to the bottom of the water system and
create a sediment oxygen demand (SOD);

4, Large diatoms (phytoplankton that require silica) and filamentous
algae may clog water treatment plant filters thereby reducing the time
between backwashing;

1 Extensive growth of rooted aquatic macrophytes (larger plant forms)
interfere with navigation, aeration, and channel-carrying capacity;
and,

6. Toxic algae have been associated with eutrophication in coastal

regions and have been implicated in the occurrence of ’red tide’
which may result in paralytic shellfish poisoning.

The consequences obviously warrant considerable attention to phosphorus levels and the opportunities
for abatement and control.
SOURCES OF PHOSPHORUS AND MODELLING NEEDS

The various uses of phosphorus by humans include as fertilizers, in animal feed lots, detergents, and
industrial uses. Phosphorus inputs to surface waters vary with discharge regulations and geography
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for the diffuse sources. On the basis of the present technical literature the natural and cultural
activities which introduce phosphorus to surface waters may be classified into 1) nonbasin activities -
transportation by precipitation; 2) agriculture - use of fertilizers and crop harvesting procedures; 3)
domestic - human wastes and washing products; 4) industrial - metal finishing and detergent
industries; |6) mining - mining and refining of phosphorus; and 7) animal waste - use of animal
manure as fertilizers.

Environmental management of particular resources requires the system within which a resource is
distributed, be well understood. Possible suggestions toward the elimination of some of the
phosphours inputs to surface waters include phosphorus removal from detergent formulations, removal
of phosphorus of domestic wastes, and the application of the concept of zero discharge from point
sources. These manipulations of phosphorus input are considered rather simplistic solutions of
complex problems and immediately the question arises, whether these manipulations will produce
improvements in the conditions, and second, whether in fact these solutions may be counter-
productive in terms of economy of the region.

To identify potential control tactics for a particular surface water body, the behaviour of phosphorus
concentrations must be understood. Investigators have utilized empirical and theoretical relationships
between the phosphorus inputs from point and nonpoint sources and the typical phosphorus
concentrations in stream (Eisenreich et al. 1977; Gakstatter et al. 1978; Hydroscience, 1977a, 1977b;
Rast and Lee, 1978; Thomann, 1972; 1IC, 1978). Omernik (1977) used a simple regression model
to relate runoff concentrations to the percent of land in agriculture use and the percent of land in
urban use. However, phosphorus concentrations in surface water cannot be predicted merely from
pollutant source loadings and hydrographic conditions. Major portions of the phosphorus are
regenerated due to limnological transformations (Stumm et al., 1972). The release of phosphorus
from sediments may also be important, where release depends upon mixing and other physical
conditions at the observation site/reach. Of interest herein is the degree to which such phenomena
can be studied in terms of other parameters e.g., suspended solids, turbidity, etc. It is evident from
the above discussion that the ultimate fate processes of phosphorus are complex. The development
of a mechanistic model is certainly challenging given the complexity of the various pathways of
phosphorus; therefore, phosphorus modelling efforts described in this paper are directed towards
development of statistical models specific to a particular seasons and river stretch using measured
data. Specifically, statistical relationships are developed between total phosphorus and commonly
monitored water quality parameters. Two regression methodologies, namely best subset regression
and stepwise regression have been used for model discrimination. The established relationships are
useful in the infilling of missing data and also, in basin management activities to overcome the
eutrophication problem. The regression models for various seasons have been developed for the
Grand River basin.

STUDY BASIN

Fig. 1 presents a location map of the Grand River with pertinent sampling locations identified. The
Ontario Ministry of Environment has accumulated a lengthy historical water quality data (WQD)
(WQD, 1972-1979). The data from February, 1975 to March, 1977 are available on a weekly basis
and the rest of the data are available on monthly basis. The details of sampling locations are available
PLUARG Study (1979).

The Grand River, located in southwestern Ontario, originates near the village of Dundalk and picks
up its major tributaries, the Conestogo, Nith, and Speed rivers as it winds its way over 300 kilometres
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southeast to Lake Erie collecting water from a drainage area of 6965 square kilometres. The average
annual flow of the Grand River is 55 m®/s at the mouth. The flow may range from a maximum of
1800 m?/s in the spring to a minimum of 6 m%/s in the winter (GRBWMS, 1982). The Grand, and
its tributary rivers the Nith, Speed, and the Conestogo, flow through one of the most important socio-
economic regions in Ontario.

Land use within the basin is varied, with agricultural and rural land uses dominant in the northern
and southern portions and urban land uses concentrated in the central portion. Agricultural and urban
and land uses respectively comprise 78 percent and 3 percent of the basin area. Wooded and/or idle
areas account for approximately 19 percent of the basin area, while less than 1 percent lies in the
other uses.

THE PROBLEM OF AQUATIC PLANTS IN THE STUDY AREA

The most serious water quality impairment problems are found in the middle portion of the basin
(GRBWMS, 1982). Excessive plant growths were observed particularly in the Speed River and in
the Grand River between Kitchener and Paris (GRBWMS, 1982).

Water quality in the upper Grand and Conestogo Rivers was also a matter of concern with respect
to phosphorus concentrations (GRBWMS, 1982). Since 1970, improvements in phosphorus levels
have been demonstrated but were still sufficiently high for nuisance algae growths. In 1978, large
growths of algae were observed at Grand Valley and very large growths were reported downstream
between Paris and Brantford (GRBWMS, 1982).

Although all the major municipalities had secondary treatment facilities installed between 1970 and
1975 under the phosphorus removal program of the Ontario Ministry of the Environment (GRCA
1979) removing over 80% of the phosphorus and over 90% of the BODs and suspended solids in the
incoming raw sewage since 1976, visual observation of the river below these points indicated turbidity
and excessive algae growths of an unappealing nature.

The available data included streamflows (Q) (cfs), suspended solids (SS) (mg/l), total nitrogen (TN)

(mg/1), specific conductivity (CON) (micromhos/cm, 25°C), turbidity (TUR) (formazin turbidity
units), total coliform (T-coli) (MPN), filtered chloride (Cl) (mg/1), and total phosphorus (TP) (mg/1).

MODEL BUILDING

The general representation of statistical models is given by

A,
YiZE)BJ’X&‘Jre gus e VLY

with on =1

where, x;; are the independent variables for the ith observation (various water quality constituents in
present study), Y; is the dependent variable for the ith observation (total phosphorus concentration),
B; are the unknown coefficients to be estimated, k +1 are the number of coefficients (to be estimated)
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in the model and ¢ is the error in the determination of Y, which is generally assumed as having zero
mean and constant standard deviation (o).

The method of ordinary least squares is the most widely used method for assigning B; because of its
simple concept and no assumption is necessary on the probability distribution of data. This method
will be used for estimating the coefficients associated with the various water quality constituents for
prediction of phosphorus concentrations. The detailed description of the least squares method is
available in various textbooks on statistics (e.g., Draper and Smith, 1981; Weisberg, 1980).

Development of Regression Models for Total Phosphorus

Regression analyses were performed in each case on full data sets and their seasonal subsets. Each
data set is segmented into four seasonal subsets as listed below.

1. Spring season 3 March 21 to June 20.

2 Summer season : June 21 to September 20.

3. Fall/Autumn season  : September 21 to December 20.
4. Winter season : December 21 to March 20.

Preliminary Analysis

Prior to a statistical regression analysis of a data set, an initial filtering of the data which consisted
of a statistical analysis, a preliminary regression analysis, partial visual inspection of the data files,
and the creation of numerous scatter plots revealed obvious data input errors. Once the identified
input errors were removed, a general regression analysis assuming all water quality parameters as
independent variables and total phosphorus as dependent variables, was made to identify any outliers
on the basis of leverage value, and studentized residual statistics (Wilkinson 1990).

Using the filtered data, a correlation (of each water quality constituent with total phosphorus) matrix
is obtained considering two sets of water quality parameters for overall data and various seasons at
all locations. The first set (I) includes all the water quality variables whereas in the second set (II)
T-coli and TUR were excluded. The reason for considering two sets is that T-coli and TUR had a
large number of missing values in the data sets and hence excluding them increased the number of
data points available for regression analyses.

To enhance the visualization of the correlation matrix, Table 1 presents the square of correlation
coefficient to indicate the contribution of individual water quality parameters in explaining the
variation in the dependent variable for the fall season as an example. Since T-coli had no significant
correlation (Table 1) with total phosphorus, this water quality parameier was not considered any
further for model formulation.

Selection of Independent Variables in Regression Analysis

To make the model useful for predictive purposes, one wants to include as many independent
variables as possible so that reliable fitted values can be determined. Furthermore, since R? gives
the proportion of the variation in the dependent variables that is explained by the fitted regression
model, one obviously desires R? to be large. On the other hand, because of the effort involved in
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the monitoring of a large number of independent variables, there is interest in including as few
independent variables as possible. The compromise between these extremes is what is usually called
selecting the best regression variables and consequently the best model. There is no unique statistical
procedure for doing this (Draper and Smith, 1981). However, there are many statistical procedures
such as all possible regression, backward elimination, forward elimination in stepwise regression,
ridge regression, principal component regression, and stagewise regression which may help in
optimum model formulation (Draper and Smith, 1981; Montgomery and Peck, 1982, and Weisberg,
1980).

In the present study, the two procedures namely the best subset regression, and stepwise regression
procedures are used to select the best set of independent variables.

Best Subset Regression

Using the R? information (e.g., Table 1), various best subsets of independent variables can be selected
on the basis of proportion of variation explained in the dependent variable. For each subset the
regression was assessed according to 1) the value of R? achieved, 2) the F value (defined in Equation
3) and 3) the number of observations used in developing the model. The model obtained from the
larger data set and achieving higher values of R? and F value will always be preferred. The above
two criteria (R? and F-values) which will be used in model selection are briefly described below.

R? Criterion

R2 value is used as a criterion for comparing models. A computing formula for R? is

SSE _ SSR
= -0 _ SOk
= ss,  Ss, (2)

with §S, = E (Y;- )% SSE = E (Y;-¥)% SSR = Z(¥-Y 2,

where, Y is the average value of dependent variable and Y, are the model-computed values of the
dependent variables.

A strong linear association between Y; and Y, yields a large value of R? and vice versa.
Unfortunately, R? provides an inadequate criterion for subset model selection since, whenever
comparing a subset model to a large model including the subset, the larger model will always have
an R? value as large, or larger, than R? for the subset model. Thus, the full model will always have
the largest possible value of R%. However, for a fixed number of independent variables (equal to k),
R2 can be used to compare different models with a large value of R? indicating the preferred model.
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F value Criterion

The F value is mathematically described as (Draper and Smith 1981):

F= (3)

From the above expression, it is clear that apart from the constant multiple [(N-k-1)/k], the F-statistic
is the ratio of the explained to the unexplained variation in Y;. Therefore, it is natural to say that the
regression is significant only when the proportion of explained variation is large. This occurs when
the F-value is large.

The F-statistic can also be used to compare any two models as long as all the independent variables
in the smaller model are also included in the larger model, i.e., the small model is a subset model
of the larger model.

As defined earlier, the residual sum of squares reflects the variation in the dependent variable that is
not explained by the model. If the predictor variables which are not included in the subset model are
important, then deleting them from the subset model should result in a significant increase in
unexplained variation of Y;. That is, SSE, should become considerably larger than SSE; A
convenient test-statistic (Weisberg, 1980) using this idea is:

. _ (SSE,- SSF)|(k-m)

= 4
k-mN-k-1 SSEJ(N-k-1) (4)

where, SSE; (defined in Equation 2) and SSE, are the residual error sum of squares of the full model
(containing k independent variables) and the subset model containing k-m independent variables,
(where m is the number of independent variables dropped from the full model) respectively. The
- larger model will be preferred when the F,_, n,; statistic is sufficiently large. One reasonable rule
would be to prefer the full model if F, 4. >F* where F* is the « x 100% point of the Fg.
m,N-k-1) distribution. The choice of a = 0.05 is typical (Weisberg, 1980).

Stepwise Regression

The stepwise procedure provides a systematic technique for arriving at a satisfactory regression
equation with a smallest subset of independent variables (Draper and Smith, 1981). In this method,
each time a new independent variable is entered into the model, all the variables in the previous
model are checked for their continued importance. The main advantages of the stepwise procedure
is that the procedure is fast, easy to compute, relatively inexpensive, and available on virtually all
computer software. Unfortunately, there are important drawbacks to the use of stepwise procedures.
Firstly, the model chosen by stepwise regression need not be the best for any criterion of interest and
there is no guarantee that the model chosen will in fact include any of the variables that would be the
best subset. The stepwise method is best when the independent variables are nearly uncorrelated, the
condition under which finding a subset model is least likely to be relevant. It is true that the best
single variable is entered as the first in a stepwise algorithm; however, there is no guarantee that the
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best pair is entered as the first pair of variables (Weisberg, 1980). The ordering of the variables
given by stepwise regression is an artifact of the algorithm used and need not reflect relationships of
substantive interest.

As pointed out above, the stepwise regression procedure is best suited when independent variables
are almost uncorrelated, the condition which is rarely met in the case of water quality parameters.
As an example, it may be noted from Table 2 that water quality parameters SS-TUR, TN-TUR,
CON-CI and SS-TN are highly correlated (correlation coefticient in the range of 0.714-0.879) at St
56 for the fall season. Of interest is how to select independent variables to build a model to reflect
relationship of substantive interest.

To demonstrate the methods of selection of independent variables as described above (e.g., best subset
procedure involving R?/F-value and stepwise regression), an example is given below using the data-set
of fall season at St56. ‘

SELECTION OF INDEPENDENT VARIABLES FOR FALL-SEASON DATA SET FOR ST56
Best Subset Procedure

It is clear from Table 1 that at station St56 for the fall season, TN is the best single variable
explaining more than 90% variation in the TP (total phosphorus) levels. The other water quality
parameters namely SS, TUR, CON, Cl, and Q if taken alone as independent variable explain
approximately 40%, 30%, 8%, 8%, and 0.3 % variation the TP levels respectively. Now, to increase
the R2, the various pairs of water quality parameters with TN are attempted, some of them showing
similar R? are summarized in Table 3. It may be noted that the R* values in Table 2 are less than
that obtained in Table 1 considering only TN; it is because the number of data points available for
regression are higher for the subset models as indicated in Table 3.

In Table 3, the R? values are more or less the same but there is a large variation between the F-values
and hence the inidependent variables pair having largest F-value will be the obvious choice. Here,
TN and TUR are the preferred independent variables having the largest F-values (150.18). From
Table 3 it is also clear that the SSR is the maximum and SSE is the minimum for the preferred
variable subset which is the basic objective of the regression modelling.

To further increase the R? value, now various combinations of three water quality parameters are
attempted. The summary of some of the all attempted combinations is presented in Table 4.

Again, the combination of independent variables having largest R2-value and F-value will be the
obvious choice as the number of variables are fixed. Here, the combination consisting of TN, SS,
and CON is the preferred subset of independent variables as it has the largest R? and F-values. It is
to be noted that TUR is not included in the selected subset of three variables while it was included
in the selected subset of two independent variables.

To further increase the proportion of explained variation in the total phosphorus concentrations, the
various combinations consisting of four independent variables are attempted. Some of the attempted
subsets are summarized in Table 5.

From Table 5, the subset (TN+SS+CON+Cl) has the largest R2-value but it is selected using 24
observations while the other combination (TN +SS +CON +Q) is selected using 30 observations and
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have the equivalent R? and F-value and hence would be the preferred choice. However, both the
subsets may be selected and left for further filtering, as will become clear in the succeeding analyses.

By examining the Table 4 and 5, there is no significant increase in the R? - value by adding the new
variables in the regression set, as becomes further clear from Table 6. On the basis of the above
analyses (Table 1, 3 through 6), the selected best subsets models are summarized in Table 7.

An examination of Table 7 raises the question that which set/subset is the best model. As quoted
earlier that when comparing a subset model to a larger model including the subset, the larger model
will always have a larger value of R-square than the subset model for the same N) and hence the R?
and individual F value criteria are not adequate for subset model selection. In such circumstances
the F, ., N Statistics as given by (4) can provide the answer for model selection. The statistic
considers whether the reduction caused in the explained variation in the dependent variable by using
the subset model (as compared to the full model) is statistically significant. If the reduction in
explanation is not significant, one should choose a subset model as opposed to a full model. This
examination is carried out and explained in Table 8.

Before a final model is recommended from Table 8, the following two points may recognized:

1. All the best models selected for the filtering from Tables 1, 3
through 6 are the best possible model in the specified category of
fixed independent variables. For example, in Table 4, the model
TN+SS5+CON is the best model for any combination of three
independent variables.

2 All the best selected models (Table 8) are the subset of a full model
containing all the possible independent variables.

The recommended final model would be that model which will contain just the sufficient independent
variables so that there is no significant (in a statistical sense) drop in percent explanation of the
variation in the dependent variable as compared to the full model containing all possible independent
variables. Table 8 examines this criteria and the model TN +SS+CON can be recommended as the
best subset model.

The other procedure to select the model as described earlier is the stepwise regression. Finally, there
are two models for a particular data set selected by the two different procedures. These two models
may or may not be identical. If they are different then the selection will be made on the basis of R?,
F-value, and number of independent variables. These two models (one from best subset procedure
and the other from stepwise regression) for St56 are compared in Table 9.

Observing the selected models by two different approaches (Table 9), it is noted that both models
have equivalent R-square values. However, there is a significant difference between their F-values.
Further, the best subset model uses more observations and hence is more representative of the data.
Observing the t-values of the individual coefficients one may conclude that conductivity (CON),
selected as third variable by the best subset procedure, is a better explanatory variable rather than
chloride (Cl), selected by stepwise procedure as the third explanatory variable. Considering all these
aspects one may conclude that in the present situation the best subset model is better than the stepwise
model.

NATIONAL INSTITUTE OF AYDROLOGY, ROORKEE



439 Statistical Water Quality Modelling

Final Model Selection for Other Locations and Seasons

It is to be noted that the above discussions on the model development and selection of final model
using two different methods were directed to the sampling station St56 for the fall season. The same
approach was applied to all the sampling locations and seasons considered with the results summarized
in Tables 10 through 14.

Model Performance and Discussions of Results

It may be mentioned here that out of 30 comparisons between models suggested by stepwise
regression and the best subset procedures, on 27 occasions, the best subset procedure provided a
better model. It may be seen that the statistical models developed in this research perform very well
in computing the total phosphorus levels at various locations and seasons (R? in the range of 0.675-
0.990) except at location S$t75 for summer season (Table 13). The high F-values for all the
regressions indicate statistically significant regressions. Figure 2 presents the comparison of observed
and model-computed TP levels for the overall data set (data of all seasons combined) at $t56 for more
than 150 data points spaced over 8 years (1972-79) which suggests good agreement in observed and
model-computed TP levels. Plots (Figures 3 through 6) developed for fall, summer, winter and
spring seasons for location St56 also indicate a good fit between the observed and model-computed
total phosphorous levels.

The model-computed and observed TP levels were also compared for annual and seasonal models. at

all other locations of the basin (not shown here) and a good agreement was found in computed and
observed TP levels.

In Table 10 through 14, the first few parameters in each model are, by far, of greatest significance.
The water quality parameters such as suspended solids (SS), turbidity (TUR), and total nitrogen (TN)
play major roles in the prediction of total phosphorus (TP) levels.

In some cases SS levels alone explain more than 90% of the variation in TP levels. Similarly,
turbidity and total nitrogen are also found to explain significant portions of phosphorus concentration
level variation, if taken alone as the independent variable. The other water quality parameters such
as conductivity (CON) and chloride (CI) play a minor role in the prediction of total phosphorus levels
as their addition as independent variables in the model, the R-square value in most of the cases
improves marginally.

The eutrophication problem might be tackled in accordance with the location needs and the regression
models could be used to provide the information regarding the sources of phosphorus whether it is
surface water and/or ground water, and location characteristics such as mixing, etc. In 1976 and
onwards, most of the domestic wastewater was being treated by secondary treatment, removing over
80% of the phosphorus and over 90% of the BODs and suspended solids in the basin. The
phosphorus levels were reduced to a significant extent, but still above the critical level 0.100 mg/L
(GRCA, 1979). As phosphates are tenaciously adsorbed by the soil colloids and move from
farmlands into streams through erosion of top soil particles on which it is adsorbed, this study
strongly suggests that good soil conservation practices which prevent erosion might be the most
effective means of controlling the eutrophication problems in the Grand River basin.
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CONCLUSIONS

Useful regression models for predicting phosphorus concentrations from other constituents were
developed for selected locations for both annual and seasonal concentrations in the Grand River basin.
As most of the regression models are successful in explaining more than 90% of the variation in the
total phosphorus levels, the developed models may be used for the prediction of missing observed
values. However, the variability of the results from one location to another indicates that a general
model was not obtained to predict the total phosphorus concentration levels at any location, given
levels at another location. Furthermore, the independent variables for total phosphorus prediction
change seasonally; this finding is consistent with the knowledge that the major portions of phosphorus
are influenced by the prevailing migration pathways at the time and phosphorus portions are
regenerated due to the limnological transformations which depend upon mixing and other physical
conditions at the observation location.

The study findings strongly suggest that suspended solids play an important role in prediction of
phosphorus and consequently, control problems associated with the growth of aquatic plants in the
basin. The strong relationship of phosphorus with suspended solids and turbidity indicate the source
of phosphorus from surface water runoff while total nitrogen indicates the source from ground water.

About the regression modelling, it is noted that when the data set contains a number of missing values
and independent variables are strongly correlated, it is not necessary that the model selected by
stepwise regression procedure will be the best model. This fact has been highlighted in the study and
it is found that the best subset procedure as described in the text evolves a better model.

*k kskok sk
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Table 1. R-square of water quality parameters with TP for fall-season
Site Set Number of Q 55 TN CON TUR C T-coli
observations
St37 I 33 0.029 0.284 .0001 0343 0.633 0.026 0.043
II 42 0.019 0394 0008 0314 - 0.016  ------
S5t56 I 19 0.010 0.401 0.927 0€.083 0.310 0.085 0.047
II 24 0.003 0.410 0917 0.070 ------ 0.083  ------
St80 I 13 0.558 0.561 0.528 0.192 0.698 0.001 0.005
II 39 0.720 0.218 0.188 0.560 ------ 0.036 -------
St78 I 17 0008 0.720 0.770 0.020 0.786 0.070 0.134
11 26 0.027 0450 0.746 0.010 ------ 0.051  -------
St75 I 40 0.042  0.750 0.180 0.001 0.675 .0001 0.0C1
II 43 0.050 0.750 0.180 0.003 ------ 0001 -
St76 I 21 0.001 0.011 0.040 0.001 0.118 .0007 0.044
11 34 0.012 .0007 0.019 0.007 ---—--- 0021 -

Table 2. Correlation coeffi

cient between water quality parameters at St56 for fall-

season
Q SS TN CON TUR Cl

Q 1.000

SS 0.187 1.000

TN -0.064 0.754 1.00
CON -0.553 -0.127 0.312 1.000
TUR 0.028 0.879 0.714 0.175 1.000

a 0.329 0.036 0.335 0.848 0.364 1.000
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Table 3. Model statistics with various pairs as independent variables (St 56 fall

season)

Subset N R2. SSR SSE F-value
variables

TN+TUR™ | 31 0.915 1.449 0.135 150.18
TN+SS 3l 0.910 1.442 0.142 142.21
TN+CON 30 0.910 1.438 0.143 135.98
TN+CI 25 0.908 1.381 0.141 108.12
TN+Q 31 0.903 1.431 0.154 129.66

*Best subset model for further filtering

Table 4: Model statistics with various combinations of three independent variables

(St56, fall-season)

Subset " wis: ~s N R2 SSR SSE F-value
TN+S5+Q 31 0.912 1.445 0.140 92.87
TN+SS+TUR 3] 0.916 1.452 0.133 97.93
TN+SS+_ON* 30 0.941 1.487 0.094 137.05
TN+SS+Cl 25 0.931 1.417 0.105 94.92
TN+TUR+CON 30 0.929 1.469 0.112 113.63
TN+TUR+CI 25 0.925 1.408 0.114 86.72
TN+TUR+Q 31 0.916 1.452 0.113 98.21

*Best subset model for further filterin g
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Table 5. Model statistics with various combinations of four independent variables

(St56, Fall-season)

Subset of variables N R? SSR SSE F-value
TN+SS+CON+CI* 24 0.949 1.438 0.077 88.94
TN+SS+CON+TUR 30 0.941 1.488 0.093 99.45
TN+SS+CON+Q* 30 0.945 1.493 0.087 107.02
TN+SS+TUR+CI 25 0.932 1.418 0.103 68.56
TN+SS+TUR+Q 31 0.917 1.453 0.132 71.63

*Best subset model for further filtering

Table 6: Model statistics of other possible combinations independent variables

(St56, Fall-season)

Set of independent variables N- R? SSR SSE F-valve
TN+SS+CON+TUR+Q 30 0.945 1.493 0.0872 82.19
TN+SS+CON+TUR+CI"* 24 0.950 1.438 0.0763 67.83
TN+SS+CON+TUR+CI+Q* 24 0.955 1.446 0.0682 60.09

*Best subset model for further filtering
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Table 7. Selected sets/subsets, candidate for possible model independent variables

(St56, fall-season)

Set of independent N R? SSR SSE F-value
variables

TN+SS+CON+TUR+CI+Q 24 0.955 1.446 0.0682 60.09
TN+SS+CON+TUR+Cl 24 0.950 1.438 0.0763 67.83
TN+SS+CON+Q 30 0.945 1.493 0.0870 107.02
TN+SS+CON+Cl 24 0.949 1.438 0.0770 88.94
TN+SS+CON 30 0.941 '1.487 0.0940 137.05
TN+TUR 31 0.915 1.449 0.1350 150.18
TN 31 0.899 1.424 0.1608 256.73
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Table 9. Comparison of best subset and Stepwise methods for St56 fall season

Method of variable N Selected variables R2 F-value
selection

Best subset” 30 SS+TN+CON 0.941 137.05

Stepwise 25 SS+TN+Cl 0.931 94.92

]
Best subset model

Table 10. Final models for overall data (all seasons)

Site Model R2

St37  TP=0.04742+0.00074 SS+0.00146 TUR+0.00001 Q-0.00007 CON 0.809
St56  TP=0.01489+0.00097 SS+ 0.00363 TUR 0.753
St75  TP=0.05087+0.00087 SS+0.01606 TN+0.00117 TUR-0.00012 CON 0.939
St76  TP=0.17345+0.00034 SS+0.00662 TUR-0.00003 Q-0.0019 CI 0.812
St78  TP=-0.01358+0.00134 SS+0.02488 TN+0.00001 Q 0.746
St80  TP=-0.04087+0.00024 SS+0.00012 Q +0.0027 CI 0.897

Table 11. Final models for fall-season

Site Model RZ

St37  TP= 0.04843+0.00272 TUR-0.00266 CI 0.778
St56  TP= 0.07905-0.00089 SS+0.25490 TN-0.00072 CON 0.941
St75  TP=0.01723+0.00079 SS+0.00939 TN+0.00083 TUR 0.861
St76  TP=0.03127+0.00199 SS 0.923
St78  TP=-0.03768+0.00599 SS 0.842
S180  TP=-0.01543+0.00008 $5-+0.0089 TN+0.00009 Q 0.833
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Table 12. Final models for spring-season

Site Model R2

St37  TP=0.03331+0.00087 $S+0.01714 TN+0.00159 TUR-0.00011 CON - 0.907
St56  TP=0.027+0.002 SS 0.978
St75 TP=0.06373+0.00069 $S+0.01562 TN+0.00131TUR-0.00016 CON 0.983
St76  TP=0.03107+0.00057 $S+0.00001 Q 0.990
St78  TP=-0.07397+0.00132 $5+0.04970 TN 0.797
St80  TP=0.01119+0.00020 SS+0.00014 Q 0.954

Table 13: Final models for summer-season

Site Model R2

St37  TP=0.07098+0.00104 $S-0.01191 TN-0.00011 CON+0.00129 TUR 0.704

St56  TP=-0.20760+0.22501TN-0.01819 TUR 0.874
St75  TP=0.02345+0.00101 SS+0.00104 TUR 0.454
St76  TP=0.35043+0.00135 $S+0.01002 TUR -0.00016 Q-0.00558 CI 0.698
St78  TP=0.00251+0.00053 SS+0.00315 TUR+0.00004 Q 0.675
St80 =-0.10517+0.00024 S5+0.00016 Q+0.00678 CI 0.883

Table 14: Final models for winter-season

Site Model R2

St37  TP=0.13070+0.00163 SS-0.00024 CON 0.955
S156  TP=-0.62471+0.00048 $$+0.29304 TN-0.00668 TUR+0.00011 Q 0.816
St75 TP=0.12131+0.00107 SS+0.01837 TN+0.00040 TUR-0.00022 CON 0.985
St76  TP=0.10409+0.00132 SS 0.934
St78  TP=-0.14668+0.00114 SS+0.06445 TN 0.786
5180 TP= 0.24712+0.00690TUR-0.00012 Q -0.00029 CON 0.992
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St37 Near Hanlon expressway bridge
St56 D/S of Guelph
St75 Near St Jacobs

St76 Near Canning

4( St78 Near Drayton
f%\-ss . St80 MountpleassentStreet, Brantford

e ¥ ‘ ‘\-'f'"v\-.
I"\.._.

d\/,/‘L_,

Figure 1 Grand river basin and sampling locations
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