APPLICATION OF MUSKINGUM-CUNGE METHOD OF FLOOD ROUTING

SATISH CHANDRA DIRECTOR

STUDY GROUP

A B PALANIAPPAN

S M SETH

NATIONAL INSTITUTE OF HYDROLOGY

JAL VIGYAN BHAWAN

ROORKEE-247667(U.P.)

INDIA

1985-86

·		
	CONTENTS	Page No.
	List of Figures	i
	List of Tables	ii
	Abstract	iii
1.0	INTRODUCTION	1
2.0	REVIEW	3
3.0	METHOD USED	6
4.0	DESCRIPTION OF THE STUDY AREA	14
5.0	AVAILABILITY OF DATA	17
6.0	PROCESSING OF DATA	20
7.0	ANALYSIS AND RESULTS	22
8.0	CONCLUSIONS	29
	REFERENCES	
	APPENDIX	

4.00

i

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1	Channel and flood plain	7.
2	Variation of speed with discharge	11
3	Cunge's curve for Δt	11
4	Index map showing gauging sites on the river Narmada	15
5	Variation of parameter 'x' with discharge 'Q'	22
6	Observed and routed hydrograph at Garudeshwar for the 1978	24
7	Upstream and routed hydrograph for the year 1978	26
8	Observed and routed hydrograph at Garudeshwar for the year 1979	26
9	Upstream and routed hydrograph for	27

LIST OF TABLES

Table	No.		Page No.
1		Gauge and discharge sites on	17
		the main river Narmada	
2		Availability of daily gauge	18
		and discharge data for	
		gauging sites of the river	
		Narmada	
3		Availability of hourly stage	19
		data for the gauging sites	
		of the river Narmada	
4		Parameters defining the	20
		rating curves for the	
		gauging sites of the river	
		Narmada	
5		Input data for ALFA.FOR	I-2/14
6		INDUM data for MMC.FOR	T-14/1

ABSTRACT

In all water resources development activities floods play an important role, hence measures have to be taken to control floods and also to design hydraulic structures capable of withstanding the adverse effects. The time and magnitude of a flood wave at a point on-stream is determined from the known or assumed data at one or more points up-stream, using the procedure of flood routing. There have been a variety of flood routing procedures which have been developed involving various assumptions about the flow and channel characteristics depending upon available data. The Muskingum Cunge procedure is one such procedure which considers the attenuation effect on the flow during its passage through a river reach due to irregularities in the cross-section and storage effect. This procedure, which is a modification of commonly used Muskingum procedure, includes consideration of the effect of channel In the present case study, this procedure has been applied to data of two floods observed in a reach of river Narmada.

The information regarding river geometry and flood plain geometry has been derived from toposheets (1:50,000) scale for river reach between Mortakka and Garudeshwar sites. At all points where river channel pattern is changing, cross-section information has been derived from the contours. Using this information, the attenuation parameter for both in-bank and over-bank floods have been established for the river reach, and using the data for inflow hydrograph at Mortakka site and

the parameters derived as above, the downstream hydrograph at Garudeshwar site has been computed and compared with the observed hydrograph. These computed hydrographs compare reasonably well inspite of limitations due to river geometry information taken from contours at 20 m intervals.

1.0 INTRODUCTION

The method of determining the flood hydrograph at a section, using the data on the same at an upstream site is known as flood routing. These methods are needed for many hydrologic applications like flood forecasting, flood protection, reservoir design, spillway design etc. Different methods have been developed and practiced for routing a flood. They can be broadly classified into two types viz.

(i) hydraulic routing, (ii) hydrologic routing. The former considers the flow to be gradually varied unsteady and solves partial differential equations. The latter aims at computationally simplified approach by using routing parameters.

These parameters are chosen so that they are able to reproduce the outflow hydrograph. Two distinct effects, on the hydrograph, of these parameters are noted. They are (i) the translation of flood wave without change of form (ii) the attenuation, which is a reduction in flood peak.

error method to arrive at the two parameters. Later methods were found to evolve physically meaningful determination of these parameters. The Muskingum Cunge is one such method. With the information on the river geometry, this method finds an attenuation parameter, which can be used to determine the routing parameter x. Because of the use of information on the river geometry this method provides a scope of extending its application to floods larger than earlier observations.

In order to illustrate its use, applications of this method to route some floods experienced in the river Narmada has been made. The information on river geometry has been extracted from the topographic maps (1:50000 scale) covering the river reach between the Mortakka and Garudeshwar sites on the river Narmada.

2.0 REVIEW

A flood may emanate from precipitation runoff, reservoir releases or a dam break. Theoretical foundation for flood routing was laid by Saint-Venant in 1871, with the development of one dimensional equation of unsteady flow. The St. Venant equations express the conservation of mass and momentum as follows:

Continuity:

$$\partial Q/\partial x + \partial A/\partial t = 0 \qquad ... (1)$$

Momentum:

$$\frac{\partial A}{\partial t} + (\frac{Q}{A}) \frac{\partial Q}{\partial x} + Ag \left(\frac{\partial Y}{\partial x} - S_0 + S_f\right) = 0 \qquad ... (2)$$

where,

Q is the discharge (m^3/s) ,

A is the area of cross section of flow (m^2) ,

y is the depth of flow (m),

g is the acceleration due to gravity (m/s^2) ,

 S_{O} is the bed slope,

 S_f is the energy slope,

x,t are space and time coordinates.

These equations are too complex to solve and hence various simplified forms are derived to solve flood propagation. A bibliography of the works carried out on flood routing can be seen in Miller, et al (1975). The solution procedures for the flood propagation can be classified under two categories viz., (i) hydrologic flood routing, (ii) hydraulic flood routing.

Hydrologic routing methods use simplified forms of equations 1 and 2. The continuity equation takes the following form:

$$I - 0 = ds/dt \qquad ... (3)$$

Instead of the usual momentum equation given earlier, hydrologic flood routing methods adopt storage equation as follows:

$$S = K(x I - (1 - x) 0)$$
 ... (4)

where,

I is an average inflow over time dt

0 is an average outflow over time dt

S is storage

K, x are routing parameters determined from flood records

In case of hydraulic flood routing the St. Venant equations are solved with appropriate boundary conditions by any of the following methods:

- 1. Finite difference method
- 2. Method of characteristics
- 3. Finite element methods

A review of hydraulic routing methods can be seen in Hydraulic Routing Techniques, NIH RN-21 (1985-86).

2.1 Hydrologic Methods

Muskingum method was developed by McCarthy and was named after the place of its first application. This is based on equation 4. The parameters 'K' and 'x' are evaluated from the flood hydrolographs observed at the upstream and downstream

sites. Originally a trial and error method was used in this connection. The methods of determination of these parameters have been developed by many investigators (Singh and McCann, 1980) such as (1) least square techniques, (2) Method of moments, (3) Optimization techniques. Singh and McCann concluded that there is no particular advantage of one method over the other.

The Muskingum method suffers due to two short comings.

Firstly, the establishment of the routing parameters are tedious. Secondly, they can only be evaluated for reach having both ends gauged. In many situations, the gauging sites might not have been in operation during high floods. Hence, there is a need for a method which uses the available topographic information and other geometric information to compute the routing parameter.

Commenting on the Muskingum method, Cunge (1969) mentioned that the finite difference approximation (truncating higher order terms) to the modified continuity equation, produces attenuation in this method. Relating the truncation error to the Hyami's(1951) diffusion equation, Cunge derived expressions for attenuation parameters and routing parameters using average channel width and slope. The most convenient way of determining the attenuation and routing parameters, was proposed by Price (1973) as given in NERC (1975). In this method, the irregularities in the width of the river are appropriately included.

3.0 METHOD USED

3.1 Theoretical Basis of the Method Used

The relative importance of various terms in the basic equation 1 and 2 has been given by Henderson (1966, P. 364). The local and convective acceleration terms can be ignored. Thus the equation 2 is reduced to:

$$S_f + \frac{\partial y}{\partial x} - S_O = 0 \qquad ... (5)$$

The energy slope S_f can be evaluated by the Manning's:

$$s_f = \frac{Q^2 n^2}{\lambda^2 R^4/3}$$
 ... (6)

Substituting the expression for Q from (5), (6) into (1) the following are derived:

$$\frac{\partial A}{\partial t} + \frac{\partial}{\partial x} \left(\frac{1}{n} AR^{2/3} \left(S_0 - \frac{\partial y}{\partial x} \right)^{1/2} \right) = 0 \qquad \dots (7)$$

where,

n is the Manning's coefficient,

R is the hydraulic radius

The flood flow can be sub-divided into a discharge Q_{c} flowing in the channel and a discharge Q_{f} flowing over the flood-plain. This division is only arbitrary. Now the continuity equation (1) can be rewritten as:

$$\frac{\partial}{\partial t} (A_c + \sigma A_f) + \frac{\partial Q}{\partial x} = 0 \qquad ... (8)$$

Assuming A_f to be a function of A_c the above can be reduced

to:
$$(1 + \sigma \frac{\partial^{A} f}{\partial A_{C}}) \frac{\partial^{A} G}{\partial t} + \frac{\partial^{Q} Q}{\partial x} = 0 \qquad ... (9)$$

Here, $W_{\hat{\mathbf{C}}}$ and $W_{\hat{\mathbf{f}}}$ are the inundated widths of the channel and flood plain respectively. The above assumption is true only if the water level across the channel and flood plain is uniform. The term σ is sinosity and is defined as the ratio of the length of the channel to the length of the flood plain in the flow direction. These are explained in figure 1.

FIG.1 Channel and flood plain

From the equations (5) and (6) the discharge can be expressed as:

$$Q = Q_{c} + Q_{f} = (A_{c}R_{c}^{2/3}/n_{c} + \sigma^{3/2} A_{f} R_{f}^{2/3}/n_{f})$$

$$(S_{o} - \frac{3 y_{c}}{3 x})^{1/2} \qquad \dots (11)$$

Differentiating Q with respect to time t,

$$\frac{\partial Q}{\partial t} = \frac{R_{c}^{2/3}}{n_{c}} (1 + \frac{2}{3} \frac{A_{c}}{R_{c}} \frac{\partial R_{c}}{\partial A_{c}}) + \frac{\sigma^{2/3}}{n_{f}} \frac{\partial (A_{f} R_{f}^{2/3})}{\partial A_{c}}$$

$$(S_{o} - \partial y_{c} / \partial x) \cdot {}^{5} \partial A_{c} / \partial t - .5Q(S_{o} - \partial y_{c} / \partial x)^{-5}$$

$$(\partial A_{c} / \omega_{c} \partial t) \qquad \dots (12)$$

Substituting $\partial A_{C}/\partial t$ from equation (9) and replacing the hydraulic depth R by the depth y, assuming the width to depth ratio is large, the following can be deduced:

$$\frac{\partial Q}{\partial t} + C(1 - \frac{1}{S_O} \frac{\partial Y_C}{\partial x})^{3/10} \frac{\partial Q}{\partial x} =$$

$$-\frac{1}{2} Q(S_O - \frac{\partial Y_C}{\partial x})^{-1/2} \frac{\partial}{\partial x} (\frac{1}{\lambda W_C} \frac{\partial Q}{\partial x}) \dots (13)$$

where,

$$C = \frac{Q}{\lambda (Q_{c} n_{c})^{3/5} W_{c}^{2/5} S_{o}^{3/10}} \{ 1 + \frac{2}{3} \frac{A_{c}}{R_{c}} \frac{\partial R_{c}}{\partial A_{c}} + \theta \}... (13a)$$

$$\lambda = 1 + \sigma W_f/W_c$$

and,

$$\theta = \sigma^{3/2} \frac{A_f R_f^{2/3}}{n_f} \left\{ \frac{A_c}{A_f} \frac{W_f}{W_c} (1 + \frac{2}{3} \frac{A_f}{R_f} \frac{\partial R_f}{\partial A_f}) - (1 + \frac{2}{3} \frac{A_c}{R_c} \frac{\partial R_c}{\partial A_c}) \right\}$$

$$\left(\frac{A_c R_c^{2/3}}{n_c} + \sigma^{3/2} - \frac{A_f R_f^{2/3}}{n_f}\right)$$

If flood plain is not inundated $\theta = 0$; and $\lambda = 1$. Finally assuming $\partial Y_C/\partial x$ is small when compared to bed slope S_O , the equation (13) is reduced to:

$$\frac{\partial Q}{\partial t} + C \frac{\partial Q}{\partial x} = Q \frac{\partial}{\partial x} (\alpha \frac{\partial Q}{\partial x}) + \alpha \frac{Q}{S_0} \frac{ds_0}{x} \frac{\partial Q}{\partial x} + \frac{3}{5} \phi (\frac{\partial Q}{\partial x})^2 \qquad ... (14)$$

where,
$$\alpha = 1/2 \lambda W_C S \qquad \phi = 1/2 W_C S_O \qquad \dots (15)$$

The solution of equation (14) with right hand side being zero is a Kinematic wave solution. The terms on the right hand side modify the kinematic wave solution.

NERC (1975) confined the attention to the following from deduced from equation:

$$\frac{\partial Q}{\partial t} + C \frac{\partial Q}{\partial x} = \frac{\alpha}{L} Q \frac{\partial^2 Q}{\partial x^2} \qquad \dots (16)$$

3.2 Attenuation Parameters (a)

The flood routing method based on equation (15) requires the definition of α as a function of Q. The method of evaluation of this is to divide the river reach into several sub-reaches in such a way that the width of the flood plain in each sub-reach is approximately uniform. NERC(1975) gives the following relationship:

$$\alpha(Q) = \frac{1}{2} \{ \frac{1}{L} \sum_{i=1}^{M} \frac{P_{i}^{-3} M P_{i}^{2}}{\sum_{i=1}^{L_{i}S_{i}} (\frac{P_{i}^{2}}{L_{i}S_{i}})} \dots (17)$$

where, P_i is the plan area of the inundated floodplain and channel in the ith sub-reach.

 $\mathbf{L_i}$ and $\mathbf{S_i}$ are corresponding length and slope of these sub-reaches respectively.

In case of small floods where in flood plains are not inundated, the following can be used.

$$\alpha = \frac{1}{2W_{c}} \left\{ \frac{1}{L} \sum_{i=1}^{M} \frac{L_{m}}{s_{m}^{1/3}} \right\}_{i=1}^{3} \left(\frac{L_{m}}{s_{m}^{2}} \right) \dots (18)$$

However, NERC (1975) states that the intermediate values of $\alpha(Q)$ for different floods are much more difficult to obtain unless there are data available on the extent of

flooding by different overbank flooding.

The following steps are to be used for this purpose:

- i) Divide the river reach into subreaches where the subreach has uniform width defined by contours. If the
 extent of inundation is known, this can be done by
 marking the flood plain.
- ii) For each sub-reach, measure $L_{\bf i}$, the length of the channel, the average slope $S_{\bf i}$ of the channel and the plan width.
- iii) Compute plan area P for each sub-reaches
 - iv) Use the equation (17) to computer α^{-}
- 3.3 Convection Speed

This speed is defined as the average speed along a reach of the flood wave having the peak discharge Q under the condition that there is no attenuation. This condition is equivalent to steady state rating curve. The observed speed will normally involve the attenuation of flood peak. This observed speed depends upon the shape of the hydrograph. Heyami (1951) suggested a correction to $(L/T_{\rm p})$ the observed speed:

$$\omega = \frac{L}{T_{p}} - \frac{2\alpha}{L^{2}} Q^{*} \qquad \dots (19)$$

The estimation of (L/T_p) is difficult when there are strong lateral inflows and large tributary inflows. It is advisable to plot (L/T_p) against the value of \mathbb{Q}_p for the combined flow. The equation (13a) can be used when roughness coefficients can be evaluated. But this would be difficult.

FIG. 2 Variation of speed with discharge

FIG.3 Cunge's curve for Δt

Price (1973) found that C (speed of the wave) is strongly dependent upon d $(L/T_p)/dQ$ and on Q*, the attenuation gave the following expression.

$$C = \omega + Q \star \frac{d(L/T_p)}{dQ} \qquad ... (20)$$

where, ω is given by equation (18).

The figure 2, shows the variation of and (L/T_p) with respect to discharge Q. It can be noted that the curves for (L/T_p) and C intersects where $d(L/T_p)/dQ \approx 0$.

The value of C is maximum for a discharge which is usually less than the average bankfull discharge along the reach. This shows that small in-bank floods will travel considerably faster than a flood which is just bankfull. The main reason for this effect is that the river channel generally has a more irregular surface width as the depth of water increases. The irregularities increase the effective storage of the channel. This storage is magnified when water begins to pond upon the flood plain. For some discharge greater than bankfull discharge the speed C will be minimum, and thereafter C will increase with an increase in discharge. Steps for calculation of convection speed are as follows:

- i) Extract the travel time T_p for as many recorded floods as possible
- ii) Calculate the curvature of the peak from:

$$\frac{d^{2} Q_{p}}{dt^{2}} = \frac{Q_{1} + Q_{-1} - 2 Q_{p}}{(9 t)^{2}}$$

 $\mathbf{Q}_{\mathbf{l}}$, $\mathbf{Q}_{\mathbf{-},\mathbf{l}}$ are two points on the hydrograph at time interval

3t, on either side of the peak. (3t may be taken to be $T_{\rm p}/5$).

iii) Calculate attenuation of the peak

$$Q^* = \frac{\alpha}{(L/T_p)^3} Q_p \left| \frac{d^2Q_p}{dt^2} \right|$$

If Q* is greater than 10% of Q_p re-define Q* by

$$Q^* = Q_p (1 - e^{(-Q^*/Q_p)})$$

iv) Define

$$\omega = \frac{L}{T_p} - \frac{2\alpha}{L^2} \quad Q^*$$

3.4 Routing Parameters and the Recurrence Relations
The following equations are used to arrive at the parameters:

$$K = L/\omega$$

$$x = \frac{1}{2} - \alpha Q_{p}/L^{2}\omega$$

Refering to figure 3 taken from Cunge (1969), $(L/_{\omega}\Delta t)$ can be read for the computed x value and then compute Δt value. The value of Δt can be adjusted to a whole number in such a way that the value $(L/_{\omega}\Delta t)$ less than the value read of.

Routing is achieved using the following recurrence formula.

$$Q_{j+1}^{n+1} = c_1 Q_j^n + c_2 Q_j^{n+1} + c_3 Q_{j+1}^n$$

where,

$$C_1 = (Kx + 0.5 \Delta t)/(K (1-x) + 0.5\Delta t)$$

$$C_2 = (0.5\Delta t - kx)/(K (1-x) + 0.5\Delta t)$$

$$C_3 = (K (1-x) - 0.5\Delta t)/(K(1-x) - 0.5\Delta t)$$

j refers to the jth site

n refers to the nth time

A computer programme developed here for the above purposes is given in appendix 1.

4.0 DESCRIPTION OF THE STUDY AREA

In order to illustrate the application of Muskingum Cunge method of flood routing data of river, the Narmada was choosen mainly because of the data of this river was readily available with National Institute of Hydrology. The toposheets available cover the reach between Mortakka to Garudeshwar and hence this reach has been used in this study.

4.1 The River

The river Narmada, situated in the Central India is a west flowing river, rising near Amarkantak in Madhya Pradesh at an elevation of about 900 m in Maikala range. The river Narmada has several falls in the head reaches. The river drops by 24 m at Kapildhara fall at 8 km from the source and 4.6 m drop at Dudhara falls very near to the former. Close to Jabalpur the river drops 15 m at Dhaundhara falls after flowing through 404 km from the source. After travelling 464 km the river Narmada enters the upper fertile plains. river drops again 12 m both at Nandhar, 806 km from source and at Dhardi 853 m from the source, while its journey in the middle plains. A drop of 6.7 m at Sahasradhara can be seen at 966 km from the source. After the middle plain the river enters the lower hilly regions and flows through gorge. Emerging from the gorge the river enters the lower plains and meanders till it reaches Broach. Beyond Broach the valley widens into an estuary and enters the Gulf of Gambay.

In its 1312 km journey the river Narmada receives flows from number of tributaries. Some of the major

FIG.4 Index map showing gauging sites on the river Narmada

tributaries are Burhner, Banjer, Sher, Shakkar, Tawa, Chhota Tawa and Kundi.

The Narmada basin is bounded by Vindhyas on the north, Maikala range on the east, the Arabian sea on the west and the Sathpuras on the south. The hilly regions are well forested. The upper, middle and lower plains are broad and fertile areas well suited for cultivation.

So far as the main river is concerned there are seven important discharge sites as marked in figure 4.

Observations are reported to be carried out daily using current meters. In case of high floods, floats are used to measure velocity of the flow.

5.0 AVAILABILITY OF DATA

The hydrological observations in Narmada basin were started in the year 1942. The then Central Water Ways, Irrigation and Navigation Commission (CWINC) commenced its gauge observation on 1948. The Table 1 lists the gauging stations at present operating on the main Narmada basin.

Table 1 : Gauge and discharge sites on the main river Narmada $\,$

No	Name	zero of gauge(m)	Width (m)	Slope	Lat	Lon
1.	Manot	442.0	170	.00125	22044'	80 ⁰ 30'
2.	Jamtara	360.0	280	.00033	23 ⁰ 04'	79 ⁰ 57'
3.	Bermanghat	306.0	320	.00038	23 ⁰ 02 '	79 ⁰ 07 '
4.	Hoshangabad	282.0	700	.00023	22 ⁰ 48'	77 ⁰ 45'
5.	Mortakka	150.0	670	.00053	22 ⁰ 10'	75 ⁰ 58'
6.	Mandle shwar	138.0	600	.00046	22 ⁰ 09'	75 ⁰ 39'
7.	Garudeshwar	10.0	500	.0001	21 ⁰ 50'	73 ⁰ 58'

Daily gauge and discharge data and hourly gauge data were available at National Institute of Hydrology. The daily gauge and discharge availability is shown in Table 2. The availability of hourly gauge data for the gauging sites listed in Table 1 are given in Table 3.

The information from the toposheets available at National
Institute of Hydrology and Earth Science Department, University
of Roorkee has been used in the study.

Table 2:Availability of daily gauge and discharge data for the gauging sites of the river Narmada

No	Name of the gauging site	Period
1	Manot	Aug. 1948 - Mar. 1953
		Jul. 1968 - Oct. 1968
		June 1970 - Oct. 1970
		June 1980 - Sept. 1980
2	Jamtara	Jan. 1949 - Dec. 1967
		June 1978 - Oct. 1978
		June 1980 - Oct. 1980
3	Bermanghat	June 1980 - Oct. 1980
		Jan. 1971 - Dec. 1978
4	Hoshangabad	Jul. 1968 - Sep. 1968
		June 1980 - Oct. 1980
5	Mortakka	Jan. 1975 - Dec. 1977
		Jan. 1978 - Mar. 1978
		June 1978 - Oct. 1978
6	Mandeleshwar	Nov. 1971 - Oct. 1978
		June-Oct. 1979-1980
7 :	Garudeshwar	Jan. 1948 - Dec. 1979

Table 3: Availability of hourly stage data for the gauging sites of the river Narmada

	Name of the site	Period of availability
1	Manot	Jul. 1978 - Oct. 1978
		JanOct. 1979
		June -Oct. 1980
2	Jamtara	June-Oct. 1971-1980
3	Bermanghat	June-Oct. 1974-1980
4	Hoshangabad	Jan. 1959 - Dec. 1959
		Jan. 1961 - Dec. 1965
		Jan. 1968 - Dec. 1980
5	Mortakka	Aug. 1968 - Sep. 1968
		June - Oct. for 1970-1980
6	Mandleshwar	June - Oct. for 1973-1980
7	Garudeshwar	Jan. 1969 - Dec. 1980

6.0 PROCESSING OF DATA

6.1 Rating Curve

Establishing a stage-discharge relation for various sites were carried out using daily stage and discharge data. They are given in a report of NIH, CS-6 (1985). A relationship of the form $Q = a(G - e)^b$ where, G, Q are stage and discharge respectively and a, b, e are parameters defining the relation. The established parameters are given in Table 4.

Table 4: Parameters defining the rating curves for the gauging sites of the river Narmada

No	Site	Parameters			Datum
		a	b	C	(m)
1	Manot	99.467	1.769	0.5	86.0
2	Jamtara	85.467	1.795	2.3	360.0
3	Bermanghat	96.428	1.73	4.0	306.0
4	Hoshangabad	173.183	1.858	1.9	282.0
5	Mortakka	605.09	1.54	2.6	150.0
6	Mandleshwar	331.209	1.715	0.9	138.0
7	Garudeshwar	250.0	1.66	1.7	12.0

6.2 Plan Area

Toposheets of scale (1:50000) are used in this study. The river and the associated contour curves were traced on to a sheet. These contours are at 20 m interval. Two contours were included in the analysis. The river is then divided into subreaches. The normal length of the sub-reach is 500 m.

However, it also varies between 500 m to 1200 m. The width of the river, and the distance between the contours were measured. For a given discharge Q the stage was computed using the rating curve for the site Mortakka. This level was reduced by bed level drop when computations proceded to downstream reaches. These computations include interpolation of width for the corresponding stage and computing the plan area. The river reach between Mortakka to Garudeshwar was divided into 419 sub-reaches.

7.0 ANALYSIS AND RESULTS

A computer programme given in appendix 1 ALFA. FOR was developed to carry out these computations. The measured width and length of the subreaches given in Table 5 formed a part of the input data. The other input data include rating curve parameters, slope and the desired discharge. The output from the programme is the routing parameter x. This parameter has been found out for various discharges and a plot was made as shown in Figure 5.

FIG.5 Variation of parameter 'x' with discharge 'Q'

From the figure 5, it can be seen that the value of 'x' varies between .32 to .42 for discharges 45000 Cumecs to 70000 Cumecs.

These x values formed an input to the programme MCM.FOR. Flood hydrographs observed at Mortakka in the year 1978 and 1979 are used to route them upto Garudeshwar. The necessary 'x' values are extrapolated and used. The travel time is deduced from the plotted hydrograph.

In the routing of flood hydrograph through a river reach such as between Mortakka and Garudeshwar, lateral flow is quite significant. In the present study the lateral flow has been considered by accounting for its effect at both upstream and downstream ends of the reach. The total lateral flow volume has been computed as difference between the observed upstream and downstream hydrographs for a flood event. The half of lateral flow volume has been added to the inflow hydrograph volume by taking the time distribution proportionate to that for inflow hydrograph. The modified inflow hydrograph is then routed through the reach to the downstream end using Muskingum-Cunge procedure. The remaining 50% lateral flow volume has been added to the routed outflow hydrograph considering its time distribution as proportionate to that for the routed hydrograph. This procedure of considering lateral flow though arbitrary, has provided satisfactory reproduction of observed hydrographs. It may, however, be necessary to appropriately modify such assumption in case

FIG.6 Observed and routed hydrograph at Garudeshwar for the 1978

FIG.7 Upstream and routed hydrograph for the year 1978

FIG.8 Observed and routed hydrograph at Garudeshwar for the year 1979

FIG.9 Upstream and routed hydrograph for the year 1979

of typical river reaches.

The Fig. 6 shows the upstream/inflow hydrograph observed) at Mortakka including the 50% of the lateral flow and the downstream routed hydrograph at Garudeshwar (not including 50% lateral flow). In fig. 7, the observed downstream hydrograph at Garudeshwar for the year 1978 has been compared with the routed hydrograph (including 50% lateral flow for the reach). It is seen that the routed hydrograph nearly matches the higher peak of the observed hydrograph though it is somewhat overpredicting the lower peak. This seems to be due to distribution of the lateral flow volume throughout all the ordinates of the hydrograph.

The Figures 8 & 9, show the corresponding results for the flood hydrograph of the year 1979 for Mortakka to Garudeshwar reach of river Narmada. As shown in Figure 9, the observed and routed flood hydrographs at Garudeshwar nearly match inspite of simplified assumption for the lateral flow distribution. The peaks of the two hydrographs are almost same, though in the recession portion the routed hydrograph overpredicts for some ordinates immediately after the peak.

REFERENCES

- 1. Miller, W.A. and Yevjenich, V.(1975), 'Unsteady flow in open channels'. Bibliography, Vol. III, Water Resources Publications, Fort Collins, Colorado.
- Singh, V.P. and McCann, R.C.(1980), 'Some notes on Muskingum method of flood routing', Journal of Hydrology, Vol.48, No.3, pp 343-361.
- 3. Cunge, J.A.(1969), 'On the subject of a flood propagation computation method (Muskingum Method)', Journal of Hydraulic Research, Vol. 7, No.2, pp 205-230.
- 4. Hyami, S.(1951), 'On the propagation of flood waves', Bulletin No.1, Disaster Prevention Research Institute, Kyoto University, Japan.
- 5. Price, R.K. (1973), 'Flood routing in natural rivers', Proc. of the Institution of Civil Engineers 55, 913-930.
- 6. NERC (1975), 'Flood studies report', Vol.III, London.
- Henderson, F.M. (1966), 'Open channel flow', MacMillian and Company, New York, P-364.
- 8. N.I.H., (1985), 'Rating curves for gauging sites on Narmada river', Report CS-6.

APPENDIX I

```
ALFA.FOR
       Programme for ALFA
       DIMENSION W200(200), W180(200), W1(200)
       OPEN(UNIT=1,FILE='ALFA.DAT',STATUS='OLD')
       OPEN(UNIT=2.FILE='ALFA.RES',STATUS='NEW')
       WRITE(2,99)
       READ(1:#) MSET:@
       JF=0
       RIL=0.0
       SIG1=0,0
       SIS2=0.0
       DO 30 IUK=1.MSET
       RIL=0.0
       SIG1=0.0
       8182=0.0
       READ(1,*) SLOF, DX, NX, COU, ARC, ERC, BRC, REL
       READ(1:*) (WI(I):W200(I):W180(I):I=1:NX)
       PRC=BRC-SLOP*REL
       DXSM=DX#SLOP#SLOP#1000.
       S13=SLOF**(1./3.)
       EL=(Q/ARC)**(1./ERC)+RRC
       DO 20 J=1+NX
       #=#+1
       EL=EL-EX#SLOF
       W=((W200(J)-W180(J))/20.)*(EL-COU)+W180(J).
       IF(W.LT.WI(J))W=WI(J)
       A= PX#4/1000.
       A2LS2=A#A/DXEM
       SIS1=SIS1+A2LS2
       AS13=A/S13
       RIL=RIL+DX/1000.
       SIG2=8IG2+AS13
20
       CONTINUE
       ALFA=0.5*((SIG2/RIL)**-3.)*SIG1
       WRITE(2,999) ALFA, G, RIL
       SPCI=0.5-(ALFA#Q)/(RIL#RIL# 3.)
       WRITE(2:99)ALFA; RIL; EPCI
30
       CONTINUE
       FORMAT(1X) IS; 2F10.2, 1X; F10.4, 1x; 2F10.4)
       FORMAT(6X; 'THE Alfa is..':f10.4; 'for reach..':f10.4;
93
```

FCRMAT(1X)'.....The Attenuation Parameter'

1.5x. 'is.....' :F10.5; 'FOR Q...' :F10.1; 'FOR REACH' :F10.1)

17X, 'x is....', (10.4)

799

STOP ENC

TABLE 5: INPUT DATA FOR ALFA.FOR

á 45000.		 .	
.000528 500. 119 10	80. 805. 1.	54 155,6 1	-57500+
0,2250	9,3000	6.3000 0.4000	
0.3750	0.4000		
0.3500	0.6500 0.5500	0.5500 0.5000	
0.4000 0.3500		0.4000	
0.3250	0.4300	0.3500	
0.3250	0.5000	0.3500	
0.4000	0.5500		
0.3500		0.5000	
0,4250	0.6000	0.5000	
0.4500	0.7000	0-6000	
0,5000		0.5000	
	1.0000		
0.5000	1.2500		
0.4250	0.4500	0.5500	
0.4250	0.5500	0.5000	
	0.4000		
	0.9500	0.5000	
0.4500 0.4000	1.1500 1.1000	0.4500	
0,4250	1.0500	0.4500	
0.4500		0.5000	
0.4500		0.5500	
0.4500	1.4500	0.5000	
0.3700	0.5000	1.1500	
0.4750			
0.4000		0.2500	
0.2000		0.2500	
0.1500		0.4000	
0.4000		0.5000	
	2.1000	0.5000	
	2.7000	0.6000	
0.6250		0.5000 0.4500	
0.5200 0.4500			
0.4500			
0.3000		0.3000	
0.2500		0.3000	
0.2500	=	0.3000	
0.2250	0.3000	0.3000	
0.4000	0.5500	0.4000	
0.3000		0.3000	
0.2500		0.2500	
0,3000		0.6000	
0.2500		0.4500	
0,3000		0.3500	
0.2500		1.1000	
0.2500 0.3500		1.4000	
0.3500		1,5000	
0.4500		1.7000	
0,6000	:	1.8000	
0.6000		1.9000	}
0.6500		1.7000)
0.225	7.2500	1.5000	
0.2000		0.3000	
0.300		0.4000	
0.300		0.550	
0.250			
0.300			
0.275			
0.250			
0.300		-	•
	T-2/1	Λ	

```
0.3000
                    1.0500
                               a Fonc
                    0.3000
           0.3000
                               0.5000
                     0.7000
           0.3000
                               0.4000
           0.3000
                     0.7500
                               0.5000
                               0.7500
           0.3700
                     1.0000
           0.3250
                     1,2500
                               0.3000
                     0,3500
                               0.2750
           0.3000
           0.4000
                     0.5500
                               0.2500
           0.5000
                     0.6000
                               0.2500
           0.4500
                     0.9500
                               0.4000
            1,4500
                     1,1500
                               0.3000
           0.5000
                     1.1000
                               0.2500
                               0.2250
           0.5000
                     1.0500
                               0.2250
           0.4000
                     1,5000
           1.3500
                     1.3500
                               0.2500
                     1,4500
                               0.5500
           0.3700
           0.3300
                     0.5000
                               0.5000
                     0.4000
                               0.3000
           0.3000
                     0.5000
                               0.4000
           0.2500
           0.1250
                     0.8500
                               0.7500
           0.2000
                     0.9500
                               0.2500
           0.3000
                     1.5000
                               0.4000
           0.3000
                               0.5000
                     2,1000
           0.3500
                     2,7000
                               0.4900
           0.4000
                     3-6000
                               0.5000
           0.4000
                     2.8500
                               0.5000
           0.4000
                     3.1000
                               0.4500
                     0.4500
                               0.4500
           0.3500
                     1.4500
                               0.4000
           0.2000
           0.2000
                     1.1000
                               0.3000
           0.2500
                     0.4000
                               0.3000
           0.2700
                     0.3500
                               0.3000
           0.3000
                     0.4000
                               0.3000
           3,2750
                     0.5000
                               0.4000
                     0.3500
           0.2000
                               0.3000
                     0.5500
                               0.2500
           0.3500
           0.4000
                     0.5000
                               0.3000
           0.3000
                     0.4500
                               0.3000
                               0.3500
           0.5000
                     0.7500
           0.2750
                               1.2500
                     1.3000
           0.4000
                     1.7500
                               0.3500
                     3.5000
                               0.3000
           0.5000
           0.7000
                     3.7000
                               1.1000
           0.6000
                     5.5250
                               1.4000
           0.6500
                     7,4000
                               1.5000
           0.7000
                    7,4000
                               1.7900
           0.8000
                    8,0000
                               1.8500
           0.7000
                   10.6000
                               1,9000
           0.6000
                     7,2000
                               1.7000
           0.5000
                     7.2500
                               1.5500
           0.5500
                     5.0500
                               3.1000
           0.5000
                    10.0000
                               2.0500
                               1.8500
           0.4000
                    14.9000
           0.5500
                    12.0000
                               1,9200
           0.4600
                    20.0000
                               1.5000
                              1.7200
           0.7000
                   23.0000
.000526 10000. 1 160. 605. 1.54 155.6 0.0
                    0.9
           0.5
                                ٤.
.000528 500. 51 160. 551. 1.37 137.8 0.0
           0.6000 12.7500
                               5.0000
                               5.2500
           0.6500
                    14.3500
                    15.1000
                               3,2000
           0.6000
           0.6500
                   15.2500
                               2.5000
           0.5500
                   14.2000
                               2,1500
           0.5500 12.5000
                               2.5000
                    I - 3/14
```

```
11.2500
                              2,0000
          0.5000
                  12,1000
                              2.0000
          0.6500
          0.7000
                  12,8000
                              1.2500
                              1,1000
          0.7000
                   13.0000
          0.7000
                   15.0000
                              1.4000
                              1.2500
          0.3000
                   14,5000
          0.5000
                   14,0000
                              1.5500
          0.5000
                   15.7000
                              1.4000
                   16.1000
                             1.2500
          0.4500
          3.4500
                   15.5000
                             1.7500
          0.5500
                   15.7000
                              1.6000
                   17.0000
                              2.1000
          0.6500
          0.7000
                   17.0000
                              2,7500
                   18.0000
                              3.0000
          0.8000
          0.7500
                   23.0000
                              3,5000
          0.7000
                   20.0000
                              4.5000
          0.4500
                   20.0000
                              3,0500
          0.7000
                   23,0000
                              2.0000
                   20,0000
                              3.5000
          0.7500
          0.8000
                   20.0000
                              8.7500
          1.2500
                   25.0000
                              8.4000
                   25.0000
                              9.0000
          1,2000
          1.1000
                   18.0000
                             12,5900
          1.0500
                   17.5000
                             13,0000
          1.0500
                  18.5000
                             12,5000
                             12,5000
          1.0000
                   14,0000
           1.1500
                   13.5000
                              9,5000
           0.9500 13.7500
                              8,4000
                   13.0000
                              3.0000
          0.9000
                  15.7000
                              4.7000
           0.8000
          0.7500
                  15.5000
                              4.5000
           1.0000
                  14.0000
                              4,5000
                              5.0000
                  14.5000
           1,0000
                              5.5000
           0.7000
                  15.0000
           0.7000
                   18.5000
                              8.0000
           0.7000
                   16.0000
                              7.2500
           0.5500
                   20.0000
                              7,0000
                              9,2500
                   15.5000
           0.5500
           0.5000
                   14.5000
                              9,1000
                              9.1000
           0.3000
                   15.5000
           0.6500
                   17.5000
                              7.9000
        0.5000
                   17.7000
                              7.6000
           0.9000
                   15.0000
                              7.7500
                   14.7000
                              7,2500
           0.7000
           0.6500
                   15,0000
                              8.0000
.000510 500. 192 140. 551. 1.37 139.8 25500.
           0.5000 11.0000
                              1,1000
                              0.9500
           0.4500 11.5000
                  12.0000
                              0.5350
           0.5250
                  11.0000
                               0.5400
           0.5000
           0.6000
                   11.0000
                               0.3200
           0.7500
                   14.0000
                               0.8700
                   15,0000
                               1.4100
           0.7500
           0,7000 13,0000
                               1,0000
           0.6000
                   12,0000
                               1.3500
           0.6000
                   12.0000
                               2,4000
           0.3000
                    11.0000
                               1.1500
                               1.6500
           0.6500
                   11.0000
           0.3500
                    8.0000
                               2.4500
                    5,0000
                               3.0000
           0.6400
           0.5200
                    5.5000
                               2.0200
           0.5000
                     7.5000
                               1,3200
           0.6100
                     8.0000
                              1.3000
                     9.5000
                               1.2000
           0.8500
           0.6500
                     9.5000
                              1.7500
                      I - 4/14
```

0,7400	12.0000	1.2800
0.7500	12.0000	1.2200
0.7500	12.0000	1.5000
0.7500	11.5000	1.5000
0.6500	11.5000	1.4500
0.7500	11.5000	3.9000
0.5000	10.5000	1.9000
	-	
0.9000	11.0000	1,9000
0.9500	11.2500	1.5000
1,0000		
	11.5000	1.0700
1.0000	10.5000	1.4500
1,0000	10.5000	1.0700
		1,3500
1.0000	11.0000	
1.0000	12.0000	1.3500
0.5000	13.0000	1.0500
1.0000	15.0000	1.3500
0.8500	10.5000	3.2500
0.7500	10.5000	3,2000
0.6500	11.2000	2,4500
0.6500	11.0000	2.0500
0.6300	12.5000	2,7300
0.6000	12.6000	2,3000
0.6000	12.5000	2,2000
0.6000	12.0000	2.1000
0.6000	11.0000	1.5000
0.6000	11.0000	
		1.3000
0.6000	9.5000	1.1000
0.3000	7.0000	1.2000
0.6000	9.5000	1.2000
0.7000	10,0000	1.3000
0.7000	11.5000	1.4000
0.7500	11.5000	1.2000
0.7500	12.1000	1,4500
0.8000	15,0000	3,5000
0.7500	14.9000	3,2000
0.6500	14.7500	3.3000
0.7500	14.3000	3.6000
0.7000	14.1000	2.1000
0.6000	14,2000	1.5000
0.7000		
	15.3000	1.7000
0.6500	14.3000	1.5000
0.7500	12.5000	1.5500
0.7000	12.7500	1.8000
0.7000	13.6000	1,1000
0.7000	13.5000	2.7500
0.7000	11.1000	2.5000
0-6500	11.3500	1.5000
0.5500	10.8000	1.2500
0.8000	10.7000	1.1000
0 .750 6	11.2500	1.2000
6.7000	11.3000	1.1000
0.7500	10,7500	1.1000
0.7000	12.5000	2.0000
0.6000	13.0000	1.5500
0.6000	13.1000	1.8000
0,7000	12.8000	3.2000
0.7000	12.3000	3.0000
0.7000	12.6000	3.3000
0.8000	12.3000	3.3000
0.8000	11.7500	3.3000
0.8000	11.5000	3.1500
0.7000	11.9000	3.5000
3.7500	12.0000	3.2000
0.7500	11.5000	3,0500
0.8000	12,0000	3.0000
•	I-5/	
	I - J/ .	. 7

0.7000	12.1000	3.0000
0.7000	14,1000	2.8000
0-4500	13.5000	5.8000
6.7500	14.5000	5.3000
0.7000	14.2500	4.7500
0.7000	15.7000	4.0000
0.5500	15.0000	3.6000
0.5500	16.2000	4.0000
0.6000	15.7000	2.3000
0.4500	15.0000	2.1000
0.8000	14,1000	4.5000
0.7500	14.7000	3.0000
0.7500	14.0000	4.5000
0.4500	14.5000	3.8000
0.8000	16.7500	2.8000
0.8000	16.3000	3.2000
0.5000	12.0000	2.0000
0.6000	11.7000	1.3000
0.5500	10.7000 4.2500	1,4000 2,2500
0.7000	4.4500	2.2500
0.6000		2.5000
0.6000	4.6500	•
0.6000	5.0500	2,4000 2,4500
0.7000	5.5000	
0.6000	5.5000	1.4500
0.5500	5.5500 4.8000	1.4000 2.2000
0.6500	4.3500 4.3500	2.2500 1.8500
0.6500 0.5000	2,9000	1.7500
0.5500	3,7500	1.9500
0.6500	3.5500	1.7500
0.4000	3.5000	1,4000
0.4000	3.5000	1.6500
0.4500	3.5500	1.5500
0.5000	3.5000	3.3000
0.5200	3.6200	0.6200
0.5000	3.6000	0.6000
0.5000	3.5000	0.5000
0.5500	0.8000	0.6500
0.5000	0.7000	0.7000
0.6000	0.9000	0.7000
0.5000	0.7500	0.6000
0.5500	16.5000	0.6500
0.4800	15.8000	0.5800
0.4500	15.5000	0.5500
0.4500	0.6500	0.5500
2.4000	0.4000	0.5000
0.4500	0.6500	0.5500
0,4500	0.5100	0.5500
0.4100	0.6100	0.5100
0.4500	0.6500	0.4500
0.5000	0.7000	0.6000
0.4500	0.4500	0.5000
0.5000	0.7000	0.6000
0.5000	0.7000	0.6000
0.4000	0.6000	0.5000
0.4500	0.6500	0.5500
0.4500	0.6500	0.5500
0.4500	0.6500	0.5500
0.4000	0.6000	0.5000
0.4500	0.3500	0.4500
0,4000	0.5000	0.5000
0.4000	0.6000	0.5000
0.4000	0.6000	0.5000
	I-	6/14

```
3.4500
                      0.6500
                                0.5500
            0.5000
                      0.7000
                                0.6000
            0.5000
                      0.7000
                                0.6000
            0.5000
                      0.7000
                                0.5000
            9.5000
                                0.6000
                      0.7000
            0.5500
                                0.6500
                      0.7500
            0.6000
                      0.8000
                                0.7000
            0.6500
                      0.8500
                                0.7500
            0.6000
                      0.8000
                                0.7000
                      0.8000
                                0.7000
            0.4000
            0.5500
                      0.7500
                                0.4500
            0.6000
                      0.3000
                                0.7000
            0.5000
                      0.8000
                                0,7900
                      0.8000
            0.6000
                                0.7000
            0.6000
                      0.3000
                                0.7000
            0.2000
                      1.5000
                                0.8000
            0.1500
                     1.0000
                                0.8500
            0.3000
                     1.0000
                                0.9000
            0.4000
                     1.1000
                                0.9500
            0.3000
                    1.0500
                                0.9000
            0.3500
                     1.2000
                                1.0000
            0.4500
                     3,6000
                                1.7000
            0.3500
                     7,0000
                                2,0000
            0.3500
                     8.0000
                                2,1000
            0.2000
                     7.0000
                                0.5300
            0.3000
                     1.7500
                                0.8000
            0.2500
                     0.8600
                               0.4000
            0.2000
                     0.3000
                                0.8000
           0.3500
                     0.9000
                                0.9000
            0.3000
                     0.8500
                                0.8000
            0.3500
                     1.0500
                               0.9000
            0.4000
                     0.9500
                               0.7500
           0.3000
                     0.8000
                                0.7000
            0.3500
                     0.8500
                                0.7500
           0.3000
                     0.7500
                                0.6500
           0.3500
                     1.0500
                               0.8500
           0.2300
                     1.5000
                               1.4000
           0.2000
                     1.7000
                               1.1000
           0.1000
                     0.8000
                               0.8000
                     0.8500
           0.2000
                               1.0000
           0.1000
                     1.2000
                               0.7500
           0.0500
                     1,2000
                               1.0000
           0.1000
                     1,7500
                               1.1000
.000525 10000. 3 140. 551 1.37 139.8 121500.
            .35
                      . 5
                                .4
            .15
                      . 3
                                 .25
                       .5
                                .45
            , 4
.000526 500. 54 100, 551, 1.37 139,8 151500.
           0.5000
                    1.5000
                              0.5500
           0.5500
                    1.0000
                               0.7000
                    1.4000
           0.7000
                               1.2500
           0.7000
                    1.2500
                               0.7500
           0.6500
                     1.1000
                               0.9500
           0.6500
                    1,3000
                               1.0500
           6.7000
                     1,6700
                               1.3000
           0.4500
                     2.5000
                               1,8000
           0.6500
                     1.5000
                               1.2000
           0.5000
                    1.5000
                               0.8000
           0.5500
                     1.0000
                               0.9000
           1.5000
                    1.1000
                               1.0500
           0.7000
                     1,2000
                               0.8000
           0.3000
                     0.9500
                               0.8000
           3.3000
                     1.3000
                               1,0000
                    1.0500
           9.5500
                               0.5000
           1.4500
                    1.0000 C.5000
-7/14
```

0.3500	1.5000	0.7500
0.5000	1.0000	0.7000
0.6000	2.5000	1.1000
୍ୟ 5500	1.1500	0.7500
0.5500	1,4000	0.9000
0.5500	1.7000	1.8000
0.4000	1.7500	1.2300
0.8300	1.8000	1.5000
0.3500	3.3500	3.0900
9,4500	2.1000	2,0000
3.4000	1.2000	1,0000
0.5500	1.0500	1.0000
0.6500	0.8000	0.7000
2.6000	1.0500	0.8000
0.5500	0.9500	1.0000
0.5500	1.5000	0.9000
0.5500	1.5000	1,2500
0.5000	1.9000	1.2500
0.5000	2,5000	1.4000
0.5500	2.5000	1,4000
0.5500	2.2500	0.9000
6.5500	2.1500	1.7000
0.6000	1.7500	1.0500
0.5000	2.1000	1.1000
0.4500	2.6000	1,2000
0.6000	2.7000	1.5500
0.7000	2.8000	2,4000
0.6500	2.3000	1.4000
0.3000	2.2000	1,1000
0.6900	2.0000	2.1000
0.5000	2.1000	1.3000
0.6000	1.9000	1,5000
0.5500	1.9500	1.2000
0.6000	1.3500	1.1000
0.5500	1.5000	1.2000
0.5500	1.5000	1.7500
0.5500	1.4000	1,7000

C

```
REAL 01(500):02(500):X(500)
DIMERSION TIME(500) - GEST(500) - GUP(500) - GDNP(500)
COMMON EXPET, UX PEXER, LEND, TK + J1 + L1 + L2 + T1TLE (60) + UT1 + UT2
COMMON GIRIB: (500), GIRIB2(500), GHYDRB(500), DTHYD, GINIT
CONHON GINE, GINA, TGIN, TSCGIN, AF, WSP, GCON, GDNS (500), TDEVN
COMMON IGH, IGDMS
CFER(UMIT=3,FILE='MUI.DAT',STATUS='OLD')
OPEN(UNIT=32*FILE='MMC.DAT',STATUS='NEW')
DPEM:UNIT=33,FILE='MUSRI.DAT',STATUS='NEW')
CALL DATIN
DX=DXLR/FLOAT(JX-1)
DK=DX TISE
IPSILC=.5#(1.~GCCH#AP#2./(DX#WSP#DXLR))
CC=DM*(1.-EPS(LG)+DT*,5
C1=(2) *EPSILD+DT*.5)/CC
CC=(DT*.5-DK*EPSILO)/CC
D3=(DK*(1.-EPSILD)-DT*.5)/CC
D4=DT#DX/CC
JXM1=JX-1
T=0.0
DEUM=0.0
TOTDIS=0.0
707D=0.0
GP1=GINIT
GP2=GINIT
QDNP2=QINIT
GDNF1=GINIT
GBN=GINIT
GTOT=0.0
JCOUNT=C
ICOUNT=0
DO 2 J=1.JX
X(J)=DX*FLGAT(J-1)
Q1(J) ≃GINIT
Q2(J)=QINIT
CONTINUE
00 14 L=1,LEND
TIME(L)=L
T=T+DT
TH=T/3600.
GP2=GP1
GP1=01(UX)
GDNF2=GDNF1
GONF1=GON
```

```
GDN=GDNS(L)
        G1(1)=GHYDRO(L)
       DO 4 J=1,JX
        R2(J)=R1(J)
        CONTINUE
4
        atat=0.0
        R1:11=QHYDRO(L)
        00 5 J=2>JX
        01/U)=C1#02(U-1)+C2#01(U-1)+C3#92(U)+C4#0T0T
        CONTINUE
ć
        GEST(L)=G1(JX)
        GOMP(L)=GOM
        SUP(L)=01(1)
        IF(TH.LT.TDEVN) GO TO 8
        DEVN-DEVN+(Q1(UX)-QDN)*(Q1(UX)-QDN)
        ICOUNT=ICOUNT+1
        JCGUNT=JCGUNT+1
        IF(UCDUNT.NE.2) GO TO 8
        TOTD=TOTD+2.*DT*(Q1(JX)+QF1+GF2)/3,
        TOTDIS=TOTDIS+2.*DT*(GDN+GDNP1+GDNP2)/3.
        0=TKUCCL
        WRITE(33,302) TH:X(JX):01(JX):00N
        FORMAT((20%,F6.2,9%,F8.1,2(8%,F9.2)))
302
        URITE(33,303)
        FORMAT(1897)
703
        CONTINUE
1.4
        TOTRIS=TOTRIS/((TH-TDEVN)#3600.)
         TOTB=TOTB/((TH-TBEVN)#3600.)
         pispif=(1,-ToTD/TOTDIS)*100.
         DEVM=SQRT(DEVM/FLGAT(ICOUNT))#100./TOTDIS
         MRITE(33,304) TOTDIS, DISDIF, DEVN
         FORMATISON AVERAGE RECORDED DISCHARGE = :F10.2;
 304
         19H CUMECS/
         252H DIFFERENCE BETWEEN RECORDED AND PREDICTED AVERAGE D
         311HISCHARGE = .F6.2,1HZ/
         424H STANDARD DEVIATION = (F6.2)1HZ//)
         WRITE(32+186)
         FORMAT(10X) MUSKINGUM CUNGE METHOD OF FLOOD ROUTING'/
 123
         1 10X, 'PLOT SHOUS ESTIMATED AND MEASURED G-HYDROGRAPH'/
         210X, AND HYDROGRAPHS AT BOTH END OF THE REACH'/)
         CALL PLOT (GEST.TIME:LEND:GONP)
         CALL PLOT (GEST, TIME, LEND, GUP)
         ପ୍ରପ୍ର=୦.୯
         201=0.0
         DO 127 I=1,LEND
```

```
GGG=GGG+GDNF(I)
127
        331=231+3HYD80(I)
        DIFT=000-001
        DIFF=1.-DIFF/030
        00 108 I=1/LEND
129
        GOMP(I)=GOMP(I)#BIFF
        CALL PLOT (GUP, TIME, LEND, GRNP)
        CALL PLOT (GEST-TIME-LEND-GRNP)
        CLOSE (UNIT=3)
        CLOSE(UNIT=32)
        CLOSE (UNIT=33)
        3700
        ena
        SUBROUTINE DATIN
        COMMON DX-DT-JX-DXLR-LEND-TH-J1-L1-L2-TITLE(50)-
        1JT1, JT2, QTRIB1(500), QTRIB2(500), QHYDR3(500), DTHYD,
        QUINIT, GINE, GINA, TGIN, TSCGIN, AF, USP, GCON,
        3GDNS(200), TDEVN
        COMMON IGHT TODAYS
        READ(3,300) ( TITLE(I), I=1,40)
        READ(J,*) UX, LEND, IGH, IGDNS
        READ(3:*) DXLR: DT: DTHYO: RINIT: WSP: AP: QCON: TDEVN
        WRITE(33,355) (TITLE(1),1=1,60)
305
        FORMAT(20X, 60A1)
300
        FORMAT(18+(60A1))
        URITE (33.301) UX, LEND, IGH, IGDNS
        FCFMAT(20%)1118)
301
        WRITE(33,# ) DXLR,DT,DTHYD,GINIT,WSP,AF,QCON,TDEWN
302
        FORMAT(20X;F9.2;F7.1;F4.1;F6.2;F8.6;F9.3;2F6.1;F5.2;E9.3;F7.2;F6.2)
        READ(3,*) (QHYDRO(1),1=1,1GH)
        READ(3,*) (RDNS(1), I=1, IGDNS)
        WRITE(33,305)
306
        FORMAT(IH) 18%, 4HTIME, 10%, SHDISTANCE, 6%, 10HCALCULATED, 6%,
        19HPRCTOTYPE/1H +17X+5H(HRS)+13X+3H(H)+7X+9HDISCHARGE+6X+
        29HDISCHARGE/)
        RETURN
        IND
        SUBROUTINE FLOT (CUSEL, TIME, N, GEST)
        DIMENSION TIME(500), CUSEC(500), A(101), REST(500)
        DATA CHAR, SRIB, BLANK, ZERO/1Hx, 1H+, 1H , 1HO/
        GMAX=GEST(1)
        SUMAX=CUSEC(1)
        90 10 J=1:N
        IF(CUMAX~CUSEC(I))11,9,9
```

```
CUMAX=CUSEC(1)
11
        IF(GMAX-GEST(I))8,10,10
3
        QMAX=REST(I)
        SONTINUE
10
        CUMAX=AMAX1 (CUMAX, GMAX)
        SF=CUMAX/90.0
        00 12 I=1,S1
12
        A(I)=GRID
        URITE(32,13)(J,J=1,81,10)
        FORMAT(/2X+'TIME'+1X+'LINE'+12+10(6X+14)+4X+'Q HR'+' GEST'/)
3
        MA=CUSEC(1)/SF+1.5
        ME=GEST(1)/SF41.5
        <u>[=1</u>
        A(NA)=CHAR
        A(NB)=ZERG
        WRITE(32,14)TIME(1),1,(A(J),J=1,E1),CUSEC(1),GEET(1)
        FORMAT(1X,F6.1,1X,14,81A1,F9.3,F9.2)
14
        DO 15 I=1:81
15
        A(I)=BLANK
        K=1
        KC=7
        DO 20 I=2,N
        KN=TIME(I)-TIME(I-1)
        AA=CUSEC(I)/SF41.5
        NB=QEST(I)/SF41.5
        NA=AA
        DO 21 I1=1,81,10
        A(I1)=BRID
        IF(KC-KN-K)24,25,25
        KP=KC-K
 24
        IF(KP-1)30,30,34
 34
         DB 31 J=2:KP
         WRITE(32,91)(A(JJ),JJ=1,81)
 31
 91
         FORMAT(12X:81A1)
        PO 32 J=1,81
 30
         A(J)=GRID
 32
         WRITE(32,92)KC, (A(JJ), JJ=1,81)
 92
         FORMAT(8X; 14;81A1)
         pg 33 J=1,81
         A(J)=BLANK
 33
         KN=KN-KC+K
         K=KC
         KC=KC+6
         80 TO 22
 25
         IF(KN-1) 40,40,41
```

```
41
        00 42 J=2:KM
       WRITE(32,91)(A(J1),J1=1,81)
4.0
        DO 43 J=1,81
       A(J)=BRID
13
        A(NA)=CHAR
        A(ME)=TERG
        WRITE(32,14)TIME(1),K,(A(J),J=1,81),CUSEC(1),GEST(1)
        K=KC
        KC=KC+6
        GO TO 27
       IF(KM-1)50,50,51
26
        DO 52 J=2,KN
51
        WRITE(32,71)(A(JJ),JJ=1,81)
        A(NA)=CHAR
        A(NB)=ZERO
       K=K+KN
       WRITE(32,14)TIME(I),K,(A(J),J=1,81),CUSEC(I),GEST(I)
       DC 28 J=1,81
28
       A(J)=BLANK
       CONTINUE
       KP=KC-K
       IF(KP-1) 60,60,61
51
       80 62 J=1:81:10
32
       A(J)=GRID
        DO 63 J=2,KP
       WRITE(32,91)(A(JJ),JJ=1,81,
       DO 64 J=1,81
30
       A(J)=GRID
.4
        WRITE(32,91)(A(JJ),JJ=1,81)
        WRITE(32,13)(J,J=1,81,10)
       URITE(32,95)SF
95
       FORMAT(1X; THIS GRAPH HAS A SENSITIVITY OF ',E10.3; 'UNITS/SPAC
       11NG IN THE HORIZONTAL AXIS')
       WRITE(32,96)KC
       FORMAT(1X) SENSITIVITY IN THE VERTICAL AXIS IS 1.00 UNITS/LINE
26
       1'//1X,'TOTAL NUMBER OF LINES IS ';14,'IN THIS PLOT')
       RETURN
       END
```

TABLE 6: INPUT DATA FOR MMC.FOR

Routing of flood between Mortakka and Garudeshwar of the river Narmada -82 - 82 - **82** 2200 4.5 981800, 30000, 3600. 10800 10800 295500.0 2557.5 6907.9 9187. 16333, 22283. 24124. 26715. 26189. 23955. 2234.9 18388, 16754, 16333, 16038, 16038, 16038, 15745, 15309, 19124, 20655.4 13331, 13649, 11714, 10803, 7878, 8794, 8354. 7595. 6949. 13942. \$759. 5434. 5135. 4959. 4785. 4632. 4368. 3965. 3840. 5302. 3593. 3472. 3353. 3251. 3101. 2921. 2809. 2761. 2620. 3716. 2124. 2109. 2052. 2300. 2226. 2182. 2080. 2460. 2450. 2527, 1355. 1731. 6731. 7293. 8103. 30038. 37076. 41033. 42207. **3487. 3802.** 4502. 38265. 35187. 31996 30941. 26770. 25348. 24572. 24060. 23653. 41554. 22873, 21832, 21179, 20500, 19504, 18736, 17958, 17193, 16616, 23249. 14935, 14204, 13528, 12944, 12430, 11925, 11579, 11182, 10827, 15618. 10148, 9978, 9417, 9155, 8765, 3759, 8454, 8071, 7890, 10531. 7501, 7341, 7120, 6748, 6808, 6639, 6472, 6366, 6246, 7662. 6083, 5775.

8.0 CONCLUSIONS

The successful use of this method requires the flood records including the map showing flood inundation. Here the use of established rating curves are attempted to compute the area of inundation. The use of this method is thus limited to the extend of the applicability of these rating curves.

Further, the water surface slope is assumed to be the same as that of bed slope while computing the plan area. In the absence of observed data to prepare inundation map, this method can be justified. Another assumption made in these computations is that the shore on either side of the flow follow the pattern of the contours i.e. similar variation in the longitudinal direction.

It can be seen that the routed hydrograph nearly matches the observed hydrograph at Garudeshwar. The results shown in figures 6 through 9 support the use of the Muskingum Cunge method of flood routing. Further studies are needed to establish the relation discharge and attenuation parameter/routing parameter, before this method can be put to use in Indian rivers.

Furthermore in case tributaries which are being gauged and flood hydrographs are available for such tributaries joining the main river within a river reach, the lateral flow could be considered by dividing the river reach into sub-reaches defined by junctions of the main river and tributaries. Studies with proper data base for consideration of lateral flow are also needed.