SATISH CHANDRA

DIRECTOR

STUDY GROUP
K S RAMASASTRI

CONTENTS

PAGE
LIST OF FIGURES i
LIST OF TABLES iii
ABSTRACT iv
1.0 INTRODUCTION 1
2.0 REVIEW 3
2. 1 Modelling of Rainfall in Space and Time 4
2.2 Dynamical Approach 5
2.3 Statistical Approach 5
3.0 PROBLEM DEFINITION 11
3.1 Description of the Study Area 17
4.0 METHODOLOGY 23
4.1 Analysis by Shifting 23
5.0 DATA 25
5. 1 Storm of 2-6 Sept. 1970 25
5.2 Storm of 28-31 Aug. 1973 27
5.3 Storm of 28-31 Aug. 1978 27
5.4 Severe cyclonic storm of 6-10 Aug. 1979
28
28
6.0 APPLICATION 29
6.1 Inter-station Correlation with Lag 34
7.0 RESULTS 41
7. 1 Comparison with Isohyetal Pattern 44
7.2 Summary 49
8.0 CONCLUSIONS 53
REFERENCES

LIST OF FIGURES

Figure No.8(a)	Title				Page
	Inter station Distance v	vs I	Inter st	tion	35
	Correlation-Sept. 1970				
8 (b)	Inter Station Distance	Vs	Inter	Station	36
Correlation-August 1973					
8(c)	Inter Station Distance	Vs	Inter	Station	37
Correlation-Aug. 1978					
8(d)	Inter Station Distance	Vs	Inter	Station	38
Correlation-August 1979.					
9(a)	Isohyetal Map-5 Sept. 1970				45
9(b)	Isohyetal Map-6 Sept 1970				45
10(a)	Isohyetal Map-29 Aug. 1973.				47
10 (b)	Isohyetal Map-30 Aug. 1973				47
11 (a)	Isohyetal Map-29 Aug. 1978				48
11 (b)	Isohyetal Map-30 Aug 1978				48
12 (a)	Isohyetal Map-9 Aug 1979				50
12 (b)	Isohyetal Map-10 Aug. 1979				50

LIST OF TABLES

TABLE No.TITLEPAGE
1 List of self recording raingauge stations in and 21
around Narmada Basin
2 Interstation Distance 40
3 Summary table of Lag Time observed in hours at 51
various SRRG in different storms

ABSTRACT

The magnitude of peak flood and the snape of a flood hyarogra 1 depend not only on the magnitude of total storm rainfall depths but also on its distribution in space and with time. Improvements of the accuracy and timeliness of hydrological forecasting would thus largely depend on the prediction of rainfall distribution in space and with time.

It is common knowledge that in India, tropical disturbances popularly known as storms and cyclones originate in the Bay of Bengal and Arabian Sea prior to, during and after the monsoon season, and move over the mainland of India. The direction of storm movement has the greatest effect on large elongated catchments like Narmada. During a given storm period for the same amount of total storm rainfall, the magnitude of the flood peak would be greater and the rising limb steeper if the storm moves down the valley.

Modelling of moving storms has been attempted by several authors using both dynamical and statistical approaches. Some of these methods are reviewed in the report and the statistical technique of interstation cross correlation has been applied to model the movement of four historical storms in Narmada basin which had caused critical floods in Narmada river. Hourly rainfall data recorded at a number of self recording rain gauges in the Narmada catchment has been used for the analysis. The storms considered for the analysis were, (i) 2-6 Sept 1970, (ii) 28-31 August 1973, (iii) 28-31 August 1978 and (iv) 6-10 August 1979.

The hourly rainfall data are scrutinized by visual observation for each of the storms and the storm period at each of the SRRG stations
was identified. The hourly rainfall data at each of the SRRG stations has been input to the cross correlation programme incorporating the lag observed through the visual observation. During the analysis, the inter-station correlation is computed for all pairwise combination of SRRG stations lagging the rainfall data at stations down the storm track in successive increments of 1 hour upto a maximum lag of 18 hours.

The results have indicated the usefulness of the statistical model based on cross correlation, in modelling the movement of the tropical storms inspite of the rather poor network of self recording stations in the Narmada basin.

The study further strengthened the theory regarding the size of the storm cell which has been reported in various studies to be of the order of about 5 km . The lag zero correlation obtained at any pairwise combination in all the four stations is rather poor, the maximum correlation coefficient obtained being only 0.7200 .

INTRODUCTION

The principal use of meteorological forecasts in operational hydrology is as input to hydrological forecasting systems. Meteorological forecasts could be used to prolong the lead time of the forecast and enhance the accuracy and reliability of hydrological forecasts. Short term hydrological forecasts are generally based on precipitation forecasts for periods ranging from 6 to 48 hours. Considering the current trend towards using rainfall-runoff models to simulate a catchment's response from precipitation input, improvements in the timeliness of hydrological forecasting will depend largely on the progress made in rainfall prediction. Precise forecasts of short duration high intensity rainfall which is known to cause flash floods in small catchments and urban storm water drainage systems are also very essential.

In India, large parts of the country receive nearly 80 to 90 percent of the annual rainfall during the four months June to September constituting the summer monsoon or South West monsoon season. It is common knowledge that tropical disturbances, popularly known as stroms or cyclones originate in the Bay of Bengal and Arabian Sea prior to, during and after the monsoon season and move in a NorthNorth West or Westerly direction.

Unlike the Arabian sea storms which occasionally affect the areas on the west coast and Saurashtra region, the Bay of Bengal storms cross the east coast and invariably travel long distances over the Indian main land before they become weak and unimportant. The average distance covered is of the order of 500 km per day. In
their trail, these storms precipitate huge amounts of rainfall with rain centres shifting along with the movement of storm.

Unlike snow, the storm water resulting from rainstroms during monsoon season results in runoff almost instantaneously due to antecedent wet conditions. It is wall know:l that the runoff hydrograph from a catchment due \ddots a rainstorin depends not only on the total storn rainfall but its distribution in space and with time. Tne influence of rainfall movement on the magnitude of peak flood and the shape of the hydrograph has some to be reoognized for sone time now. The direction of storm wement has considerable effect on elongated catchments and more if they are larye also. It has been seen that the same amount of rain ovar the same period prodices a mach greater peak when the storm is moving down the valley. The rainfall from a storm moving up the valley becomes runoff long before the storm reaches the top of the catcimment.

Modelling of the moving storm has been attempted by several authors using both dynamical and statistical approaches. In this report, some of the methods are reviewed and the application of the statistical approach to some moving storms in the large elongated catchment of Narmada is described.

REVIEW

Individual rainstorms contribute widely differing amounts of rain. The variation of precipitation in space and time is largely determined by spatial and temporal variations in the vertical motion of air. This vertical motion results from processes within the atmosphere and ịnteraction between the atmosphere and underlying surface of the earth. Both types of processes operate on small (mesoscale), medium (sub-synoptic) and large (synoptic scales).

Systematic observations on diverse storm types indicated the consistent occurrence of certain sub-synoptic features with similar characteristics and behaviour. Austin and Houze (1972) reported some of these sub-synoptic features.

Precipitation areas of synoptic scale (areas greater than 100 km^{2}) contain sub-synoptic precipitation areas (large meso scale areas). While the synoptic areas have a life span of one to several days, the life span of the large mesoscale areas was found to be within the order of several hours and their number within a synoptic area has been observed to be ranging from one to six. The larger mesoscale systems move in relation to a synoptic area. The precipitation intensity inside a large mesoscale system is always high than the region surrounding it. The small mesoscale areas build and dissipate within a large mesoscale area with an average life span of a few hours(Fig.1). These mesoscale systems contain regions of cumulus convective precipitation, commonly known as 'convective cells'. The cells build and dissipate within a few hours and generally occur in clusters, each raincell extending over $10-30 \mathrm{~km}^{2}$.

Figure 1: A Schematic Depiction of Sub-Synoptic Rainfall Features

Abstract

Recent studies using Radar observation techniques and observations using densely spaced gauges, Felgate and Read(1975) and Niemczynowicz and Jonsson (1981) suggest that individual raincells are smaller than that stated by Austin and Houze.

2.1 Modelling of Rainfall in Space and Time

Models of rainfall in space and time can be grouped into three broad categories. The first category consists of the numerical modelling of space time rainfali on the basis of the principles of thermodynamics. The second category includes a numerical simulation of rainfall on the basis of regularities which rainfall has been known to exhibit in space and time. The third category includes analytical modelling of rainfall as a random field.

2.2 Dynamical Approach

Ramanathan and Bansal(1977) had used a primitive equation barotropic model to forecast the storm tracks in the Arabian Sea and Bay of Bengal during 1970.

Singh and Saha (1978) used a quasi-Lagrangian advection scheme for forecasting the movement of monsoon depressions using a primitive equation barotropic model. Using the observed wind as basic input, the monsoon depression of Aug. 1968 and a tropical cyclone of October 1971 were used as case studies. The results obtained for both the cases suggested that the forecasts upto 48 hours were encouraging but deteriorated for further periods.

Saha (1983) also used a single level primitive equation barotropic model for predicting the movement of the monsoon depression over the Arabian Sea and Bay of Bengal. The initial input to the model was the subjectively analysed wind field from which geopotential field was derived. The movement of three depressions during the summer monsoon of 1979 was studied. The study has shown that a single level primative equation barotropic model was. able to predict the movement of monsoon depressions to a iimited degree of accuracy.
2.3 Statistical Modelling
The general concept underlying the stochastic modelling of
precipitation is nct new. The most basic description of rainfall
can be obtained by viewing it as a random field in the space time
continum. The stochastic modelling of precipitation was motivated
by the observed regularities in the evolution of space time rainfall
from diverse storm types. The importance of specifying the stochastic
structure of a rainfall intensity field comes from the fact that
the structures of various space-time averages of rainfall intensity can then be obtained as mathematical approximations of the basic rainfall field. Given that a synoptic disturbance has originated, the main probelm in modelling rainfall is to describe the mathematical structure of the random field intensity resulting from the disturbance. Chow and Ramaseshan (1965) represented the annual storms for the French Broad River Basin at Brent Creek, North Carolina by a first order non-stationary Markov model in log-normally distributed random components. Since the storm time distribution patterns were different, they carried out a 'Storm Shifting' procedure to obtain the best storm orientation so that the mean, standard deviation, trend and components of the hourly rainfall became regular and consistent. The storms were assumed to have the same duration which was approximately equal to the longest duration of the storm under consideration. They successfully applied a first order autoregressive model to generate sequentially the hourly rainfall depths within the annual storms having constant duration.

Ramaseshan (1971) further revised these studies that concluded that:
(i) storm precipitation could be conceived of as a finite duration, quantitized data, continuous-variable, nonstationary, stochastic process. For the river basin studied, a simple Markov model with log normally distributed random components was found to be satisfactory.
(ii) detailed steps in the mathematical modelling of the process could be standardised to yield consistent results.
(iii) shift analysis is useful in generating sequential data of storm precipitation in a basin and subsequently verifying the data.

Such data may be used in the analysis and design of water resources system by simulation.

Rodriguez Iturbe and Mejia (1974) presented a methodology for the transformation of point rainfall to areal rainfall using the spatial correlation structure of point rainfall as the commanding parameter. For this purpose, the precipitation process is assumed as stationary and isotropic and was factored as a spatial and temporal part.

Amorocho and $W u(1977)$ developed two mathematical models for the simulation of cyclonic storm and precipitation fields. The first, a storm sequence model uses the Monite Carlo simulation technique to generate storm sequences from the probability distributions of storm characteristics of historical storm sequences. The storm characteristics analysis included time between storms, number of bands within a storm, time between bands, band duration, band depth and band velocity. The second model which simulates a spatially distributed precipitation field, used a randomization process to generate clusters of short lived and high intensity rain cells within a storm band. The apparent sizes, life cycles and space distribution of rain cells were determined from the properties of historical data. The two models could be used either together or in succession to generate precipitation sequences for any sampling time interval and at any ground location in the path of a storm.

Creutin and Obled (1980) had proposed a hourly stochastic precipitation model which could provide some conditional distribution of the next hourly flows.

The model uses a rainfall event as split into periods of uninterrupted rain seperated by a rain free period of atleast $12 \mathrm{hr} .$, which
could be described by a few simple and independent variables. The distribution functions of these variables were adjusted on a sample of 135 events and at two stations separately. The statistıcal dependence of these variables was tested and verified so that the model could be used for simulation with a random number generator to generate likely rainfall events.

The following characteristics needed to be defined:
(i) inter arrival time of storm events;
(ii) number of storm segments inside the event;
(iii) duration of a given storm segment;
(iv) time interval between a given storm and the previous one;
(v) total accumulation of water for the storm considered;
(vi) ratio of the hourly maximum to the hourly average of the storm; (vii) location of the peak inside the storm period.

Most of these variables fit the simple exponential density functions or log normal distributions.

Johnson and Bras(1980) developed a stochastic model for short term (of the order of 1 hour or less) rainfall rates at multiple locations and for multiple values of lead prediction time and includes velocity and direction of storm movement as explicit parameters. Likewise, the storm arrival time at each predicted point is an explicit parameter.

Marshal (1980) described a method of estimating the speed and direction of movement of storm rainfall pattern from a network of continuously recording rain gauges. An analysis of cross correlations between all pairs of rain gauges of the network for time lags is made. Besides giving an estimate of storm motion, the method indicates the temporal and spatial structure of the storm.

Stol (1981) considered a two dimensional cross section through a gauged area, perpendicular to the direction in which storms move. This method is an improvement over the empirical inter-station correlation vs inter-station distance relationship because the correlation functions are expressed as analytically derived functions with respect to inter-station distance using storm and area characteristics as parameters.

Niemczynowicz and Jonsson (1981) working with rainfall events, in Lund, Sweden used a procedure based on the sample cross correlation between all pairwise combinations of gauges incorporating an algorithm for estimation of the velocity and direction of the drift of rain cells assuming spatial stationarity of the precipitation process. If the network is sufficiently dense, i.e.the distance between two gauges is small compared to the size of the rain cell it is reasonable to expect that the gauges within the same rain cell will have a high correlation coefficient between its hyetographs with no time lag introduced. If the time lag is introduced, the correlation factor between gauges will be higher in the direction of rain cell movement compared with other directions.

Niemczynowicz (1984) had studied the general relationship between storm movement parameters like storm duration, intensity, velocity and direction and their influence on the peak discharge from a conceptual catchment and applied the relationship to real catchments in the city of Lund.

Using hourly rainfall data of Thikri in Madhya Pradesh, Surender Kaur et al (1985) had attempted simulation of the characteristics of rainstorms for flood forecasting. Statistical distribution functions were fitted to the different rainfall segments constituting a storm event.
event.

Abstract

Ramasastri and Seth (1986) had studied the implications of critical placement of the storm centres over the Narmada catchment on the peak flood magnitude and the shape of the flood hydrograph, and concluded that though the total storm depths due to two different storms may be same, the critical placement of the storm centre every day over a different part of the catchment so as to simulate the effect of moving storm has produced greater peak floods than the storm without such critical placement.

3.0 PROBLEM DEFINITION

Cyclonic storms affecting India originate either in the Bay of Bengal as low pressure systems in the pre-existing seasonal trough of low pressure or enter into Bay of Bengal from the South China Sea. Depending on the season and latitude of their formation, the low pressure areas originating in the Bay of Bengal intensify and move towards the coastal areas of the Indian sub-continent following typical tracks.

The tropical cyclone exhibits a symmetry in wind distribution around its centre. Strong surface winds are often observed to the right of the cyclonic track. Nearly 70 percent of the cyclonic storms over Indian seas are of a size whose diameter is between 600 and 1200 km . Most of these storms occur in the post-monsoon season, i.e. from October to December. The pre-monsoon storms occuring in the months of April and May are generally smaller with diameters varying between 400 and 800 km .

Before a storm attains maturity it passes through the formative stage and the immaturity stage. Prior to the full development during the immature stage, the central pressure rapidly falls and cloud bands get organised. The vertical schematic representation of mature cyclone is shown in figure 2.

During the maturity stage the life of the storm depends on the track followed by it over the sea areas. The decaying stage is very rapid varying from a few hours to a day. When the storm has decayed into a depression stage it can continue to move for a few days even over the land.

Fig. 2 : A schematic representation of vertical structure of a mature cyclonic storm

The tracks followed by cyclonic storms of the monsoon seaso. and those in late November and December show lesser degree of variation. The May storms, however, show considerable variation in their tracks. In figures $3(\mathrm{a})$ to $3(\mathrm{~d})$, the typical storm tracks in selected months are shown.

Since the amount of precipitation realised from a storm is generally associated with the severity of the system and the location of the storm, forecasting of the intensity changes and storm location would be of great help in flood forecasting. However, in view of the uncertainty associated with storm movement and other changes,

Fig. $3(\mathrm{~b})$
\pm

 (p) $\varepsilon \cdot 6$ Ṭ
it is not generally possible to forecast the storm location by mere physical and synoptic considerations alone Objective method of predicting a future storm position with its known initial position and taking into consideration the past cases and persistence of movement of the present storm or by identifying analogues have also been developed. These methods have, however, been not able to improve upon the conventional synoptic methods.

Because of the variability associated with the track of the storms, the speed of storms moving across the land and the intensity of the storm system itself, the rainfall resulting from these storms also exhibits variability not only of distribution in time and space but also in the number of rain spells at a station and the duration between the spells (bands). When the time scale considered becomes smaller and the space scale larger, the variability assumes greater prominence.

In the present study, the moving storm is modelled by interstation correlation of hourly rainfall at self-recording raingauge stations in Narmada basin. By shifting the hourly rainfall data at the downstream stations in comparison to the upstream stations, the time lag in precipitation occurrence at two stations,in other words, the time taken by the storm to travel from one station to another is estimated.

[^0]85% of this area is in Madhya Pradesh, 11.5% in Gujarat and rest in Maharashtra.

The climate of the basin ranges from sub-humid in the east to semi-arid in the west with pockets of humid and per-humid climates in the higher hill reaches. The Southwest monsoon season from JuneSeptember is the principal rainy season contributing nearly 90% of the annual rainfall. During this period a series of tropical storms originating from Bay of Bengal move west northwestwards over or along the basin. Figure 4 a to 4 d show the frequency of storms and depressions over the Narmada basin in a $2 \frac{1}{2}^{\circ} \times 2 \frac{10}{2}^{\circ}$ grid covering the region from 20° to $25^{\circ} \mathrm{N}$ and $72^{\circ} 30^{\prime}$ to $82^{\circ} 30^{\prime}$ E during the period from $1891-1970$. As may be seen from the figures, the storms and depressions are more frequent and intense during August and September.

There are about 150 non-recording and 50 recording raingauge stations in and around Narmada basin. Most of the self recording raingauge stations are maintained by the India Meteorological Department many of which have started after 1970. Besides, some self recording raingauges are also known to be under the operation of the state irrigation departments of Madhya Pradesh and Gujarat. A list of all such raingauges whose details are known is given in Table 1. The locations of some of these gauges are shown in the index map of the Narmada basin given in the figure 5 .

FIGURE 4 (a) - FREQUENCY OF STORMS AND DEPRESSIONS- JUNE

FIGURE 4 (b) - FREQUENCY OF STORMS AND DEPRESSIONS- JULY

FIGURE 4 (c)- FREQUENCY OF STORMS AND DEPRESSIONS - AUGUST

FIGURE 4(d)- FREQUENCY OF STORMS AND DEPRESSIONS- SEPTFMBER

TABLE 1: List of Self recording raingauge stations in and around Narmada basin.

State	District	S.R.R.G.	Date of Starting
Madhya Pradesh	Rajnandgaon	Kawardha	
	Bilaspur	Pendra Road	1968
	Champa	Champa	12.8 .68
	Mandla	Mandla	13.12 .67
	Shahdol	Umaria	16.8 .68
	Balaghat	Malanjkhand	21.7 .78
	Jabalpur	Jabalpur	25.8 .51
		Jamtara	19.6 .75
	Seoni	Lakhandon	26.4 .77
	.	Seoni	11.9 .74
	Jabalpur	Sihora	
	Damoh	Damoh	1970
	Narasimhapur	Narsimhapur	25.9.69
		Gadarwara	4.8 .79
		Mohapani	
		Bermanghat	17.6 .75
		Bamhori	
	Chindwara	Harai	13.6 .78
		Chindwara	1.8 .68
	Hoshangabad	Hoshangabad	30.7 .75
		Bagratawa	1.8 .70
		Tawa Dam	16.4 .77
		Pachmarhi	19.10 .67
		Chhidgaon	
	Bhopal	Bairgarh	2.4 .52
	Raisen	Barna Dam	1.12 .77
		Silvani	20.7 .70
	Betul	Betul	8.12 .67
		Sarni Dam	13.4 .77
	Nimar	Khandwa	22.7 .68
		Burhanpur	23.4 .70
		Punasa	1.6 .50
		Mandhata	
		Mortakka	12.6 .75
	Dewas	Kannode	14.7 .70
	Indore	Indore	1963
	Khargone	Mandleshwar	14.6 .48
		Thikri	14.6 .48
		Barwani	8.6 .75
	Ujjain	Ujjain	1.2.72
	Jhabua	Alirajpur	
Gujarat	Broach	Rajpipla	23.6 .78
		Kewadia Colony	1966
Maharas	ra Amrawati	Dharni	25.11 .77
	Jalgaon	Jalgaon	1976
	Dhule	Dhadgaon	

In the proposed methodology, the moving storm is modelled based on the correlation between stations and assuming non-stationarity in time and stationarity in space. The inter-station distance between neighbouring stations being large (the average distance being 100 km) in size as compared to the size of the rain cell (with diameter of 5 to 10 km) correlation function as related to inter-station distance at lag zero was found not suitable and as such, the movement of storm across the river basin is modelled by correlation analysis with time lag introduced.

The cross correlation between gauges i and j is a function of the lag and the relative distance between the gauges i and j :

$$
\begin{equation*}
r_{i j}=\frac{\operatorname{Cov}\left(x_{i, t} ; x_{j, t+r}\right)}{\sigma\left(x_{i}\right) \sigma\left(x_{j}\right)} \tag{1}
\end{equation*}
$$

where, $X_{i, t}$ is rainfall at gauge i at time t,
$X_{j}, t+r$ is rainfall at gauge j at time $t+r$, r is the lag or shift in hours,
and $\sigma(x)$ and $\sigma\left(x_{j}\right)$ are the standard deviations at gauges i and j respectively.

A computer programme which computes correlation coefficient between pairs of stations lagging data at the later station in successive increments has been used for this purpose.

4.1 Analysis by shifting

Preliminary scrutiny of the rainfall data 3 carried out by visual observation of the rainfall hyetographs at each of the SRRG
station to identify the rainstorm duration. The scrutiny would also reveal the storm movement as indicated by the lag of the storm duration from one station to another.

Subsequent to the scrutiny, the hourly rainfall data are input to the computer program by introducing the appropriate lag noticed during the scrutiny. As indicated earlier, the program further lags the hourly rainfall at the later station by one time increment
(1 hour in this case) upto a prespecified maximum lag.
5.0 DATA

The Narmada basin had experienced very high floods in the years 1970 and 1973 at Garudeshwar and Mortakka respectively. The data availability of self recording raingauges in these years, however, is very limited, about 12 to 15 stations' data in these years. Availability of hourly rainfall data has improved after 1977 with the installaticn of $S R$ raingauges at more locations in Narmada basin. Moderate to high floods had occurred in 1978 and 1979 in Narmada. For the purpose of the present analysis one storm each associated with the 1970, 1973, 1978 and 1979 floods have been considered. Their storm tracks are shown in figure 6. A brief description of each of the storms and the details of the SRRG stations whose data has been considered in the analysis is given below.

5.1 Storm of 2-6 Sept. 1970

A land depression which originated in West Bengal on 2nd has intensified into a deep depression by 3 rd morning and was lying near Ranchi. It moved practically westwards across Madhya Pradesh and lay about 50 km . southwest of Jabalpur on 5 th morning and was centred 50 km .west of Indore on 6 th morning. Under its influence, wide-spread rain with isolated heavy falls occurred on 3 rd and 4 th and heavy to very heavy rain on 5 th and 6 th over west Madhya Pradesh.

Hourly rainfall data of 13 hourly rainfall stations was considered for the purpose of analysis of the above storm. They are, in the order from east to west- Pendra Road Mandla, Jabalpur, Chindwara, Pachhmarhi, Bagra Tawa, Betul, Bairagarh, Punasa, Khandwa, Indore,

Thikri and Kewadia Colony. Their locations are shown in index map.

Abstract

5.2 Storm of 28-31 August, 1973

Under the influence of a low pressure wave from the Tropical depression ' Joan' over Thailand a low pressure area formed in the head Bay on 24 th . It concentrated into a depression on 26 th. Before crossing the coast it intensified into a deep depression and moved west north westwards and reached Pendra by 28 th evening as a deep depression. On 29th, it was situated 50 km . to the northwest of Jabalpur. Probably, due to feeding from Arabian Sea it intensified into a deep depression and moved towards Guna on 30 th. It moved further westwards to Rajasthan, on 31st August.

Hourly rainfall data of 12 self recording raingauge stations was considered for analysis of the August 1973 storm. They are from east to west- Pendra Road, Mandla, Umaria, Jabalpur, Pachmarhi, Betul, Bairagarh, Punasa, Khandwa, Thikri, Indore and Ujjain.

5.3 Storm of 28-31 August, 1978

A low pressure area formed over north Bay on 25 th and concentrated into a deep depression by 26 th morning. It intensified into a cyclonic storm by mid night of 26 th and crossed the Orissa coast by the noon of 27 th and was lying as a deep depression over Orissa. Subsequently it moved west northwest across Madhya Pradesh and weakened into a depression on 30 th morning over northwest Madhya Pradesh. Later it recurved northeastwards.

Hourly rainfall data at 27 S.R.R.G.stations was available for the above storm. They are listed in order of east to west below: Pendra Road, Umaria, Malanjkhand, Mandla, Jamtara, Jabalpur,

Lakhandon, Narsimhapur, Harai, Bermanghat, Chindwara,
Pachmarhi, Sarni Dam, Tawa Dam, Bagra Tawa, Hoshangabad,
Salwani, Barna Dam, Betul, Khandwa, Dharni, Burhanpur, Indore, Mortakka, Thikri, Barwani and Rajpipla.
5.4 Severe cyclonic storm of 6-10 August 1979

A low formed over north Bay and adjoining parts of Bangladesh on the morning of 5 th August. Under the influence of a low pressure wave, the low over north Bay concentrated into a deep depression on the morning of 6 th with its centre at 0300 GMT near $21.0^{\circ} \mathrm{N}, 90^{\circ}$ E. Moving slowly in a westerly direction, and progressively intensifying, it became a cyclonic storm by the morning of the 7 th and a severe cyclonic storm the seme afternoon. The severe storm crossed Orissa coast early that night near Balasore. Later moving west north-west across east Madhya Pradesh as a deep depression and west Madhya Pradesh as a depression the system weakened into a well marked low over southwest Rajasthan by the evening of 10 th.

Though a number of SRRG stations were in operation in 1979, the availability of data at the time of analysis was rather poor. SRRG data of sixteen stations had been used in the analysis. They are given in the order from east to west as below: Mandla, Malanjkhand, Umaria, Jabalpur, Jamtara, Narasimhapur, Harai, Chindwara, Bermanghat, Gadarwara, Barna Dam, Bagra Tawa, Tawa, Bairagarh, Mandleshwar and Indore.
6.0 APPLICATION
The interstation correlation of pair wise hourly rainfall at the SRRG stations for the different storms has been determined using the inter-station correlation programme described in section 4.0. Before using the data as input to the programme preliminary scrutiny of the data has been carried out by preparing the hourly rainfall hyetograph of the hourly rainfall recorded at each of the recording raingauge stations during the storm period concerned. This scrutiny has helped in identifying the time lag or shift in rainfall occurrence from station to station in the Narmada basin. The preliminary inferences from the scrutiny are described for each of the storm considered.
2-6 Sept. 1970 Storm
Initial scrutiny of hourly rainfall data and the rainfall hyetograph in Fig. 7 has indicated the following pattern of time lag in rainfall occurrence at the stations in the down track with reference to the station Pendra Road in up track.
S.N. Station(s) Lag Storm Period(48hrs)

1. Pendra Road
2. Mandla, Jabalpur,

Chindwara, Pachmarhi
3. Bagra Tawa, Betul, Bairgarh
4. Khandwa, Punasa,

Indore, Thikri
5. Kewadia Colony
in Hirs.
$0 \quad 13 \mathrm{hrs}$ of $3 \mathrm{rd}-12 \mathrm{hrs}$ of 5 th Sept.
619 hrs of $3 \mathrm{rd}-18 \mathrm{hrs}$ of 5 th Sept.

121 hr . of $4 \mathrm{th}-24 \mathrm{hrs}$ of 5 th Sept.

2413 hrs of $4 \mathrm{th}-12 \mathrm{hrs}$ of 6 th Sept.

36 1hr.of 5 th-24 hrs of 6 th sept.

Preliminary scrutiny of hourly rainfall data and hyetograph has indicated a lag pattern as indicated below:
S.No. Station(s)

1. Pendra Road
2. Umaria, Mandla, Jabalpur, Pachmarhi
3. Betul, Bairgarh
4. Punasa, Khandwa,

Thikri, Indore, Ujjain

28-31 August 1978 Storm:
On initial examination of the hourly rainfall data and the hyetograph lag as indicated below has been noticed from group of stations to group.

Stations Lag.in hrs. Storm period
(48 hrs) considered

Pendra Road, Umaria, Malanjkhand, 0 hrs. 1 hr of 28Mandla, Jabalpur, Jamtara, Lakhandon, Narsimhapur, Harai and Bermanghat.

Chindwara, Panchmarhi, Sarni Dam 12 hrs .13 hrs of 28Tawa Dam, Bagra Tawa, Hoshangabad, 12 hrs of 30 Aug. Salwani, Barna Dam, Betul, Khandwa and Dharni.

Burhanpur, Mortakka, Indore 18 hrs .19 hrs of 28Thikri, Barwani and Rajpipla. $18 \mathrm{hrs.of} 30$ Aug.

6-10 August 1979 Storm:
The preliminary scrutiny of hourly rainfall and hyetograph has indicated the following lag pattern with respect to Mandla and its neighbours.

is discernible, the randomness at smaller distances is obvious.

August 1973 storm
The highest lag zero correlation obtained at any pair of neighbouring gauges is 0.708 at Punasa- Khandwa and Punasa-Thikri. The network is not adequate in case of this storm also. The inter-station distance versus the inter-station correlation coefficient of lag zero is shown in Fig. $8(\mathrm{~b})$ for the August 1973 storm. The plot is quite scattered. August 1978 storm

The highest lag zero correlation obtained at any pair of neighbouring gauges is . 72 between Tawa and Bagra Tawa. Though the network in the 1978 storm is not adequate as per standards, It is certainly a vast improvement over the earlier two storms being nearly double the number. The lag zero inter-station correlation coefficient plotted against the inter-station distance is shown in Fig.8(c). The inter station correlation does not reveal any visible relationship with the inter distancein spite of the better network and large sample of pairwise correlation.

August 1979 storm

The highest lag zero correlation observed is . 6970 at Barna Dam and Tawa. The plot of inter-station correlation vs inter-station distance is shown in Fig.8(d). The plot is as random as in case of 1973 and 1978 storms.
 ィNоา0 поим

ІХ｜H1
Nivrrn ్ㅡㅇ

 іл४丬

वVavonuhsor 災

TABLE 2－INTERSTATION DISTANCE

NOONษHメทา

vaviwur 号 ํ
ONษHYイNVาษW 으등

(iii) the poor correlation of Pendra Road with all other stations, (iv) the large lag at Indore and (v) the indication that rainfall at Mortakka has occurred later than Thikri, Barwani and Rajpipla. While it is difficult to explain the poor lag zero correlation at Jamtara-Jabalpur, some explanation could be offered for the anomalies in the other four cases.

Rainfall occurrence at Umaria later than Mandla:

As may be seen from the storm track in Fig6, the storm has entered the basin from near Balaghat and Seoni. The rainfall would, therefore, be around this place and could not be expected to the north east as per the popular theory that rainfall always occurs in the S w quadrant of storm track.

Poor correlation of Pendra Road with other Stations:

This could again be explained as due to the track of the storm with respct to Pendra Road which is far east of the track.

Large Lag at Indore:
The lag at Indore with respect to Mandla is around 36 hrs and during the recurving phase of the storm (Fig.6) the storm was very slow in movement and Indore might have received the rainfall while the storm was in the recurving phase thus making the lag 36 hrs .

Indication of rainfall occurrence at Mortakka:
The late occurrence of rainfall at Mortakka as compared to Thikri, Barwani and Rajpipla in other words rather the early occurrence of rainfall at the later stations could possibly be due to the stations being in line of the moisture feed from Arabian Sea while the storm was passing from Balaghat to Bairagarh (Bhopal).

The revised analysis indicated the following lag pattern at
the different SRRG stations. The lag is shown with respect to Mandla because of the rather poor correlation Pendra Road had with the other Stations.

1. Pendra Road	2 or 3 hours earlier	2.Mandla	Ohr.
3. Umaria	8 hrs	4.Malanjkhand	1hrs.
5. Jamtara	5 hrs	6. Jabalpur	13 hrs
7. Lakhandon	6 hrs	8. Chindwara	7 hrs.
9. Narasimhapur	12 hrs	10.Harai	7 hrs.
11. Bermanghat	7 hrs.	12.Tawa Dam	$9 \mathrm{hrs}$.
13. Bagra Tawa	9 hrs	14. Pachmarhi	15 hrs
15. Sarani Dam	15 hrs	16. Barna Dam	17 hrs
17. Salwani	9 hrs	18. Hoshangabad	$9 \mathrm{hrs}$.
19. Betul	15 hrs	20. Khandwa	18 hrs
21. Dharni	23 hrs.	22. Burhanpur	25 hrs
23. Mortakka	$28 \mathrm{hrs}$.	24. Thikri	$24 \mathrm{hrs}$.
25. Barwani	25 hrs	26.Rajpipla	27 hrs .
27. Indore	$36 \mathrm{hrs}$.		
In the incase	September	79 storm, the in	inter
station correlation analysis had suggested the slightly earlier occurr-			
ence of rain at Jabal	compared to	Mandla, Malanjk	d Jamtar
Since the storm was moving north east to the catchment (Fig.6) it is			
possible that the stations which are far from the track would receive			
rainfall later than those nearer. But this does not explain the 1 hr .			
lag at Jamitara, though, the lag zero correlation (.644) is also fairly			
close to the lag 1 co	ion which is	646.	

The revised inter-station correlation analysis indicated the
following lag patterns taking Jabalpur as the reference station.

Jabalpur	0 hrs	Mandla	$1 \mathrm{hrs}$.
Jamtara	1 hr	Malanjkhand	2 hrs
Harai	$4 \mathrm{hrs}$.	Chindwara	15 hrs
Gadarwara	6 hrs	Bermanghat	$9 \mathrm{hrs}$.
Barna Dam	10 hrs.	Bagra Tawa	$6 \mathrm{hrs}$.
Tawa	6 hrs.	Bairagarh	8 hrs.
Mandleshwar	27 hrs.	Indore	28 hrs.

7.1 Comparison with storm Isohyetal Pattern:

The lag corresponding to the optimum correlation as indicated by the correlation analysis is compared with the physical movement of the storm as reported by the India Meteorological Department and as revealed by the daily storm isohyetal pattern.

September 1970 Storm
As indicated in the Storm description in section 5.1, the storm was centered 50 km south-west of Jabalpur on 5 th and was centered 50 km southwest of Indore on 6 th which means the storm has taken 24 hrs to travel from Jabalpur to Indore. As could be seen from the results, the travel time at Jabalpur is 8 hours while it is 32 hrs . at Indore thus indicating a 24 hrs inter station duration of storm movement between Jabalpur and Indore which is in exact confirmity with the above finding.

Figs. 9 a to 9 b show the rainfall pattern on 5 th and 6 th (observational day) Sept. 1970 respectively which are drawn on the basis of totaling rain gauges. The rainfall on 4 th was very little except for small pockets over upstream Narmada and west of Pachmarhi and Betul. On 5th there are well established centres over Pachmarhi and Thikri. The further movement of these two rain centres to the west on 6 th

Fig.9(b) Isohyetal Map-6 Sept 1970
could be observed in the form of heavy rain centres east of Thikri and nearer to Garudeshwar i.e, Kewadia Colony.

This had indicated an approximate movement of 20 hrs . to Pachmarhi, 36 hrs to Thikri and 60 hrs to Kewadia Colony which is in rough agreement with that indicated by inter station correlation analysis. August 1973 Storm:

According to the storm description qiven in section 5.2 the storm has reached Pendra Road on the evening of 28 th August and moved to Jabalpur on 29 th morning which is 12 hrs travel time from Pendra Road to Jabalpur. The storm moved further to Guna which is northwest of Bhopal and northeast of Ujjain on 30 th. This would mean a travel time of 30 hrs to Bairagarh (Bhopal) and 48 hrs to Ujjain. The inter-station duration of storm movement as obtained from the inter station correlation is around the same order.

The daily isohyetal pattern of 29 and 30 August 1973 based on ORG data is shown in Fig. $10(\mathrm{a})$ to $10(\mathrm{~b})$. On 29 th the rain centre is around Narayanganj to the east of Jabalpur. The centre shifted to south of Hoshangabad on 30 th . This accounts for about 36 hrs . The timing of 31 hrs at Betul and 32 hrs at Bairagarh is, therefore, in order. The storm centre on 31 st August lay at Mhow/Manpur south of Indore. This accounts for another 12 hrs from Hoshangabad considering the fact that there was no rain on the evening of 30 th and the morning of 31 st. This makes the travel time at Thikri and Indore around 48 hrs which is what has been obtained by the inter-station correlation analysis at Thikri and Indore.

August 1978 storm:
The comparison with storm movement had been discussed earlier. The 1sohyetal patern on 29 th and 30 th is shown in Fig. 11 a and 11 b .

Fig. 10(a) Isohyetal Map -29 Aug. 1973

Fig. 10(b) Isohyetal Map-30 Aug. 1973

Fig. 11 (a) Isohyetal Map-29 Aug. 1978

Fig. 11(b) Isohyetal Map-30 Aug. 1978

On 29th, the centre with 50 mm was around Balaghat. The centre at Pachmarhi is due to orographic effect. On 30 th besides the centre at Pachmarhi, the main rain centre is around Indore thus giving a lag time of about 36 hours from the time the system has entered the basin at Balaghat.

August 1979 Storm

The storm track in Fig. 6 and the description in section 5.4 indicates that the storm has arrived east of the catchment towards evening of 8 th and was north west of Jabalpur on 9 th and north west of Bhopal on 10th. The storm has thus taken around 12 hrs from Jabalpur to reach Bairagarh and another 12 hrs to reach Indore. The lag time indicated by the inter-station correlation is of the same order.

The isohyetal pattern on 9 th and 10 th is shown in Figs. 12 a to 12b. On 9th, the rain centre was around Seoni, Bori in Seoni district. It has moved to Depalpur and Sardarpur in the Districts of Indore and Dhar respectively on 10th. The centre was around Garudeshwar on 11th August.

The isohyetal pattern thus indicates a travel time of around 24 hrs from Jamtara-Jabalpur to Indore-Dhar. This also confirms the lag time observed by inter-station correlation at Indore/Mandleshwar with respect to Jabalpur.

7.2 Summary

A su mmary of the inter-station lag of rainfall event occurrence or the time taken by the storm to move from one station to another is indicated in table 3 for ea vh of the storms whose data has been considered for analysis. As the number of SRRG stations and the reference station vary from storm to storm it may not be readily possible

Table 3: SJIMMARY TABJE OF LAG TIME OBSERVED IN HOURS AT VARIOUS SRRG IN DZEFERENT STORMS

to draw conclusions regarding the movement of the storm. To facilitate comparison of the relative movement of each of the storms with one another, a matrix of inter-station distance between the different SRRG stations is given in table 2. By studying the results summarised in table 3 in conjunction with the interstation distance given in table 2 it would be possible to compare the relative speeds of the movement of the different storms.

It is seen from the summary that the storms of Aug. 1979, August 1978 and September 1970 are relatively fast moving storms in comparison to the August 1973 storm. The storm of August 1978 was fast until it reached Bairagarh. During the recurving phase it became slow.

8.0 CONCLUSIONS

The runoff hydrograph from a catchment die to a rain storin depends not only on the total storm rainfall but also its distribution with time and in area. The direction of storm movement has the greatest effect on elongated catchments such as Narmada. The amount of rain over the same period prodnces a much greater peak when the storm is moving down the valley. Storms moving down the valley have much larger flood potential than storms moving up the valley.

Studies have shown that besides the direction of the movament of the storm, the relative movement os the storm with respect to the catchnent and the speed of movernent of the storm determine to a large extent the magnitude of flood peak and the shape of the flood hydrograph.

In spite of the limitations of the rather poor network of self recording raingauges in the Narmada catconnent, the present study has indicated the usefulness of the statistical model based on the cross correlation of hourly rainfall data at pairwise combination of recording raingauge station:s for modelling the movenent of storms in India and studying their hydrological responses especially in large elongated catchments like Narmada.

When sufficient information becomes available after the analysis of a number of storms over a given area, it should $x e$ possible to subject the data of daration between storm spells and inter-station duration of the movement of storm cell to further statistical analysis to identify the presence of any persistence or pattern in the occurrence of the storm event and its movement. If such a persistence is established it could well be used as a prognostic tool.

1. Amorocho, J and B.W.u (1977)"Mathematical models for the simulation of cyclonic storm sequences and precipitation fields" Journal of Hydrol.Vol 32, pp.329-345.
2. Austin, P.M. and R.A.Houze (1972)"Analysis of the structure of precipitation patterns in New England". Journ.Appl.Meteorol. Vol.11, pp.926-934.
3. Chow, V.T. and S.Ramaseshan (1965),"Sequential generation of rainfall and runoff data" Journ. of Hydraulic Divn.American Society of Civil Engineer (Hy.4) pp.205-223.
4. Creutin, J.D. and C.Obled (1980) "Modelling of spatial and temporal characteristics of rainfall as input to a flood forecasting model " Proc. of Symp on Hydrological forecasting (IASH), Oxford (U K) pp 41-50.
5. Felgate, D G and D.G.Read (1975) "Correlation analysis of the cellular structure of storms observed by raingauges" Journ. of Hydrol. Vol.24, pp. 191-300.
6. Johnson, F.R. and Rafael L Bras (1980)"Multivariate short term rainfall prediction". Water Resources Research Vol.16, No. 1 pp.173-185.
7. Marshal, R.J.(1980)"The estimation and distribution of storm movement and storm structure using a correlation analysis technique and raingauge data". Journ. of Hydrol.Vol.48, pp.19-39.
8. Niemczynowicz, J \& O.Jonsson (1981),"Extreme rainfall events in Lund 1979-80". Nordic Hydrology, Vol. 12, pp.129-142.
9. Niemczynowicz, J.(1984),'Investigation of the Influence of Rainfall movement on runoff hydrograph, Parts I \& II", Nordic Hydrology Vol.15, No.2, pp.57-84.
10. Ramanathan $Y \&$ R.K.Bansal (1977),"On the application of a primitive equation barotropic model for the prediction of storm tracks in the Indian region". Indian Journ. Meteorology, Hydrology and Geophysics, Vol.26, No.2, pp.169-176.
11. Ramasastri, K.S. and S.M.Seth (1986)",Sensitivity of estimated flood to changes in parameters of HEC 1 Model" Proc. of 53rd $R \& D$ Sesșion, CBIP, Bhubaneshwar.
12. Rodriguez Iturbe, I and J.M.Mejia (1974),"On the transformation of point rainfall to areal rainfall", Water Resources Research Vol. 10, No.4, pp.729-735.
13. Saha, S.(1983),"Behaviour of monsoon depressions in a Primitive equation barotropic model" Mausam, Vol34, No.1, pp.27-32.
14. Singh, S.S. and K.R.Saha, (1978),"Numerical experiment with primitive equation barotropic model using quasi-Lagrangian advection scheme to predict the movement of monsoon depression and tropical cyclone", Indian Journ. of Meteor.,Hydrol. and Geophy., Vol. 29 No. 1 and 2, pp.367-374.
15. Stol, Ph.Th.(1981),"Rainfall interstation correlation functions. Part I and II, Journ. of Hydrol.Vol. 50 No. 1 and 3, pp.45-104.
16. Surendar Kaur, S.N.Kathuria and Rohini Bala (1985),"On simulating characteristics of rainstorms for flood forecasting" Vayu Mandal Vol.15, Nos. 1 and 2 pp.65-67.

[^0]: 3.1 Description of the Study Area

 The river Narmada rises in the Amarkantak plateau of the Maikal range in Madhya Pradesh at an elevation of 1057 m a.s.1. The river travels a distance of 1312 km before it enters the Arabian Sea. The total area of the basin upto Bharuch in Gujarat is 98,796 sq.km.

