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ABSTRACT 

A variable parameter simplified hydraulic method based on the 

approximation of the St. Venant's equations which describe the one 

dimensional flow in a channel or river has been developed for routing floods 

in channels having uniform rectangular cross section and constant bed slope. 

The governing equations of this method are same as that of Muskingum flood 

routing method and it has been demonstrated that these equations can 

directly account for flood wave attenuation without attributing to it the 

numerical property of the method as stated by some researchers . The 

parameters Gond K viz., the weighting parameter and the travel time 

respectively, have been related to the channel and flow characteristics. 

Using this method the nonlinear behaviour of flood wave movement may be 

modelled by varying the parameters 0 and K at every routing time level, 

but still adopting the linear form of solution equation. The situation 

for which the routing solution can not be obtained using this method has 

been brought out, and an alternative solution procedure is suggested for 

the same. It has been found from this study in general, that the method 

in which both e and K varying along with multiple routing reaches consider-

ation is able to produce the true solution much closer than the method in 

which both @and K varying, but with the consideration of single routing 

reach, or the method in which only K varying and 0 remaining constant, but 

with the consideration of single routing reach. The theoretical reason 

for the reduced outflow in the beginning of the Muskingum solution has been 

brought out and the needed remedial measure to avoid it is suggested. Also 

it has been brought out from theoretical considerstions that the maximum 
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value of eis 0.5 and its negative value is possible. The said 

methodology has been verified using some hypothetical problems. 
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1.0 INTRODUCTION 

Flood routing is the process of tracking a flood wave as it 

propagates down a channel or a river. A great many different methods and 

procedures for solving flood routing problems have been described in 

engineering literature. In general, those methods that attempt a strict 

mathematical treatment of the many complex factors affecting flood wave 

movement are not easily adaptable to the practical solution of problems of 

routing floods as they demand on high computer resources as well as quantity 

and quality of input data. In order to keep the amount of computation within 

practical limits and to conform to limits ordinarily imposed by the type 

and amount of basic data available, it is generally necessary to use 

approximate flood routing methods that either ignore some of the factors 

affecting flood wave movement or are based on simplifying assumptions in 

regard to such factors. Approximate methods produce results at considerably 

less expense but are limited in generality and accuracy which is the penalty 

one has to pay for their simplicity and low cost of usage. 

Methods of flood routing are broadly classified as empirical, 

hydrological, simplified hydraulics, and hydraulics. Empirical methods 

were generally developed from intuitive processes rather than from mathe-

matical formulation of the problem. Their application is limited in practice 

for situations in which sufficient observations of inflows and outflows 

are available to calibrate the needed coefficients (Fre&d, 1981) . Hydro-

logical methods are based on some mathematical formulation of continuity 

equation in lumped form and, generally, a storage equation. The parameters 

involved in the mathematical formulation,-  of the hydrological method are 

evaluated using past observations. Simplified hydraulic methods may use 
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continuity equation either in lumped form (Hyami,1951; Harley, 1967; 

Cunge, 1969;and Dooge et al. 1982) or in distributed form (Thomas and 

Wormleaton, 1970;and NERC, 1975) in addition to simplified form of the 

momentum equation of St. Venants' equations. The said simplification may 

be obtained either by curtailing certain terms based on the consideration 

of order of magnitude analysis of these terms with that of bed slope, So 
 

(Hyami, 1951; and Lighthill and Whitam, 1955) or by curtailing and replacing 

the terms by some appropriate approximation (Apollov et al., 1964). 

It is possible to classify certain flood routing techniques under 

the category of both hydrological and simplified methods depending on the 

parameter estimation procedure. The typical example being the Muskingum 

method. The conventional Muskingum method introduced by McCarthy (1938) 

may be classified as a hydrological method wherein the parameters K and 

0, respectively the travel time and the weighting coefficient are estimated 

based on the past observations. But the variations of the Muskingum method 

introduced by Cunge (1969), Dooge (1973), Koussis (1978) and Dooge et 'al. 

(1982) may fall under the category of simplified hydraulic method, wherein 

the parameters K and 0 are related to the channel and flow characteristics. 

In practice hydrologic models are in vogue for many years. Well 

known among them are the Muskingum method (McCarthy, 1938), lag and route 

method (Meyer, 1941) and Nash model (Dooge, 1973). These methods use the 

parameters calibrated from the past flood records for routing floods for 

the purpose of forecasting or simulation. Since the flood characteristics 

are likely to vary from one flood to another, it would be rash to assume 

that the parameters determined from one set of flood observations could be 

used to predict the behaviour of an altogether different flood. This, in effect, 
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limits the predictive capability of the hydrological methods to floods 

similar to that used in the calibration, and any attempt at extrapolation 

is unwarrented. This necessitates the use of simplified hydraulic models 

in practice which enables one to determine the parameters in terms of 

physical system characteristics. Such methods enables either flood analyses 

to be performed in area where data are not available in sufficient quantity 

and/or quality or do not exist at all or for studying the future behaviour 

of the system subject to land use changes including channel improvement. 

Well known examples of the simplified hydraulic models are the linear 

convection-diffusion method introduced by Hyami (1951), Kalinin -Milyukov 

method (Apollov et al., 1964), the complete linearized model (Harley, 

1967), MuskingumrCunge method (Cunge, 1969) etc. 

The adoption of constant parameters simplified hydraulic models 

for routing a flood wave is based on the assumption of linearity and 

this is in contradiction with the nonlinear property of flood waves. The 

wide use of constant parameter simplified hydraulic models such as Kalinin - 

MilyUkov, and Muskingum -Gunge methods in practice demonstrate that the 

accuracy of routing results is not severely affected. However, this aspect 

has not been conclusively proved. The constant parameters of these models 

are estimated based on the assumption that the flow variations take place 

around a reference discharge. This limitation produces distortion in the 

predicted outflow when wide variations in the flow variable are considered. 

Keefer and McQuivey (1974) state that if the model is linearized about a 

high discharge, the low flaws arrived too soon and are over damped and if 

it is linearized around a low discharge the peaks arrive late and are 

underdamped. 

3 



This has led to the development of variable parameter diffusion 

model (NERC, 1975), variable parameter Muskingum -Cunge model (Ponce and 

Yevjevich, 1978), variable parameter Muskingum -Koussis model (1978) etc. 

The most desirable way the nonlinearity in the flood routing process may 

be taken into account is to use such a model that remains linear at one 

time level, but the linear characteristics may change from one time level 

to apother time level. Thus the parameters involved in the modelling vary 

from time to time just as the flow variable involved in the phenomena. This 

concept has been adopted by Ponce and Yevjevich (1978), and Koussis (1978) 

while they applied the Muskingum method based on the diffusion analogy 

principle. Whereas Ponce and Yevjevich (1978) considered the variation 

of both K and 9 , the travel time and weighting parameter respectively of 

the Muskingum method one time step to another, Koussis considered the 

variation of K only keeping 9 constant. 

In this report a variable parameter simplified hydraulic flood 

routing model without lateral flow consideration is developed for routing 

flood waves in uniform rectangular channels based on the concept of varying 

linear characteristics from one time level to another time level. 

Incidently it is seen that this method is able to give physical justificatiol 

for the Muskingum flood routing method in a better way than that given by 

Cunge (1969), Dooge (1973), Dooge et al. (1982) and Koussis (1978). This 

approach also disproves the theory put forwarded by Cunge (1969) and later 

adopted by Koussis (1978), that the attenuation property exhibited by the 

conventional Muskingum method is purely due to the numerical formulation 

of the method (Miller and Gunge, 1975). 
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2.0 REVIEW 

In this section only those flood routing models which take into 

account the nonlinearity of the routing process by remaining in the linear 

domain at one time level, but varying the linear characteristics from one 

time level to another time level have been reviewed. It is well known that 

the routing process is nonlinear in nature and therefore flood routing models 

with variable coefficients can be expected to perform better. It has been 

shown by Keefer and McQuivey (1974) that if the inflow hydrograph into a 

channel reach is considered in several blocks with each block having its 

own reference or linearizing discharge then the convolution of these inflow 

blocks with the corresponding unit hydrographs of the channel reach developed 

based on the reference discharge of each block yield routed hydrographs 

comparable well with the observed hydrograph than that routed hydrograph 

obtained based on the convolution of the inflow hydrograph with the unit 

hydrograph corresponding to a single reference discharge for the entire 

inflow hydrograph. This envisages the need for adopting variable parameter 

routing models. 

Koussis (1978) developed a variable parameter Muskingum method based 

on the diffusion analogy principle, using the same concept as adopted by 

Cunge (1969) , with constant weightingoarameter 0 and varying travel time 

K. Koussis (1978) has found from his experience that 0 is not varying 

considerably with discharge, but varies with K. 

Koussis varied the value of K at each time step by averaging the 

travel speed of the flood wave estimated at the upstream and downstream 

sections of the reach by introducing the correction in the rating curve 

at the respective sections using "Jones formula" (Henderson, 1966) as given 

below: 
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Q = Q11(1 + 
1   iLY_)1/2  

cSo ' 

in whieh, 

Q = the discharge at a section during unsteady flow 

= the normal discharge at the same section corresponding to the 

flow depth y observed during unsteady flow 

c = the travel speed corresponding to discharge Q at a section 

t = notation denoting time 

By iteratively solving equation (1), the travel speeds at the upstream 

and downstream sections may be obtained corresponding to each time level 

of the Muskingum method. solution. Koussis (1978) estimated the outflow 

discharge Q, using the following expression obtained by assuming linear 

variation of inflow over the routing time interval At: 

Ci I2  + 1 + CI Q
1 

... (2) Q2-  1 2 3  

Wherein the coefficients CI , CI  and C3 are given as : 1 2 

(1 - 0 ) 1 t 

C2= At 
t ' = (1 ) - B and 

CI  = 3 
-At/KU-a) Where B = e  

Following the same approach of Cunge (1969), Koussis estimated the 

parameters e and K in terms of Channel and flow characteristics by 

relating the numerical diffusion with the physical diffusion. The form of 

the parameters so estimated are given as: 

0= •1 - At/K  int  )1/44-1 + At/K  ) 
X+1 - At/K ' 

... (4) 
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where 

- BSoc Ax 

Qo  = Reference discharge 

and K = Ax/c 

The estimation of discharge at the outflow section requires one more 

iteration procedure using equation (2) besides the iteration required for 

the correction of rating curve at downstream section for the estimation 

of travel speed based on the loop rating curve. Therefore it can be 

realized that although the Koussis procedure is physically based, it 

involves tedious iterative computations. 

Ponce and Yevjevich (1978) suggested a simple variable parameter 

method based on the Muskingum -Cunge procedure. Usually the routing time 

interval being fixed, and Ax and S
o  are specified for each computational 

cell constituting of four grid points, as shown in figure (1), their 

method involves the determination of flood wave celerity and the unit 

width discharge, q for each computational cell. The values of c and 

at grid point (j, n) are defined by 

Qo  

c = g 
j,n 

q  = 
 

in which Q =discharge : A = flow area, and 
cin+1 

At 

B = top width. 
nn+1 

Ax j+1 

FIG.1 SPACE-TIME DISCRETIZATION OF MUSKINGUM METHOD 

7 



Ile following ways of determining c and q were investigated by 

Ponce and Yevjevich for the computation of variables 0 and K of 

Gunge (1969) for each time level: 

directly by using a two point average of the values at grid 

points (j, n) and (j+1, n); 

directly by using a three point average of the values at grid 

points (j,n), (j+1,n) and (j,n+1); and 

by iteration, using a four point average calculation. 

They concluded that three point and four point iterative schemes 

of varying c and q yield better results and both are comparable. In 

view of iterations involved  in four point scheme, it may be considered 

that three point average procedure is desirable for use in practice. 

Besides, this method is also much simpler than. the method suggested 

by Koussis (1978). However both Ponce and Yevjevich's (1978), and 

Koussis (1978) approaches for varying the parameters of the Muskingum 

method at each routing time level are arbitrary and not based on the 

mathematics of the Muskingum method solution. 

The methods reviewed herein are the only methods which consider 

the variation of parameters from one time level to another time level 

by adopting the linear form of solution. 



3.0 PROBLEM DEFINITION 

It is required to develop a simplified hydraulic flood 

routing method for tracking flood wave movement in prismatic channels 

having uniform rectangular cross section. The routing procedure may 

adopt a linear form of solution equation with the relevant parameters 

varying from one time level to another time level of solution and thus 

taking care of approximately the non.linear behaviour of the flood 

wave movement. 
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4.0 METHODOIOCY 

The flood routing method developed herein is a modification 

of the method presented earlier (NIH, 1986). The conclusion arrived 

using the earlier method is still valid, but not the method mentioned 

therein as it involves an impractical assumption. When this assumption 

is relaxed and modified, then it results in the improved method 

mentioned herein. 

The mathematical analysis of this method incidently, results 

in the physical justification of the Muskingum method for routing floods 

in channels. The parameters K and 0 of the Muskingum method have 

been related to channel and flow characteristics. It has been shown 

by analysis that the method with the original form of equations as 

introduced by McCarthy in 1938, is able to take care of flood wave 

attenuation without attributing to it any numerical characteristics 

of the method. This is in contradiction with the theory purported by 

Cunge (1969) and later adopted by Koussis (1978), as they argued that 

the attenuation of flood wave exhibited by the Muskingum method is 

solely due to the numerical diffusion property present in the method. 

Besides bringing out the reasons for negative flow or flow less than 

the steady flow in the beginning of the solution, the present theory 

also slays the possibility of Muskingum weighting parameter becoming 

negative. This is in contradiction with the general understanding 

that the lower limit of the weighting parameter is zero. However, 

like earlier theories on Muskingum method (Cunge, 1969; Dooge, 1973; 

and Dooge et al., 1982), this theory also shows that the maximum value 

of weighting parameter is 0.5. Besides, the physical reason for the 

wave amplification is brought out whence the weighting parameter 
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. reeds the value of 0.5. The theory presented herein for the Muskingum 

flood routing method is much improved than the so far existing theories 

(Gunge, 1969; Dooge, 1973; Kundzewicz and Strupczewski, 1980; and Dooge 

et al., 1982) as the nonlinear behaviour of the flood wave movement 

is considered by varying the parameters of the Muskingum method at 

each routing time interval. 

4.1 Physical Basis of the Proposed Theory 

During steady flow in a river reach there exists a unique 

relationship between stage and discharge at any cross section. This 

situation is altered during unsteady flow, with the discharge appearing 

first in a cross section and at the same time the stage which 

corresponds to that discharge during steady flow appears at a section 

upstream of it. This concept has been adopted by Kalinin and Milyukov 

(as quoted by Miller and Cunge, 1975) to determine the 'unit length 

of reach' required for flood routing in river reaches. However, 

Kalinin-Milyukov method is less flexible since the 'unit reach length' 

of the channel is fixed for a given flood wave and the end section 

of the unit reach length may not coincide with the downstream section 

where the stage-discharge information is required, thus necessitating 

interpolation of the routed hydrographs. Besides the adoption of 

constant unit reach length implies that the unique relationship between 

discharge at the outflow section and the depth at the middle of the 

reach always exists during unsteady flow phenomena. This is in 

contradiction to the Characteristics of unsteady flow phenomena in 

channels. In this report, it is shown that the modification of the 

concept of Kalinin-Milyukov method leads to a flood routing method 

which is devoid of such limitations mentioned above.. 
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The concept adopted in the Kalinin-Milyukov method is that thring 

unsteady flow in a uniform rectangular channel with linearly varying water 

stage along the river reach, the channel storage S in the routing reach 

of length AX is uniquely related to the mean water stage of the reach 

which in turn is uniquely related with the discharge observed at the outlet 

of the reach. Here the distance Ax corresponds to the unit reach length. 

The constant parameters of the Muskingum method have been evaluated 

by extending this concept that the mean water stage of the routing reach 

of length Ax is uniquely related to the discharge at a section located I. 

units of length downstream of the midsection of the reach (Apollov et al., 

1964). However, here Ax need not correspond to the unit reach length 

as in the case of Kalinin-Milyukov method. 

The above concept has been used to evaluate the variable parameters 

of the proposed method. The mathematical description of the method,which 

is different from that of Kalinin-Milyukov method,is given in the following 

pages with the assumptions involved. 

4.2 Assumptions 

The following assumptions have been made in developing this method: 

The channel reach is having uniform rectangular cross section. 

The channel bottom slope is constant over the routing reach length. 

There is no lateral inflow or outflow from the reach. 

4 . The friction slope Sf  is constant at any instant of time over the 

channel routing reach. 

5. During unsteady flow, there exists a one-to-one relationship at any 

instant of time between the stage at the middle of the routing reach 

and the discharge downstreeam. 

4.3 Development of the Model 

Figure (2) depicts a river reach having uniform rectangular 
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STEADY STATE WATER SURFACE® 

0 

x x/2 

SECTION 0-C) : CORRESPONDS TO THE INFLOW ROM 

SECTION 0-0 : CORRESPONDS TO THE OUTFLOW POINT 

SECTION 0-0 CORRESPONDS TO THE POINT WHERE 
THE DISCHARGE Cla IS UNIQUELY RELATED 
WITH THE STAGE AT THE MIDSECTION 
OF THE REACH 

FI6.2- DEFINITION SKETCH OF THE REACH UNDER CONSIDERATION 
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cross section with upstream and downstream sections, where the inflow 

and outflow hydrographs are measured have been denoted respectively 

as sections (1) and (2). Let the distance between these sections be 

A x. 

Based on assumption (5), the water depth observed at the middle 

of the reach corresponds to the normal depth of that discharge which 

is Obsery d at the same instant of time L units of distance 

downstream from the middle of the reach. Let this discharge be denoted 

as Qm and the section where this discharge is observed be marked as 

section (3). The discharge at the middle of the reach may be expressed 

as: 

Qn, = 
A v 
mm 

where, Am  and vm  are the area and velocity during unsteady flow at 

this section. Equation (8) may be re-written in terms of width of 

channel section, depth of flow at the mid section and Chezy's or 

Manning's roughness coefficient. First the mathematical formulation 

of the problem in terms of Chezy's friction law is presented followed 

by the formulation using Manning's friction law. 

4.3.1 Mathematical formulation involving Chezy's law 

Before proceeding with further mathematical operation on 

equation (8) using assumption (5), it is necessary to use assumption 

(4), in order to simplify the expression for friction slope which would 

be used in equation (8). 

Let the expression for discharge Q at any section of the reach 

during unsteady flow in the reach as depicted by figure 2 be expressed as: 

0 = Av (9) 
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where, A is the channel cross section and v is the velocity of flow. 

Applying Chezy's friction law: 

Q = AC/ RSf ... (10) 

where, 

Chezy's constant 

R = A/P the hydraulic radius 
P = the wetted perimeter and 
Sf = the friction slope 

Equation (10) is re-written in terms of channel width and depth of 

flow as: 

Q - CB3/2 y3/277f 

(B + 2y)2  

where, 

B - the channel width and 

y - the depth of flow at the considered section 

The friction slope S can be expressed as (Henderson, 1966): 

where, 

s
f 

s
o 

By  _ v Dv 1 Dv 
g a x g at 

So = the bed slope 

_ the water surface slope Dx 

v Dv 
g • x 

1 Dv 
g D t 

convective acceleration slope and 

= local acceleration slope 

= notation for distance 

= the acceleration due to gravity (9.81 m/seZ.) 
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Differentiating Q w.r.t. x 

Di  
3/2 )r y  9/ sk 4_ cp k 3/2 3/2 

3 1 __y_ a k 

a x (B + 2y) 

CB _ 
k 2 B + 2y' 9x f (B  + 2 i7

.
2,.) 

(Sf 
) ... (13) 

Based on assumptiOn (4) that Sf  remains constant at any instant of time, 

the above equation reduces to : 

a B r 
3 Y  10I 

a x B+2y)' ax 

3  
where the term [ 2 - B

Y+ 2y
]v represents the celerity of the flood 

wave in rectangular channels. 

when Sf 
remains constant, the slopes due to watersurf ace, convective 

acceleration, and local acceleration remain constant at any instant of 

time. This implies during unsteady flow, the water surface is linearly 

varying at any instant of time over the routing reach. Note that for 

wide rectangular channels equation (14) reduces to : 

aQ B(
r) 

Dv  
ax -2—  3x 

3v 
where the term --z  represents the wave celerity in wide rectangular 

channels. 

Differentiating equation (14) yields : 

9
2
Q B[-32  -  I  Bi-yiv a

2 BOPZ _ __/_1(9v I d_y_)_(  B )2vLy)2. — (16) 

ax
2 z B+2y"9x 1'3x 'S-17 1)x) 

9x 

Assuming that the multiples of above mentioned differentials are very 

small and may be neglected, equation (16) reduces to : 

- B[ 4 - antiv.9-gi  
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Since 3Y is constant at any instant of time over the routing reach ax 

length, equation (17) reduces to : 

a 2 Q 
0 

ax 

Equation (18) implies that at any instant of time the-discharge also: Varies 

linearly over the routing reach under consideration. 

la v ev  • Evaluation of the term -Y- 9v  and in terms of . ,g 3 x ga- t 

Using equation (9) and (14) one can arrive at the expression for 

v av 
Tz  at any section in the reach in terms of the depth of flow 

and Ftoude number at that section as : 

v ay _ r  1  w2 ay  
g ax ' 7 B+ y ' Dx 

where, F2 = 

Similarly the expression for ! By at any section of the reach is g at 

given as: 

ay 
[ — 3  + 2.( ) g at •B+ty B+2y ax 

The addition of equations (19) and (20) yield : 

... (20) 

ay 4. 1 ay 
g ax g at — [ — + (B+3.37 ) ( B-51rly 

2]F2 iy ax (21) 

Therefore the friction slope expressed by equation (12) can be modified 

for the routing reach under consideration using equation (21) as : 

2 - 1 aY ri..-F2t- 1  + - (  -Y B - ) )11 ... (22) r a x 4 'B+2y +2y 

17 



For wide rectangular channels equation (22) reduces to : 

(  
S
f 

So [1- 
1 - F

2
/4)3Y  ] 

So 
ax 

... (23) 

Now consider equation (8). The discharge at the middle of the reach 

may be expressed in terms of channel depth as : 

C m  m  sr  Q = B y 
/By 

m m 2y L 
m 
 '  

... (24) 

with the suffix m denoting the middle of the section. Substituting 

for Sf  from equation (22) into equation (24), Qm is re-written as : 

/1 13
m
ym  

= BmYmCd4  B+2y 
 Sn[l 

m 

... (25) 

By  
9x  where 1 

 m represent the water surface slope at mid section. 

By  Since remains constant over the reach,the suffix m is dropped and 
ax 

the water surface slope is written as Dy/Dx. Since the flow depth 

observed at the mid section of the reach corresponds to the normal depth 

of discharge Oft  ,which is occurring downstream of the mid section, the 

term B y C m m 
corresponds to the discharge Qn  

Ym  2 
Therefore Qm = Qn1 1 - 

(1 + F2( - + (B+2M, ) - ( B+2, ) ))/ 
Jrn  

... (26) 

Based on the typical values of S, 3y/Bx in natural rivers (Henderson, 

1966), it may be considered that the absolute value of the term 

(1+F2(- 1  + ( m ) ( 
3x 

;m)2))] < 1 B+ ym  B+2y
m 

Under such situation, equation (26) may be expanded in 
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Bionomial series as : 

( m  ) (  
2
)] B+2y B+2YM 

1/2 (1/2 - 1) 1 By 1  [ (1 F2  (— +( m  ) ( 
Y
m )

2 ))]2 
B+2ym  B+2;s0  ax 

1/2(1/2  - 1) (1/2  - 2) 1 9 [ 1 Ym  
- 4 ( B+2 ) ( 

Ym  2 3 ) ))] so • ax Ym B+2ym 

... (27) 

1 Y 
Let the term 1-. 837/ax [1+r2(- + (  ) - )] = G (28) So 4 B+2y

m Y 2
y m B+L m 

Equation (27) is re-written using equation (28) as : 

Qm  = Qn Qn t 1 1/2(1/2  — 1) G 1/2  (Z - 1)(1/2  - 2) G2  + (29) 

Substituting for G from equation (28) for outside paranthesis in 

equation (29) yields : 

Qin 
= _ 11 1/2(1/2  - 1) G = 1/2  (1/2  - 1) (1/2  - 2) G2+ 

4 
2. 

 
13  

x [ 1 + F2( - 
yin ) 

B+2ym' 
Ym  ) 2 )  ] 1 ix 

B-s-2y ax (30) 

Substituting from equation (14) for 9y/ax, the above equation reduces to 

Qm  = Qin  - Qn { 1/2  - 1211/2  - 1)G + 1/2  (1/2  -1) (1/2  - 2) G2  + 

12 

X 

_ 1 Ym 
4 B-723Vi  ' 

Y 2 aQ 
m) )] 

ET1.57 3 x 

S B [ 3  - ( m  )] v o7 B+2ym m 
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Therefore the term, 

(1/2  — 1)(1/2  — 2) G2, ....A 
LL 

Ym Ym  2 
) ( 4

m)  
( B+2y B +  

 

3 S B [ - o 2 ( m  B )] vm +2y
m 

... (32) 

represents the distance L between the mid-section and that downstream 

section at which the normal discharge corresponding to the depth at 

mid section is observed at the same instant of time. Since the 

discharge is varying linearly, the discharge Op
n, at section (3) is computed 

in terms of inflow I and outflow Q as : 

) (I — Q) ... (33) 

Now applying the continuity equation, 

0 ... (34) 

between sections (1) and (3) of Figure (1), one arrives at 

a Q , 
ax  13 

1 aQ 
BQ St 3 

A 13 

... (35) 

Using equation (14), the above equation is re-written as : 

Since 

—1  a 
at (Q3) 

Y3  
(B + 2y3)]v3 

, equation (36) is modified as 

... (36) 

I —Q 
Ax 

1 a 
at Q3) 

... (37) 
[2  ( Y3  )1v 2 B+2y3  3 
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But Q3  issame as Qm as given by equation (33). Therefgre equation 

(37) is modified as : 

I - Q 

L 

] 

r 3 Y 
-Q) 

2 - ( B-'-2y3  )]v3 

Ax a 1 I 

3 
Dt [ Q ( )(I 

Ax 
... (38) 

Since I and Q varies only w.r.t. t, the partial derivative of 

equation (38) is changed to full derivative and the equation (38) is 

modified as : 

I - Q = -14(1K [ Q+ - 6.)! )(I-Q)]li ... (39) 

where L is given by the equation (32) and K is the travel time. 

Equation (39) is in the same form as that of well known 

Muskingum method. The travel time K is given by the expression: 

A x  

3 Y3 

(2 ( B+2y3  )) v3 

the flow depth at section (3) 

... (40) 

Where, Y3 - 
v3
- the velocity of section (3) 

and the weighting factor 6 is written as : 

1 I.  
7 -1X- 

substituting for from equation (32), the above equation 

is written as : 

0 = 1 

IL Li 
,2 (  _ 1 2 f  YM ) f YM  )) 

8+2ym 
B+2ym  

3 

" 

Ym  )] vM Ax o 2 B+2ym 

21 
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Where QT1  = Q3  , the discharge at section (3) and 
2 1 31m  2 [ 1 + F (- 4  + 472?--) (  13+2, ) )] 

fm 3 Q G - ... (43) 

3 ym TE7.711 vm  

Equations (40) and (42) are the general expressions for parameters K and 

0 of the Muskingum method applied to the solution of unsteady flow 

which follows Chezy's friction law in rectangular channel reach of length 

AX. These parameters vary with time. For wide rectangular channels 

equations (40) and (42) reduce to : 

K - 

0 = 1/2(1/2  - 1) G 1/2(41) (1/2  - 2) G2 ) F2 + a ) 
4—  !2 

S B ( 3 vm) Ax 7 
:... (45) 

When neglecting the terms G, G2,..2. etc., 9 reduces to 
RI  (1 4 ) 

= ... (46) 

2 So  B ( 
3 v

m) Ax 

When the variables are fixed at reference values, then K and 0 

reduces to K 

2 
1 Qo(1 - F0/4) 

0 = ... (48) 2 - 3 2S0B (2:v0) Ax 

Equation (47) and (48) respectively for K and 0 were obtained by 

Dooge (1973) and Doge et al. (1982) for constant parameter Muskingum flood 
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2 
routing method. The deletion of the term Fo 

/4 also results in the 

expression for 0 given by Cunge (1969) and Koussis (1978), based on 

the concept of equating the numerical diffusion with the physical 

diffusion. 

4.3.2 Mathematical formulation involvingMenning's friction law 

Proceeding in the similar manner as in the case of analysis based 

aQ 
on Chezy's friction law, the expression for using Manning's 

friction law is given as : 

3Q = BE 4 - ( BZ
37 
 )] ... (49) 

5 4  y  
where the term [ 3 7B+2y 

)]v is the celerity of the flood wave 

in rectangular channels in which the unsteady flow is governed by 

Manning's friction law. 

For wide rectangular channels equation (49) reduces to : 

a - [ v ] ... (50) ax 3 ax 

It can be proved, as it has been done earlier for the unsteady 

flow governed by Chezy's law, that Lg is also varying linearly over therat-

ing reach where-in the friction slope Sf  remains constant at any instant of 

time. 

v av Dv Evaluation of the terms i ax and 1  g at  in terms of 1Y. ax 

Using equation (9) and (49), one can arrive at the expression for 

v a v -yr  at any section in the reach in terms of the depth of flow and 

Froude number at that section as : 

v
g 

3
3 x
v _ 4  ( 

 B
z
y 
  )]. F2 ... (51) 

x 
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'2 Where F is the square of Froude number as expressed earlier. 

lay 
Similarly the expression for WE at any section of the reach 

is given as : 

1 ay 10 28 ( y  ) 16 (  y  )21 F2 Li 
g at 9 9 B+2y -g.(  B+2y ' ax ... (52) 

The addition of equations (51) and (52) yield 

v all+  1 av _ A r _144( y, _ 4(y   121 F2 ly 
g ax g at 9 ' 'B+2y ' B+2y ' ' ax 

 

Therefore the friction slope expressed by equation (12) can be modified 

for the routing reach under consideration as : 

Y  )2)1}.. (54) =
o 

- 1  • Pi[l F2  (- 1 4 (B22; ) 4(B+2y S0 ax 

For wide rectangular channels equation (54) reduces to : 

4 
Sf = So  [ 1 - 

( 1 - F'2)] ... (55) 

Based on the similar analysis as carried out for the case of 

unsteady flow following Chezy's friction law, it can be shown that the 

distance 1 between the mid section and that downstream section at 

which the normal discharge corresponding to the flow depth of mid 

section is realized is given as : 

= Qn • 1/2(1/2  - 1) Gm 1(1/2  - 1)(Z - 2) G2  

1+42 
,VF

xiç 
[ 

Ym  
-1 + 

Ym 2 
4 (134.2y  B+2ym  

(56) 
5 S B [ o 

4 Ym 
- ( )1 y 
3 B+2ym m 
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Where G
m 

- 

4_2 y 2- 
[1 + (-1 + 4( m  ) - 4 ( m  ) 9  B+2y

m 
BQ ... (57) 

S L  D r 5 4 YM Nl V 
0
D 7 B+2ym  m 

 

and y
m  = the depth at the mid section of the routing reach. 

Similar analysis as carried out earlier for the flow following Chezy's 

friction law, leads to the governing unsteady flow equation as : 

I-Q d f K[Q + 8 (I - Q)]) dt 

in whiCh, 

... (58) 

K - Ax  

5 4 Y3 (v1T-,
3
-)] V3  

... (59) 

and 
l_Q f 1 -_k(1/2  - 1)  G + 

 k(1/2-1)(1/2-2) 

7 17 Ia 
M  

m Ym  
tl +G F(-1(B_Tz

Y  
y
n
--
1
-) 4 (B+2y 

in 

) 2 )  
... (60) 

4 Ym SoB [ 5 - (--E172-511vm  Ax 
in 

For wide rectangular channels equations (59) and (60) reduce to: 

Ax  K -  and ... (61) 5 v3  

= -121  Qnfl k(k-1) G + t½-1) (-2)  2 + 
^g 
4 2 m 3 G

m F ) 

(IHvm) Ax. ... (62) 

where, 

Qin  - Q3, the discharge at section (3) and 
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valaue, then K and 0 reduce to : 

K--- Ax - 

1 

5 7  vo  

(111
0 
 (1 F,23' ) 

... (64) 

Ym   
1 

ymQ3  [1 F2(-1+ 44)72y;) 4 ( B+2y )2 ) ] 
and 

= 
- ... (67) 

vm = the velocity at the mid section of the routing reach. 

When neglecting the terms C, G2 .... etc., e reduces to mm 
4 2 

1 _ Qm (1 - F ) 

2 S B (-5 v )Ax 3m 

2 ... (63) 

when the variables are fixed corresponding to a reference discharge 

... (65) 
2 S B v ) Ax 3 o 

The above expressions for K and 0 were obtained by Dooge et al . (1982) 

for the case of constant parameters Muskingum flood routing method. 

When the rectangularcbannel is not wide and after eliminating G
m  , G

2 . m 
etc., K and e reduce to : 

K = Ax 
... (66) 

[3. -4 ( )] v3  

2 S[ 4  4 Y  
( B+2; )1  RI A x  

where y
m, Qm, Q3, y3  , and v3 are as defined earlier. 

26 



5.0 APPLICATION 

The methodology described above was verified by applying it for 

the case of routing floods in rectangular channel assuming that the 

flow follows Manning's friction law. It was assumed that the routing 

parameters K and 0 can be represented in terms of channel and flow 

parameters by equations (66) and (67) respectively. 

It was considered that the approximation involved in computing 

0using approximate L  ,the distance between the mid-section and the 

section downstream of it where the normal discharge corresponding to the 

observed depth at mid-section is realized at the same instant of time, 

would not affect that accuracy of routing solution based on 

this procedure. 

5.1 Test Series 

The best approach for verifying the suggested methodology is to 

use hypothetical inflow-outflow hydrographs Accordingly a hydrograph 

defined by a mathematical function is routed through the given channel 

for a specified distance using St. Venant's equations, which govern the 

one-dimensional flow in open channels, and thus the "observed" outflow 

hydrograph at the end of the specified distance is established. Now the 

same inflow hydrograph is routed in the same channel using the suggested 

procedure for the same specified distance and the resulting routed 

hydrograph is compared with the corresponding St. Venant's solution. 

The criteria for comparison based on various characteristics of outflow 

hydroagraph are defined at section 5.3. The logic behind the use of 

hypothetical inflow outflow hydrographs for verifying such methodolog-

ies has been already established (Kmdzewicz, 1986). 
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5.1.1 Inflow hydrographs 

In order to get a better understanding of the suggested procedure 

and for the purpose of effective comparison of various outputs obtained 

based on this procedure, it was decided to use the same inflow hydro- 

graph in all the test runs. The hypothetical inflow hydrograph 

defined by a four parameter pearson type-III distribution which is 

expressed by the following equation was adopted in this study : 

1 1 
Q(t) = Q0 (Qp  - Qb)()13•1) 

(1 -t/t ) 

where, 

016 =base flow = 100 m3/S 

goio  = peak flow = 1000 m3/S 

t - time to peak = 10 hours P 
Y = skewness factor = 1.15 

... (68) 

This hydrograph was adopted by Weinmann (1977) based on the 

consideration of steepness of hydrograph and magnitude of initial flow. 

The hydrograph based on equation (68) is shown in all the discharge 

hydrograph plots presented in this report. 

5.1.2 Channel geometry and flow resistance properties. 

The rectangular channel with the width of 50m was used for all 

the test runs and the routing computations were carried out for a maximum 

reach length of 40 km. The methodology was tested on four different 

channel configurations which are characterised by the followi ng bed 

slope and friction values as given in Table - 1 



Table - 1 Channel Configurations 

Channel Type Bed Slope n -value 

1 0.0002 0.04 

2 0.0002 0.02 

3 0.002 0.04 

4 0.002 0.02 

These configurations were earlier adopted by Weinmann (1977) 

possibly due to the reason that the first two configurations represent 

a worst case for which the approximate routing procedure are expected 

to perform poorly, and the last two configurations represent the best 

case for which they are expected to perform well. 

5.2 Solution Procedure 

The initial parameter values for K
0  and o were evaluated using 

equations (66) and (67) respectively. Using these parameter values, 

the coefficients of the conventional Muskingum method were evaluated 

as : 
-KG + At/2 

K(1 - 00) + At/2 

KO + At/2 
... (69) 

K(1 - o) +At/2 

K(1 - 00) - At/2 

K(1 - 00) + At/2 

Then the discharge Q2  at the outflow section corresponding to inflow 12, 

where 12 corresponds to inflow orinate at t = At, was evaluated as: 

Q2 C112 C2/1 I- C3Q1 (70) 
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Knowing 12  and Q2, the discharge at section (3) as depicted in 

figure (2) was evaluated as : 

Q3 - Q2 Go(/2 - Q2) (71) 

Corresponding to this discharge, the normal depth at the middle of the 

reach was evaluated using Newton -Raphson method based on the normal 

depth-discharge relationship as : 

5/3 1/2 5/3 B S 
o  . Ym ... (72) 

Q3 - 
(B+2ym)2/3 

Then the discharge at the middle of the reach was evaluated as : 

Qm := (12  + Q2)/2 ... (73) 

Knowing Q
m
, ym, Q3  and F2, the new 0 was computed using equation 

(67) corresponding to Q2. Based on equation (49) the flow depth at 

section (3) wa evaluated as : 

Ym Qm  
Y3 Ym 1Q3 Qm)/[(5 

 
-3 -4 

 a '( B-'-2y ))  Ym  
... (74) 

The velocity v3  at section (3) was computed as : 

v3 - 
Q3  

By3  ... (75) 

Knowing v3  and y3, and the distance of routing reach Ax 

the new travel time K was comptued using equation (66). 

These revised K and 0 values were used for the next step of 

solution corresponding to the new input ordinate. These steps were 

repeated for the entire solution procedure, thus varying the values 

of K and Oat every time step, but at the same time adopting the 

linear solution procedure. The flow depth at the outflOw 
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a y 
x When 

section corresponding to the solution Q2  was computed as : 

5 Ym Qin 
Y2 = Ym + (Q2 - 9.)/{(3 -

4
( B + 2 )) Ym  Ym  

... (76) 

The procedure described above correspond to the variable 

parameters case. TWo different approaches of.  solution procedures were 

adopted for the variable paramaeters case viz, 

Considering the entire 40 km reach as a single reach and 

Considering it consists of number of sub-reaches. The other 

solution procedure corresponds to the case of adopting constant 0 and 

variable K, along with the consideration of 40 km reach as a single 

reach. 

was large, it was observed that a significant length 

of reach was required as a single reach in the case of channel type-1 

for the purpose of successfully routing the hydrograph using variable 

parameters approach. The routing resulted in computational problem 

due to high negative value of 0, when the adopted routing length was 

less than the required minimum length. 

Such situations necessitate the linear interpolation of given 

inflow and the routed outflow hydrographs for finding the intermediate 

outflow hydrographs corresponding to the reach lengths which are less than 

the specified required minimum length. In order to test whether such 

interpolations yield acceptable results, two different cases were studied 

with channel types 1 and 2. 

With channel type 1, the minimum length of routing reach for 

obtaining solution with no computational problem using variable parameters 

routing approach was found to be 22 km. A hydrograph solution for 5 km. 
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reach was attempted using interpolation of the given inflow hydrograph 

and the routed hydrograph at 22 km. 

In order to check the interpolation solution 

result with the direct routing solution ,for a distance of 5 

km, the following procedure was adopted : 

For the case of channel type-2, the linear interpolation solution 

was obtained at the end of ceach length of 5 km, using the given 

inflow hydrograph and the routed hydrograph at the end of 40 km. For 

comparison with this solution, the inflow hydrograph was routed for 5 km. 

by considering it as a single reach. 

Fifteen test runs as indicated in Table-2 were made in order to have a 

better understanding of the proposed methodology. Runs based on different 

combinations of parameter variations, and number of sub-reaches 

considerations were made. Such combinations tested are listed in the 

'Remarks' column of Table-2. In all the runs, the routing time interval 

At was considered as 15 minutes in order to avoid any numerical error in 

the solution using equation (70). 

5.3 Comparison Criteria 

The following comparison criteria were adopted for checking the 

efficiency of the proposed method of solution in comparison with the 

St. Venant's solution : 

5.3.1 The hydrograph fitting consideration 

The "closeness with which the proposed method of solution follows 

the true solution, including the closeness of shape and size of hydrograph, 

can be measured using the criteria of variance explained by the method. 

The expression for variance explained in % is given as : 
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Variance explained in (Total variance - Remaining Variance)  % Total variance x 100  

where, 

with, 

? . - .)2  
the total variance = ' i=1 "-col '(ol' 

1 
the remaining variance = Ni=1(Qoi Qci)2  

.th opoi  = the discharge observation 

(7)0i  = mean of the discharge observation 

Q ci = 
.th the discharge computed using the proposed metnod  

N = the total number of discharge ordinates 

5.3.2 Magnitude of flood peak consideration 

Relative error in peak discharge (%) is given as : 

QPE 
(Qpc Qpo) x 100 ... (80) 

Po 

where, 

01110c 
 = the computed peak outflow discharge 

Qpic 
 = the observed peak outflow discharge 

Error in peak stage (metre) is given as : 

= y PE pc - Ypo  

where 

ypc = computed peak stage at the outflow section 

yP° = observed peak stage at the outflow section 

5.3.3 Time of peak consideration 

Error in time of peak discharge (hours) is given as : 

Tpow  = t(Q) - 0%0) ... (82) 
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where, 

t(Q) = time corresponding to computed peak discharge 

t(00100
) = time corresponding to onserved peak discharge 

Error in time .of peak stage (meters) is given as : 

T = t(y - t(Y ) 
PYE pc Po 

... (83) 

where, t(y

pc
) = time corresponding to computed peak stage at the 

ouuflow section 

t(y
pc

) = time corresponding to observed peak stage at the 

outflow section 

5.3.4 Conservation of mass consideration 

The relative error in the flow volume in percent of the total 

inflow volume is expressed as : 

N N 

I' Qci - 
I. 

I 1 
1=1 i=1  

EVOL - [ i x 100 ... (84) 

where, 

. I.= the th inflow discharge 
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6.0 RESULTS AND DISCUSSION 

6.1 Results 

Table - 3 presents the results of variance explained, relative 

errors in peak discharge, and peak stage, errors in time to peak discharges, 

and peak stage, and the relative error in flow volume for all 15 test 

runs made in this study. Figure (3) shows the inflow hydrograph, and the 

outflow hydrographs computed from test run nos. 1, 2 and 3 and from St. 

Venant's equations (the "observed" hydrograph). Figure (4) shows the 

corresponding computed stage hydrographs at the outflow section. Similarly 

figures (5), (7) and (9) respectively show the inflow hydrograph, and the 

outflow hydrographs computed from test run number 4-6, 7-9 and 10-12 along 

with the St. Venant's solutions for these runs. Figures (6), (8) and 

(10) respectively show the computed stage hydrographs at the outflow 

sections along with the concerned stage hydrographs due to St. Venant's 

solutions for the above mentioned runs. Figures (11),(12), (13) and (14) 

respectively show the variation of the travel time parameter K vs. the 

corresponding given inflow ordinates for test run nos. 1, 4, 7 and 10. 

Figures (15), (16), (17) and (18) respectively show the variation of the 

weighting factor e vs the corresponding given inflow ordinates for test 

run nos. 1, 4, 7 and 10. Figure (19) shows the inflow hydrograph and the 

computed outflow hydrograph from test run no. 13, and the corresponding 

St. Venant's solution. The outflow hydrograph computed for the reach 

length of 5 Km from test run no. 13 was obtained by interpolation of the 

given inflow hydrograph and the corresponding computed outflow hydrograph 

at 22 Km. Figure (20) shows the computed and the St. Venant's solution's 

stage hydrographs corresponding to test run no. 13. Note that the stage 

hydrograph at 5 Km. was obtained by linear interpolation of the "observed" 
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stage hydrograph at the input section and that of computed hydrograph 

at 22 Km. Figure (21) shows the inflow hydrograph and the hydrograph 

obtained based on the interpolation of the same inflow hydrograph and 

the corresponding single reach based routed hydrograph at 40 Km. along 

with the St. Venant's solution. These results belong to test run no. 14. 

The stage hydrograph computed in the similar manner corresponding to test 

run no. 14 is shown in Figure (22) along with the corresponding St. 

Venant's solution. Figure (23) shows the inflow hydrograph, and the 

computed outflow hydrograph and the St. Venant's equations solution 

corresponding to test run no. 15. The normal flow hydrograph obtained 

from this method, representing the weighted discharge is also shown in 

the same plot. Figure (24) shows the stage hydrographs due to St. Venant's 

solution and due to the present method corresponding to test run no. 15. 

6.2 Discussions 

6.2.1 On the results of test run nos. (1), (2) and (3) 

Based on the consideration of variance explained, it can be seen 

from Table - 3 and verified from figure (3), that the hydrograph 

computed corresponding to test run no. 1 is able to reproduce the St. 

Venant's solution more closely than the solutions of test run nos. 2 and 

3, except at the beginning of routing. The computed hydrograph dips in 

the beginning as observed by many researchers (Nash, 1959; Venetis, 1969; 

and Dooge, 1973) in the case of Muskingum flood routing method. The 

reasoning for this dip is explained at a later stage. 

The hydrograph of test run no. 2, corresponding to the case of 

constant 0 and varying K does not reproduce the St. Venant's solution 

satisfactorily. The constant 0 value estimated for this test run was 
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-0.0497 and it was obtained using the expression given by equation (67) 

after freezing all the flow variable with reference to the reference 

discharge Q0  which was computed as (Price, 1973): 

Qo 
 _ 

 

... (85) 

 

where 

I = the inflow hydrograph peak 

Q
p. 
 = the outflow hydrograph peak 

The reasoning for, the weighting parameter becoming negative is given 

later. Note that the value of Qp, required for the comaputation of 

was unknown corresponding to the constant 0 value and it was 

approximately considered as the peak value of the hydrograph obtained 

by routing the given inflow hydrograph for the same reach length using 

varying K and that 0 value which was computed from equation (67) based 

on initial flow conditions. It may be noted from Table - 3 that 

conservation of mass principle is grossly violated in this case when 

compared with the cases of test run nos. 1 and 3. However both test run.  

nos. 1 and 2 reproduce equally well, the other characteristics of hydro - 

graphs.such as error in peak flow and stage value, and the errors in 

time to peak discharges and stages. 

Test run no. 3 which corresponds to the 2 sub-reaches solution, 

reproduces the St. Venant's solution both from the consideration of close-

ness and. conservation of mass much better than the case of test run no. 

2, but slightly poorer than the case of test run no.l. No dip at the 

beginning of the solution was found in this case unlike the case of test 

no.1 . Although the peak flow was slightly underestimated in this case 

61 



(672 m
3
/sec when compared with 714 m

3
/sec of test run no. 1), the other 

hydrograph characteristics were closely reproduced especially the peak 

stage. Attempts made to increase the number of sub-reaches more than 

2 for routing using the suggested method resulted in computational problem 

due to high negative value of0.. From the overall considerations of 

results presented in Table - 3 for these three runs, it may be inferred 

that the routing solution obtained from the two sub-reaches consideration 

may be preferable than the other two cases especially for flood forecasting 

purposes. If particular importance is not attached to the slight under 

estimation of peak flow and increase in total outflow volume over that 

of inflow, then the results of test no. 3 may be considered as the best 

both for the purpose of flood forecasting and design flood estimation. 

6.2.2 On the results of test run nos. (4), (5) and (6) 

As seen from Table - 3,the variance explained by the solution 

approaches of test nos. 4 and 6 were greater than 99%. Similarly in both 

cases, the conservation of mass was well maintained (<1 0.63%1). However 

the multiple reach solution with 8 sub-reaches and Ax - 5 Km., belonging 

to test run no. 6, performed well when compared with the results of test 

run no. 4 in reproducing the stage hydrograph. Note that the peak stage 

was differing from the true solution only by 0.04 m. when compared with 

0.39 m of test run no.4. The variance explained by the solution procedure 

of test run no. 5 is less than that of the other two cases, although the 

difference is not significant. However from the consideration of 

conservation of mass, this test case performed poorly than the other two 

cases. In this aspect, the performance was similar to that of test run 

no. 2 which also used the varying K and constant 0 solution approach in 

arriving at the routed hydrograph at 40 Km. Therefore the routing of steep 
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rising inflow hydrographs such as in the cases of test run no. (2) and 

(5) in very flat streams using constant 0 and varying K based solution 

approach may not yield appropriate results. However further studies are 

required to arrive at any definite conclusion about this statement. 

From the over all considerations of test run nos. (4) , (5) and 

(6), one may prefer again the multiple reach based solution allowing both 

the parameters K and 0 to vary. 

6.2.3 On the results of test run nos. (7), (8) and (9), and (10), 

(11) and (12) 

In all these runs the variance explained by the different solution 

approaches were greater than 99% with the absolute maximum error in the 

conservation of mass being 0.47 Z. All the other hydrograph 

characteristics were very well reproduced. These test runs results 

indicated that there was no significant difference between the results 

of variable parameters solution approach in which both 0 and K varying, 

the solution, approach based on the variation of K only keeping e constant, 

and number of sub-reaches solution approach considering the variation of 

both 0 and K. As will be discussed later, that there exists no significnt 

variation of Ovalues corresponding to the given inflow ordinates for the 

test run nos. (7) and (9) of channel type-3, and test run nos. (10) and 

1
r  

(12) of channel type-4. In these cases the value of 
—S  -- a Y was x 
0 

nearer to zero indicating that the flood wave is of kinematic in nature. This 

inference has been verified by figures (7) and (9) as there was very 

little attenuation of flood peaks in these cases. It may be inferred 

from the closeness of the solutions shown by figures (7) and (9) that the 

method suggested herein may be used for kinematic routing of flood wave 
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in long reaches in a single step routing. 

6.2.4 On the results of test run no. (13) 

This test on channel type-1 was conducted with the aim of assessing 

the validity of the inference arrived through equation (18) that the 

discharge at any instant of time along the routing reach varies linearly. 

As mentioned in section 5.2, the minimum length of routing reach required 

for this case was 22 Km. for the successful routing using the solution 

approach based on the variation of both 0 and K. The hydrograph my be 

obtained at any section of the channel reach within 22 Km. only by linear 

interpolation of the inflow hydrograph and the routed hydrograph available 

at 22 km. using this solution approach. The hydrograph so obtained in 

test run no. (13) at 5 Km. from the inflow section compares well with the 

corresponding St. Venant's solution for the discharge hydrograph, as shown 

in figure (19). However the interpolated stage hydrograph at this section, 

as shown in figure (20), based on the inflow stage hydrograph and the 

corresponding computed outflow stage hydrograph at 22 km. using this 

procedure , shows 'a poor comparison with the St. Venant's solution 

especially after the peak stage. This difference may be considered 

significant at such a short reach of 5 km. However as discussed in sectior 

6.2.1 based on test run no. 3. and shown by figure (4), the solution for 

the stage hydrograph at 40 km. for the same channel and based on the 

procedure of two sub-reach solution and subsequent interpolation was found 

comparable with the St. Venant's solution. This only suggests that for 

channel type-1, the assumption of linear variation of water surface as 

implied through assumption (4) may be more valid at a point located 

long distanne from the inflow section and when the solution at this 

distance is obtained through multiple reach routing consideration. This 
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is important as the single reach solution based stage hydrograph at 40 

km. for the same channel was also poorly estimated when compared with the 

corresponding St. venant's solution hydrograph as shown in figure (4). 

A further discussion on this aspect will be covered at a later stage while 

1 ay discussing the importance of the factor -s .flx  , the dimensionless water 
o° 

surface slope. 

6.2.5 On the results of test run nos.. (14) and (15) 

These tests conducted on chabnel type-2 were aimed at the 

verification of interpolation solution obtained at 5 km. distance from 

the inflow point using the hydrographs at the inflow section and the 

computed outflow hydrographs obtained based on single reach routing 

solution at 40 km. The verification was made by comparing the interpolation 

solution at 5 km. with the corresponding direct routing solution based 

on the same solution approach. It can be seen from table-3 that the 

results of these runs are comparable to each other and also they are well 

comparable with the St.venant's solution. The saMe may be verified from 

figures (21), (22), (23) and (24). It may be inferred from the results 

of test run nos. (14) and (15) that the unsteady flow solution required 

at any section of the reach may be obtained by linear interpolation of 

the inflow hydrograph and the resulting routed outflow hydrograph of long 

reach obtained in a single step solution. Detailed studies may be 

required to verify on this aspect. This interpolation approach replaces 

the number of tedious routing computations for short reaches. The basic 

difference between test nos- (13).,(14) and (15) is with reference to the 

value of Manning's roughness coefficient'of the channel. While 

n = 0.04 for test run no. 13, it was 
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0.02 for the latter test runs. Therefore the possible reason for the 

success of direct routing of inflow hydrograph using the variable 

parameter approach in channel type-2 for a short distance of 5 km, when 

compared with the required minimum direct routing length of 22 km of test 

run no. (13) for channel type-1, may be attributed to the reduction in 

the roughness coefficient which indirectly causes the reduction in the 

magnitude of water surface slope, 1Y and thus making it possible, 
Dx 

without creating computational problem due to negative value of 0 to 

use short routing reaches for direct routing when both 0 and K are 

varying. 

6.2.6 On the variations of K and e 

Variation of K: 

Figures (11), (12), (13) and (14) show the variations of the travel 

time parameter K at each routing time level with reference to the 

corresponding time level inflow ordinates for the cases of test run nos. 

(1), (4), (7) and (10). The purpose of relating K with the inflow 

hydrograph ordinates is to assess the real variation of K for all channel 

configurations studiedptanding on a common platform such as the 

inflow hydrograph which is not influenced by the outflow information 

based on this method. Note that in all these cases the reach length 

Ax was fixed as 40 km. It can be seen from these figures that for all 

the cases the travel time corresponding to the same inflow discharge 

decreases as the order of channel type increase which implies that the 

velocity increases witn the increase in the order of channel types. 

The reduction in the magnitude of K in the case of channel type-2 when 

compared with chananel type-1 is solely cue to reduction in Manning's 

roughness coefficient to 0.02 in case of channel type-2, when compared 

with the corresponding value of 0.04 in the case of channel type-1. As 

indicated by the figures (13) and (14) the increase in the bed slope also 

66 



causes increase in the velocity. Therefore this discussion confirms that 

the physics of the open channel flow, i.e. the decrease in roughness 

coefficient or increase in bed slope or both cause increase in the velocity 

of flow, is closely followed by the methodology presented herein. 

Variation of 0: 

Figures (15), (16), (17) and (18) show the variations of the 

weighting parameter 0  at each routing time level with reference to the 

corresponding time level inflow ordinates for the cases of test run nos. 

(1), (4), (7) and (10). Before discussing these results, it is necessary 

to look into the aspects of the variation of0 from the physical point of 

view. 

As given earlier, the weighting parameter 0 is expressed as : 

1 I 
0 = -7 - A x 

With reference to figure (2), 0 represents the non-dimensional distance 

between sections (3) and (2). Using equation (41) , the variation off) 

ca. be studied. 

When section (3) lies between the mid section and the outflow 

section of the routing reach, 0<0< 0.5. When section (3) coincides with 

section (2), then 0 - 0 as in the Kalnin-Milyukov method. 

However if the routing reach length is such that section (2) is 

located ahead of section (3), in which case (›A)2-c-- the value 

of e< 0. When such a situation occurs during the routing process using 

this procedure, the outflow discharge magnitude would be greater than 

the normal discharge Q3  as observed at section (3). 

This situation was experienced in test run no. (15) in which the 

e values corresponding to each time level of routing was negative and thus 

the outflow discharge was greater than the normal discharge Q3  at all 
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the time levels of routing. Figure (23) shows the discharge hydrograph 

results of test run no. 15, in which the single reach solution obtained 

by varying both 0 and K is plotted along with the St.Venant's 

solution. The corresponding normal discharge hydrograph is also shown 

therein. It can be seen from this plot, that the outflow discharge 

hydrograph is observed ahead of normal discharge hydrograph confirming 

the interpretations based on equation (41). It was observed that 

-2.2763404-0.0692 for this case. Althoguh the possibility of 0< 0 was 

indicated by Dooge (1973) , the argument in favour of 0 becoming negative 

from physical point of view has been put forwarded by trupczewski and 

Kundzewicz (1980). Note that the value 0< 0 does not have any meaning 

in the case of Muskingum Gunge method as it is considered as the numerical 

weighting factor with 0404 1. From the point of view of numerical 

mathematics as generally understood for the flood routing application 

0 40. Therefore the reasoning given herein for 0 < 0 makes the present 

theory more attrative than any other theories presented so far on the 

Muskingum flood routing method. 

When section (3) coincides with the mid section, i.e., I. = 0 and 

1 this leads to 0 = 2-
- . This represents the situation in which the 

normal discharge coincides with the normal depth at the mid section of 

the reach and thus leading to the Kinematic flood wave movement. 

The situation Wherein e '0.5, implies the location of section 

(3) upstream of mid section of the routing reach and based on the physical. 

basis of the model, i.e., the discharge precedes the corresponding steady 

flow stage in unsteady flow situation, the change of direction of flow 

could be realized. Accordingly, the computed hydrograph at the outflow 

section i.e., at section (2) would be the amplification of the inflow 
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hydrograph. Explanations on the basis of various considerations are also 

.available for 0> 0.5 by other researchers (Cunge, 1969; Wage, 1973; and 

Strupczwski and Kundzewicz, 1980). 

It can be seen from figures (15) and (16) which belong to test run 

nos. (1) and (4) respectively; that the variation of 0 w.r.t. inflow 

.otdinatesare wider, with 0<0 occurring in test run no. (1). However 

for test run nos. (7) and (10) , the variation of 0 was not very much 

and their values were also found to be nearer to 0.5. These variations 

are brought out in figures (17) and (18). 

It can be inferred from these variations that when the term 

1 ay. 
. ax is small and its variation is not significant then the value 

8 is nearer to 0.5 and its variation is not significant. But when 

magnaitude of . is large and varies much, it causes wider 
° 

variations in the value of 8 including the possibility of 0 values 

negative as shown in figure (15). An understanding of these variations 

as explained above can be obtained from equations (30) and (31). The 

1 . term is Inversely proportional to the velocity of flow and 
o 

1  therefore, higher magnitude of g  . i ,x  mplies lower magnitude of o 
velocity, vm  which in multiplication with So  results in the higher value 

of the distance between the mid section and section (3) of the 

routing reach. Thus the magnitude of S will be much less than 0.5. 

When -1 BY 
So ax 

this causes decrease in the value of 

1  be nearer to°0.5. The typical values of the term s. ,x ly 
as calculated 

° 
using this methodology for test runs nos. (1), (4),(7) and (10) have 

been tabulated below. 

is nearer to zero, there is increase in the velocity and 

Thus the magnitude of 0 will 

of 

the 

becoming 

69 



Table - 4 

Typical Values of 
So'3x 

Test 
Run 
No. 

Channel 
Type 

Length 
of 

Reach 

No. 
of 

Reaches 

Magnitude of 
1 2y 
So 8x 

Minimum Maximum 

1 1 40 km 1 -0.8188 0.6199 

3 1 44 km 2 -0.9140 1.1250 

-0.8827 0.3463 

4 2 40 km 1 -0.4566 0.2800 

6 2 40 km 8 -0.5243 0.3949 

-0.5369 0.3600 

-0.5483 0.3324 

-0.5580 0.3095 

-0.5656 0.2904 

-0.5713 0.2740 

-0.5767 0.2598 

-0.5811 0.2471 

7 3 40 km 1 -0.0349 0.0151 

10 4 40 km 1 -0.0156 0.0064 

Remarks 

single reach 

first reach 

second reach 

single reach 

first reach 

second reach 

third reach 

fourth reach 

fifth reach 

sixth reach 

seventh reach 

eight reach 

single reach 

single reach 

I  It can be seen from Table - 4 that the typical value of nx ly > 1 

o " 
for test run no. (3) and for this situation the binomial series 

expansion is strictly not valid even though the results obtained are 

not very poor from the true values. Further, it can be seen as the 

1 Ly order of channel type increases, the typical values of -s— ax  become 
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less and less indicating that the attenuation causing factors do not 

have any role to play in the routing process. 

It was observed while discussing the results of test run no. (3) 

in section 6.2.1 that the two sub-reach solution with both 0 and K varying 

resulted in the stage hydrograph much closer to that of St: Venant's 

solution when compared with the case of single reach solution with both 

eand K varying. This is due to the assumption of linear variation of 

water surface is closely followed in two sub-reaches solution case than 

in the case of single reach solution. Therefore to follow the assumption 

oE linc r variation Of 1Y ' it is necessary to sub-divide the reaches 

into smaller reaches. At this juncture one may arise the question that 

why the discharge hydrograph of test run no. (3) was not properly estimated 

in the case of two sub-reaches solution when compared with the discharge 

hydrograph of single reach solution. The reason may be attributed to the 

B magnitude c — Y > 1 as observed in the first reach of the two 
o ax 

sub-reaches solution, thus invalidating the solution of discharge 

hydrograph from the first reach. When this hydrograph is routed along 

the sub-reach, the resulting hydrograph is p000rly estimated than the 

single reach solution. From these discussions one can infer that the 

assumption of linear variation of discharge is more valid than the 

assumption of linear variation of flow depth for a longer routing reach. 

6.2.7 On the cause of dip in the beginning of solution 

This physically based routing method enables to ascertain the cause 

of negative or reduced or dip in the beginning of solution of the Muskingum 

flood routing method in the following manner : 
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The governing unsteady flow equation of the Muskingum method is 

given as : 

I - Q - dt  1K(OI + (I-0)Q] ... (58) 

Multiplying both sides of equation (58), by (1-0) gives : 

I-(0I + (1-0) Q) =  — [K(1-0) (ei (1 -0)Q] ... (86) 
dt 

But the expression0I + (1-0)Q is same as Q3, the normal discharge. 

Therefore equation (86) is re-written as : 

d  
I -Q3 - 

ript, 
dt In's 

9)Q3] ... (87) 

The solution of equation (87) assuming K and 0 to be constant, 

yields : 

c
-t/K(1-0) T/K(1-0) 

di + ioe
-t/K(1 

Q3 f Ie 
K(1-) o e when I = Io at t = 0 ... (88) 

T /IC(1 )d-r when I=0 at t=0 

Q3 - 14(1-1-17 
I lie ... (89) 

Equation (88) and (89) indicate that at section (3), Q3  = 10 and 

Q3  = 0 respectively when t = 0. Since the discharge varies linearly 

along the reach from t = 0 onwards, this leads to a discharge less 

than Io 
or 0 at section (2) when it is located downstream of section (3) 

for which case 013<0.5. 

The discharge at section (2) would be always greater than the 

initial steady flow if it is located upstream of section (3) for which 

case 0<0 . The above inference arrived based on constant 0 and K is 

also valid for variable K and 0. Note that when 1 is small and section 

(2) is located for away downstream of section. (3), then such a situation 
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leads to dip or negative flow in the beginning of routing. The larger 

distance between sections (2) and (3) is due to longer reach considered 

for routing. This aspect has been brought out by the results of test 

run nos. (1), (4), (7) and (10) wherein the routing was carried 

out by considering 40 km. length of the channel as a single reach. The 

respective discharge and stage hydrographs plotted in figures (3) - (9) 

show the dip in the beginning of the solution. 

The magnitude and duration of this dip depends on the magnitude 

1 ay  of the term — as explicitly brought out by equation (3). When So Bx 

the magnitude of the tevm is high, then the magnitude and duration of 

the dip increases. This inference can be verified from the typical 

values of 1 
 - given in Table-4 for runs (1), (4), (7) and (10), and dx 

from the respective stage and discharge hydrographs given in figures 

(3) - (10) . The hydrograph solutions obtained for the above mentioned 

-uns and for the same length of reach, after dividing it into sub-reacbes 

are also depicted in figures (3) - (10). These solutions indicate no 

dip in the beginning of routing and thus confirm the above inference 

arrived regarding the formation of dip and its elimination. 
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7.0 CONCLUSIONS 

A variable parameter simplified hydraulic method has been developed 

for routing floods in channel reaches having uniform reetangular 

cross section and constant bed slope. 

The governing equations of this method Which describe the 

flood wave movement in channels are same as that of Muskingum 

flood routing method introduced by McCarthy (1938), and it has 

been demonstrated using this method that these equations can 

directly account for flood wave attenuation without attributing 

to it the numerical property of the method as stated by Cunge 

(1969) . Therefore this method gives a new insight into the 

theoretical aspects, of the Muskingum flood routing 

method. 

The parameters 0 and K of the Muskingum method have been 

related to the channel and flow characteristics. 

'he nonlinear behaviour of flood wave movement in channels 

having uniform rectangular cross section may be 

modelled using this method by varying the parameters 

0 and K at every routing time level, but still adoptir .  

the linear form of solution equation. 

There exists a minimum routing reach length for which this 

method with both 0 and K varying can be applied successfully 

without experiencing computational problem due to high negative 

value of 0 . 

The flood routing solution in reaches having length less than 

the above mentioned minimum reach length, can be obtained by 
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linear interpolation of discharge and stage hydrographs of given 

inflow hydrographs and the corresponding computed outflow 

hydrographs obtained at the location of minimum reach length using 

this variable parameters method. 

In general, the method in which both e and K varying 

along with multiple routing reaches consideration is able to 

reproduce the true solution much closer than the method in which 

both e and K varying, but with the consideration of single routing 

reach. 

In general, the method in which both 0 and K varying is able to 

reproduce the true solution much closer than the method 

in.which only K varying and 0 remaining constant. 

1 ty 
However when the relative water surface slope 3 nx  is very 

° 
small, there is no difference between the solutions obtained using 

the method in Which both e and K varying, and the method in 

which only K varying and 0 remaining constant. 

As there is no standard definition of "small" and "larg 

applicable with regard to the magnitude of the relative water 

1 ay 
surface slope z— ,x 

 , it is always desirable to use this routing 
0 

method with the consideration of multiple routing reaches, and both 

parameters 0 and K varying in each reach routing. 

The higher the absolute magnitude of the relative water 

1  surface slope -c— - nx  , the higher the values of travel time K 

and their variation, 

12 The higher the absolute magnitude of the relative water surface 

slope , the higher the variation of weighting 
° 

parameter 0 . 
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The weighting parameter 0 would be negative when section (2) 

is located upstream of section (3) at any instant of time during 

routing. 

The cause of reduced outflow in the beginning of routing 

solution of the Muskingum method is due to the linear 

variation of discharge considered by the method over the routing 

reach and due to longer routing reach length Ax considered 

for routing. 

The magnitude and duration of reduced outflow is directly 

proportional to the magnitude of the relative water surface slope 

1 ay  
nx  , and the length of routing reach Ax. 

o ° 
To avoid this reduced outflow theoretically, the routing 

reach should be divided in such a manner that section (2) is 

located upstream of section (3) for each considered sub-reach. 
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