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Abstract 
In this paper we present a methodology to perform water system optimization under climatic and 
hydrological uncertainty, in order to reach a sufficient degree of systems reliability to determine 
the risk of significant water deficiencies. Different generation techniques are compared to set up 
and analyze a number of scenarios. Uncertainty is modeled by a scenario-tree in a multistage envi-
ronment, which includes different possible configurations of inflows in a wide time-horizon. The 
mathematical model structure representing the multiperiod optimization stochastic problem allows 
to handle a huge number of variables and constraints. The solutions of the optimization process on 
the scenario-tree are post-processed in order to reach a “robust” solution. The aim is to identify 
trends and essential features on which to base a robust decision policy. 
 
INTRODUCTION 
 
Water resources management problems with a multiperiod feature are associated to 
mathematical optimization models that handle thousands of constraints and variables 
depending on the level of adherence required to reach a significant representation of the 
system (Loucks et al., 1981; Yeh, 1985) 
 
Moreover these models are typically characterized by a level of uncertainty about the 
value of hydrological exogenous inflows and demand patterns. On the other hand inade-
quate values assigned to them could invalidate the results of the study. When the statisti-
cal information on data estimation is not enough to support a stochastic model or when 
probabilistic rules are not available, an alternative approach could be in practice that of 
setting up the scenario analysis technique. 
 
In this paper we present a general-purpose scenario-modeling framework to solve water 
system optimization problems under input data uncertainty, as an alternative to the tradi-
tional stochastic approach in order to reach a "robust" decision policy that should mini-
mize the risk of wrong decisions. This approach leads to a huge model that includes a 
network sub-model for each scenario plus linking constraints, and must be treated with 
specialized resolution techniques. In the proposed approach, the problem is to be ex-
panded on a set of scenario sub-problems, each of which corresponding to a possible con-
figuration of the data series. By studying the global-scenarios optimal solution, one could 
discover similarities and trends that should quantify the risk of management operations. 
Each scenario can be weighted to represent the “importance” assigned to the running 
configuration. Sometimes the weights can be viewed as the probability of occurrence of 
the examined scenario. A "robust-barycentrical" optimization solution can be obtained by 
a procedure that minimizes the distance between sub-problems optima. 
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The model is usually defined in a dynamic planning horizon in which management deci-
sions have to be made either sequentially, by adopting a predefined scenario independ-
ently, or by following different scenarios in a "scenario-tree" context as the data charac-
teristics change as described in the next paragraph. The scenarios aggregation into a tree 
must be performed following the basic "implementable principle" or “principle of pro-
gressive hedging”: “If two different scenarios are identical up to stage r on the basis of 
the information available about them at stage r, then the variables must be identical up 
to stage r”. (Rockafellar and Wets, 1991). 
 
This condition guarantees that the solution obtained by the model in a period is inde-
pendent of the information that is not yet available; in other words model evolution is 
only based on the information available at the moment, a time when the future configura-
tion may diversify. 
 
SCENARIO-TREE GENERATION 
 
As previously mentioned, in water management problems uncertainty can be referred to 
cost-benefits or demands-supplies data. One of the main goals in this field is to reach a 
configuration that should guarantee an adequate level of water system reliability and pro-
vide management criteria to be adopted by the Water Authorities. In previous papers 
(Cao et al.,1988; Sechi and Zuddas, 1993; Sechi and Zuddas, 1998) it was stated that the 
usual optimization techniques do not allow a detailed modeling of the system, and that 
they must be accompanied by a simulation testing process starting from the solution ob-
tained in the optimization phase. An interactive process however may be set up between 
the optimization phase and the simulation testing phase, which should limit the recourse 
to the latter burdensome computational procedure. This is a typical problem in which the 
representation of the level of uncertainty by probabilistic rules is inadequate, and the data 
uncertainty can be modeled usefully by scenario analysis. 

 
    1                2       branching-times 

1 2   3  4     5  6 7  8     9.............................................................................................time-periods 
•−•−•−•−−•−•−•−•−−•−•−•− •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−............................... scen.1 
•−•−•−•−−•−•−•−•−−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................ scen.2 
•−•−•−•−−•−•−•−•−−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................ scen.3 

 
•−•−•−•−−•−•−•−•−−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................ scen.4 
•−•−•−•−−•−•−•−•−−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................ scen.5 
•−•−•−•−−•−•−•−•−−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................ scen.6 

 
•−•−•−•−−•−•−•−•−−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................ scen.7 
•−•−•−•−−•−•−•−•−−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................ scen.8 
•−•−•−•−−•−•−•−•−−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................ scen.9 

 
 1 bundle    3 bundles 
Figure 1a. Set G of nine scenarios as a sequence of nine parallel series. 

 
The data pre-processor that builds scenario sequences follows procedures that have been 
developed in the WARSYP Project (2000). Therefore the scenarios are to be viewed as a 
set G of synthetic hydrological series obtained from historical samples. As an example, 
Figure 1a shows a set of nine scenarios as a sequence of nine parallel series. Each sce-
nario g is expanded on a time-horizon of a number of periods. 



National Institute of Hydrology, Roorkee, U.P., India  
 

759 

In this paper two approaches have been performed to generate the series: one refers to the 
Monte Carlo (MC) generation scheme, the other to Neural Network (NN) techniques. 
MC generation requires a preliminary definition of time-period clusters on hydrological 
data, and synthetically consists of the following steps: 1) random generation of meteoro-
logical characterization at each cluster; 2) generation of hydrological data from prede-
fined sets of clusters; 3) addition of noise components to improve the statistical fitness. 
(Onnis et al., 1999; Lorrai and Sechi, 1996) 
 
The NN approach has been developed using both the classical Multilayer Perceptron 
scheme and the Locally Recurrent NN scheme. In any case, a first sensitivity analysis 
was carried out to evaluate the best fitting NN configuration, the number of nodes in the 
layers, and the number of iterations to be used in model training. Subsequently (in the 
testing phase) the hydrological series were generated.  
 

  •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 
  •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 
 •−•−•−• •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 

 
  •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 

•−•−•−• •−•−•−• •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 
  •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 

 
 •−•−•−• •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 
  •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 
  •−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−•−................................... 

0 stage            1st stage       2nd stage 
Figure 1b. Scenario-tree construction. 
 
When the set of synthetic hydrological sequences has been generated, the “principle of 
progressive hedging” is performed by bundling the sequences to build the scenario-tree 
as described in the following steps: 
 
Branching: Identify branching-times τ as time-periods in which to apply bundles on par-
allel sequences, while identifying the stages in which to divide the scenario horizon. 
 
Bundling: Identify the number, βτ , of bundles at each branching-time. 
 
Grouping: Identify groups, Γτ , of scenarios to include in each bundle. 
 
In this way a number of stages are defined, where stage 0 corresponds to the initial hy-
drological characterization of the system up to the first branch time-period. In the sce-
nario-tree this represents the root. In stage 1 a number, β1 ,  of different possible hydro-
logical configurations can occur, in stage 2 a number, β1 ∗β2

In this way the graph “explodes” in size, on increasing the possible branches, and each 
root-to-leaf path represents a particular scenario. Figure 1b shows an example of the sce-
nario-tree derived from the parallel sequences. The figure represents a tree with two 
branches: the first branching-time is the 4

 , can occur, and so on and 
so forth. 
 

th time-period, the second is the 8th period. One 
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bundle is operated at the first branch and three bundles are operated at second branch. 
The zero bundle includes all scenarios: in the 1st stage 3 bundles are generated including 
3 scenarios in each group, while in the 2nd

DETERMINISTIC AND STOCHASTIC MATHEMATICAL MODEL 

 stage the 9 scenarios run until they reach the 
end of the time-horizon. 
 
Once scenarios have been generated, some general checks must be performed to test their 
statistical properties. Among others: stationary test on mean and variance in order to 
check process changes over time; independence test, to look for possible relations or for a 
trend among subsequent stages; time and space-correlation test; etc. 
 

 
In the past years, water resources optimization problems in a deterministic framework 
have been extensively studied (Sechi and Zuddas, 1996). A high level of solution accu-
racy was reached thanks to the recourse to specialized techniques that exploit algebraic 
structures of related mathematical models. On the other hand, though this kind of model 
is not suitable to describe water management optimization problems under uncertainty 
conditions, it may be used as an underlying model in generating the stochastic mathe-
matical model extended to the scenario-tree. As a reference, in the deterministic frame-
work, we consider the usual linear programming (LP) model that can be adopted as a 
starting point to evaluate the performances of the physical system without taking uncer-
tainties into account. As extensively illustrated in previous papers (Sechi and Zuddas, 
1998), the deterministic model can be expressed as follows in a compact form: 
 
min  c x 
s.t.  A x = b          (1) 
 x > 0 
 
The stochastic model reflects uncertainty in the rhs-vector, b, and in cost, c, for each sce-
nario, g, extracted from the predefined set, G, of all scenarios. Moreover, as previously 
described, the decision-maker can assign weights, wg , to each scenario. A possible ap-
proach to obtain a solution in the scenario optimization framework is to represent the 
problem by a new linear programming model, where the constraints matrix exhibits the 
special structure of a block-diagonal matrix, Ag , with complicating constraints on a sub-
set, x* , of x. 
  
In terms of scenarios, these additional constraints define the congruity of the model, and 
are expressed as requirements of equal interstage flow transfers in all scenarios between 
two consecutive stages. The stochastic model will have the following structure: 
 
min  Σg wg cg xg 
s.t.  Ag xg = bg ∀g∈ G        (2) 
 xg > 0 
 x* ∈ S 
 
where x* ∈ S represents the linking constraints on interstage flows.  
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This kind of model can be solved by decomposition methods such as Benders decompo-
sition techniques, which exploit the special structure of constraints. When the size of the 
problem becomes huge, it is possible to resort to parallel computing. As a matter of fact, 
a block in the block-diagonal part of the matrix constraints corresponds to each scenario, 
and the links among the scenarios are the complicating constraints. In this way we can 
perform a parallel process on each scenario with the master problem on the linking con-
straints. 
 
In this phase of the study, the stochastic problem is solved by adopting high efficient 
computer codes based on the state of the art of linear programming, such as those imple-
menting interior point methods that give good quality results even in very large-sized 
models.(Vanderbei, 1988) 
 
The resolution approach can therefore be described as a three-phase algorithm.  
 
In the first phase the scenario-tree is generated, and the optimization L.P. problem is rep-
resented as a collection of deterministic optimization problems, one for each node of the 
tree plus the linking constraints. 
 
In the second phase the entire problem is solved by a highly efficient computer code, 
such as CPLEX (1995) or MP-XPRESS (1999). At the end of this phase we obtain a solu-
tion configuration on all scenarios, i.e. on all the paths from the leaves to the root of the 
tree. 
 
In the third phase the proposed solution is obtained as the best configuration in terms of 
minimizing the risk of wrong decision, and finding a sort of "barycentrical" solution, ξ , 
between all scenarios. Different techniques can be used to reach such a "robust" solution. 
Some set the objective function in problem (2) as a penalization function on the weighted 
difference between the solution, ξ , to be adopted and the optimal solution in each sce-
nario, xg

As regards the definition of weights, one can use the results of the independent scenario 
optimizations, considering a regressive relation between scenario inputs and output node 
deficits, in order to obtain a function that should allow to assign weights to subproblems 
related to different scenarios. Moreover, a tuning phase is crucial in this kind of approach 
since it allows the decision-maker to increase adherence and to update the decision proc-
ess. Different rules could be adopted: e.g., at the zero-stage the root can be optimized 

, (Dembo, 1991, Rockafellar and Wets, 1991). Other techniques are based on a 
post-processor on the solution obtained from problem (2) (WARSYP - UC Reports, 2000). 
The former give a good level of adherence to the implementable policy but destroy the 
linear structure of the objective function to include penalization. Though a number of 
improvements have been proposed for this approach (Alvarez et al., 1994), the accuracy 
of the global solution decreases dramatically on increasing the number of variables. The 
latter seem very promising even in the event of a huge number of variables and con-
straints. Early results have been obtained carrying out weighted averages of the solutions 
in the scenario-tree.( WARSYP- UC Reports, 2000) An extended testing phase is in pro-
gress to improve the rules of solution handling of the stochastic problem to evaluate the 
global solution. 
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independently or ignored as single scenario and considered as a stage belonging to others 
scenario. In the attribution of weights different techniques could be adopted too: e.g., 
weights on stages, weights on scenarios, weights both on scenarios and stages, etc.. 
Since, as is obvious, different results correspond to different techniques, the latter must 
be tuned on the features of the examined problem. 
 

 
Figure 2. Flumendosa Campidano system sketch. 
 
TEST CASE 
 
Scenario analysis was performed on the Flumendosa-Campidano system sketched in Fig-
ure 2. A correct evaluation of the system performances and requirements became increas-
ingly urgent as the system managers were obliged to face the serious resource deficits 
caused by the drought events of the past decade. Different hydrological and demand sce-
narios therefore must be considered to obtain system optimization. A synthetic series has 
been generated with both MC and NN techniques, starting from a database of a time-
horizon of 75 years, corresponding to 900 monthly time-periods. A set of 30 scenarios 
was then submitted to statistical validation and selected. Stochastic optimization was per-
formed on a scenario-tree of 3 stages up to 30 leaves. Since each scenario involves about 
3,000 variables, the stochastic problem is supported by a model of several thousand vari-
ables and constraints. A graphical interface, which was used to aid the testing phase, al-
lowed the extensive experimentation reported in (Sechi and Zuddas, 2000). 
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Figure 3. Scenario optimization results (weights defined for scenario and 

stages).  

 
Figure 4. Scenario optimization results (weights defined only for stages). 
 
As an example, Figures 3&4  show the behavior of optimization results in stored reser-
voir volumes, corresponding to different choices in weighting the stages in the tuning 
phase. 
 
CONCLUSIONS AND FUTURE PROSPECTS 
 
This paper was aimed to give a contribution to the mathematical optimization of water 
resources systems, when the role of uncertainty is particularly important. In such a prob-
lem, which involves social, economical, political, and physical events, no probabilistic 
description of the unknown elements is available, either because a substantial statistical 
base is lacking or because it is impossible to derive a probabilistic law from conceptual 
considerations. 
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In our experience, scenario analysis could be an alternative approach to stochastic opti-
mization or to deterministic optimization techniques (mathematical programming), even 
in problems that manage a huge quantity of data extended to long periods.  
 
The numerical results obtained so far clearly show that it is a good choice to extend the 
study to a long time-horizon, while maintaining the stochastic model in a linear context 
instead of disturbing linearity, and consequently reducing the temporal and spatial di-
mension of the study thus losing solution accuracy.   
 
This type of analysis is accompanied by an assessment of the disaggregation possibilities 
of multiperiod problems. It is clear that by operating in a single subproblem dimension-
ally, the operative size of the model can be reduced dramatically. This would allow a 
parallel treatment of the discretization periods rather than process the entire problem. In 
this way we can reach a strategy on how the different solutions can be faced and consoli-
dated in an overall decision policy. 
 
In the next phase of the algorithm, which is in progress, a level of uncertainty has been 
introduced on a wider class of crucial data to obtain general rules on the formulation of 
scenario analysis problems. 
 
References 
Alvarez, M., Cuevas, C.M., Escudero, L.F., De La Fuente, J.L., Garcia C., and Prieto, F.J., Network 

Planning Under Uncertainty with an Application to Hydropower Generation, Top, vol.2, pp. 
25-58, 1994. 

Cao, C., Sechi, G.M. and Zuddas, P., Un Algoritmo di Programmazione Lineare per la Pianificazione 
dei Sistemi di Utilizzazione di Risorse Idriche su Base Idrologica Estesa, Atti XXI Convegno 
di Idraulica e Costruzioni Idrauliche, L’Aquila, 3,pp. 59-73, .1988. 

CPLEX Optimization, Inc. Using the CPLEX Callable Library and  CPLEX Mixed Integer Library, 
Incline Village, Nevada, 1993. 

Dembo, R.SScenario Optimization, Annals of Operations Research, 30, pp.63-80, 1991. 
Lorrai, M and Sechi, G.M., Neural nets for modelling rainfall-runoff transformations , Water Resources 

Management Journal, Vol.9, N.4, 1996. 
Loucks, D. P., J. R. Stedinger, and D. A. Haith.. Water Resource Systems Planning and Analysis.  

Prentice Hall, Englewood Cliffs, NJ, 1981. 
Onnis, L., Sechi, G.M. and Zuddas, P., Optimization Processes under Uncertainty, A.I.C.E, Milano, 

pp.283-244, 1999. 
Rockafellar, R.T. & Wets, R.J.-B., Scenarios and Policy Aggregation in Optimization Under 

Uncertainty, Mathematics of operations research,vol.16, pp. 119-147, 1991. 
Sechi G.M. and Zuddas, P., Algorithms for Large Scale Water Resource Structured Models with 

Network Flow Kernel Q. R., D.I.T., n° 11 maggio '96, 1996. 
Sechi G.M. and Zuddas, P.,: WARGY: Water Resources System Optimization Aided by Graphical 

Interface, Hydrosoft Lisbon, 2000. 
Sechi, G.M. and Zuddas, P., An Optimal-Design Technique for Water Resource Systems, A.I.C.E., 6th

Sechi, G.M. and Zuddas, P., Structure Oriented Approaches for Water System e Optimization, 
Conference on Coping with Water Scarcity, Hurgada, Egitto, 1998. 

 
European Forum on Cost Engineering, Milano, 1993. 

Vanderbei, J.R., Linear programming. Foundations and Extensions. Kluwer’s AP, 1998. 
WARSYP, Water Resources System Planning (Project funded by the European Commission, 

Environment and Climate Programme, UC-Reports, 2000. 
WARSYP, Water Resources System Planning, Project funded by the European Commission, 

Environment and Climate Programme, Work program, 1997. 
Yeh, W-G., Reservoir Management and Operations Models: A State-of-the-Art Review. Water 

Resources Research, 25(12), pp.1797-1818, 1985. 


	ICIWRM – 2000, Proceedings of International Conference on Integrated Water Resources Management for Sustainable Development, 19 – 21 December, 2000, New Delhi, India
	Giovanni M. Sechi and Paola Zuddas

	Abstract
	Introduction
	Scenario-tree generation
	Deterministic and Stochastic Mathematical Model
	Test Case
	Conclusions and future prospects
	References

	Alvarez, M., Cuevas, C.M., Escudero, L.F., De La Fuente, J.L., Garcia C., and Prieto, F.J., Network Planning Under Uncertainty with an Application to Hydropower Generation, Top, vol.2, pp. 25-58, 1994.
	Cao, C., Sechi, G.M. and Zuddas, P., Un Algoritmo di Programmazione Lineare per la Pianificazione dei Sistemi di Utilizzazione di Risorse Idriche su Base Idrologica Estesa, Atti XXI Convegno di Idraulica e Costruzioni Idrauliche, L’Aquila, 3,pp. 59-73...
	CPLEX Optimization, Inc. Using the CPLEX Callable Library and  CPLEX Mixed Integer Library, Incline Village, Nevada, 1993.
	Dembo, R.SScenario Optimization, Annals of Operations Research, 30, pp.63-80, 1991.
	Lorrai, M and Sechi, G.M., Neural nets for modelling rainfall-runoff transformations , Water Resources Management Journal, Vol.9, N.4, 1996.
	Loucks, D. P., J. R. Stedinger, and D. A. Haith.. Water Resource Systems Planning and Analysis.  Prentice Hall, Englewood Cliffs, NJ, 1981.
	Onnis, L., Sechi, G.M. and Zuddas, P., Optimization Processes under Uncertainty, A.I.C.E, Milano, pp.283-244, 1999.
	Rockafellar, R.T. & Wets, R.J.-B., Scenarios and Policy Aggregation in Optimization Under Uncertainty, Mathematics of operations research,vol.16, pp. 119-147, 1991.
	Sechi G.M. and Zuddas, P., Algorithms for Large Scale Water Resource Structured Models with Network Flow Kernel Q. R., D.I.T., n  11 maggio '96, 1996.
	Sechi G.M. and Zuddas, P.,: WARGY: Water Resources System Optimization Aided by Graphical Interface, Hydrosoft Lisbon, 2000.
	Sechi, G.M. and Zuddas, P., An Optimal-Design Technique for Water Resource Systems, A.I.C.E., 6PthP European Forum on Cost Engineering, Milano, 1993.
	Sechi, G.M. and Zuddas, P., Structure Oriented Approaches for Water System e Optimization, Conference on Coping with Water Scarcity, Hurgada, Egitto, 1998.
	Vanderbei, J.R., Linear programming. Foundations and Extensions. Kluwer’s AP, 1998.
	WARSYP, Water Resources System Planning (Project funded by the European Commission, Environment and Climate Programme, UC-Reports, 2000.
	WARSYP, Water Resources System Planning, Project funded by the European Commission, Environment and Climate Programme, Work program, 1997.
	Yeh, W-G., Reservoir Management and Operations Models: A State-of-the-Art Review. Water Resources Research, 25(12), pp.1797-1818, 1985.

