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Abstract 
Effective use of available water resources is a serious problem facing the world as it enters the 21st

INTRODUCTION 

 
century. An increasing demand and an ever-uncertain supply in the form of precipitation is a cause 
of concern to water resources managers. Another concern is the occurrence of severe and sustained 
droughts that deplete reservoir storage to dangerous levels, forcing operators to enforce water sup-
ply restrictions. Such droughts are often associated with long-term or low frequency climatic fluc-
tuations, such as the El Niño Southern Oscillation (ENSO).  
 
A recently completed research project at the University of New South Wales, Sydney, evaluated 
the feasibility of predicting the seasonal rainfall at Warragamba dam, a large water supply reser-
voir 70km west of Sydney. The study had three main aims: (a) to develop a criterion that was ca-
pable of quantifying the utility of a predictor when used for probabilistic forecasts of seasonal rain-
fall; (b) to formulate an effective approach for making probabilistic forecasts for selected lead 
times from the present; and, (c) to compare the effectiveness of using atmospheric indices (such as 
the Southern Oscillation Index) rather than a broader suit of hydro meteorological variables for 
predicting seasonal rainfall. Presented here is a summary of some of the methods that were devel-
oped and the results attained. 
 

 
Effective use of available water resources is a serious problem facing the world as it en-
ters the 21st century. An increasing demand for water and an ever-uncertain supply in the 
form of precipitation has always been a cause of concern to water resource managers. 
Another concern in the Australasian and South East Asian region is the occurrence of 
severe and sustained droughts that deplete reservoir storage to dangerous levels, forcing 
operators to enforce water supply restrictions. Such droughts are often associated with 
long-term or low frequency climatic fluctuations, such as the El Niño Southern Oscilla-
tion (ENSO). Reservoir operation for regions not affected by such fluctuations is rela-
tively simple. Reservoir operators have no means of knowing when such a drought may 
occur, how long it would last, and how severe it may be. Were answers to such questions 
available, strategies to conserve water for use during droughts could be devised. This 
paper is part of a study to answer some of the questions raised above, with the aim of 
providing reservoir operators probabilistic estimates of the rainfall and reservoir inflows 
that could be expected in the future.  
 
Forecasting future flows or precipitation requires an understanding of the nature and 
causes of climatic variability. While there have been significant advances in physically 
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based models of the climatic and hydrologic systems in recent decades, their operational 
utility beyond a few days or weeks, and the spatial specificity and accuracy of their fore-
casts remains limited. Consequently, where long historical records of the variables of 
interest are available, statistical approaches that relate “at-site” hydrology to large scale 
ocean-atmosphere state variables could provide a basis for useful seasonal to interannual 
flow forecasts. 
 
Identification of the oceanic or atmospheric variables that form useful predictors of rain-
fall is an important step in developing a long-term forecast model. If a linear relationship 
characterises the underlying system (the dependent variable being a linear function of all 
model predictors) linear dependence measures such as the coefficient of correlation may 
suffice. If the underlying system is more complex, as is usually the case with any real 
physical system, linear methods are likely to result in misleading predictors and a badly 
formulated forecast approach. A generalised measure of dependence, denoted the partial 
mutual information criterion, was developed to remove some of the problems mentioned 
above. Details on this measure of dependence are provided in section 2 of this paper. 
 
Formulation of a prediction model that uses the variables identified as the useful predic-
tors of rainfall, is the next step of the rainfall prediction exercise. The prediction model 
was developed using nonparametric kernel methods for probability density estimation. 
The model for developed to provide outputs in three different forms: a specified number 
of simulations of the likely rainfall value for use in Monte Carlo studies; a probability 
density function of the predicted rainfall for comparing with the unconditional or mar-
ginal probability density function; and, a cumulative probability distribution function of 
the predicted rainfall that indicated the quantiles (1st, 5th, 10th

, 90th, 95th, 99th

 

) that may be 
of interest in a water management context. Details on this prediction model are provided 
in section 3 of the paper. 
 
The predictor identification and prediction approach were applied to quarterly rainfall 
data from the catchment of the Warragamba dam, a large water supply reservoir 70km 
west of Sydney. The Warragamba dam supplies nearly 70% of the Sydney's water, and 
hence is of great importance in the water management of Australia’s largest city. Two 
sets of predictors were considered. In the first case, simplistic descriptors of an ongoing 
ENSO anomaly were used as the predictors of the Warragamba quarterly rainfall. Next, 
predictors were selected from amongst sea surface temperature anomalies averaged over 
5° x 5° latitude-longitude grid cells spread over the world’s ocean bearing surface. The 
results from the use of both these prediction scenarios are presented and discussed in sec-
tion 4 of this paper. 

Predictor identification using partial mutual information 
 
Consider the following model: 

t
t

wTtY
wTtX

+=
+=

)/2cos(
)/2sin(          (1) 

where T equals 20, t ranges from 1 to 200, and wt is a “noise” term chosen from a Gaus-
sian distribution with zero mean and a standard deviation of 0.1. Figure 1 illustrates the 
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nonlinear relationship that exists between the two variables. A good predictor identifica-
tion method should find X as a strong predictor of Y. 
The sample coefficient of correlation between variables X and Y equals –0.008. If a lin-
ear model were fit between X and Y, it would thus explain close to 0% of the overall 
variance in Y. Even if more efficient nonlinear models were fit between these variables, 
they would collapse to the case of a simple linear model passing through the centroid of 
Figure 1. Hence, any measures of dependence that are based on fitting a regression model 
or a line (or curve) of “best” fit would not indicate the strong dependence between the 
two variables. This is a major drawback behind the use of any predictor identification 
criterion that is based on measures of error such as the residual sum of square of errors. 
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Figure 1. Two hundred data points from the model in equation 1. 
 
The mutual information (MI) criterion [Fraser and Swinney, 1986] is a measure of de-
pendence between any two variables. The MI score between X and Y is defined as: 
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where: 
fX(x) and fY(y) are the marginal PDF’s of X and Y respectively, and, 
fX,Y(x,y) is the joint (bivariate) PDF of X and Y 
 
The rationale behind mutual information is the basic definition of dependence. The joint 
probability of occurrence of two variables is equal to the product of the individual prob-
abilities if they are independent. Hence the joint PDF fX,Y(x,y) would equal (fX(x)×fY

The key to an accurate estimate of the MI is the accurate estimation of the marginal and 
joint PDF's in (2). Some of the earlier versions of the MI function used crude measures of 
the PDF such as a histogram. A more stable and efficient PDF estimator is based on the 
use of kernel density estimation techniques [Scott, 1992; Silverman, 1986]. The kernel 

(y)) 
is X was independent of Y. The MI score in (2) would, in that case, equal a value of 0 
(the ratio of the joint and marginal densities being one, giving the logarithm a value of 
zero). A high MI score would indicate a strong dependence between the two variables. 
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density estimator adopted in this study uses a Gaussian kernel function [Scott, 1992], and 
is expressed as: 
Error! Bookmark not de-
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where  
f̂ X(x) is the mutivariate kernel density estimate of the d-dimensional variable set X at 

coordinate location x, 
x i is the i’th multivariate data point, for a sample of size n, 
S is the sample covariance of the variable set X,  
det( ) represents the determinant operation, and, 
λ is a smoothing parameter, known as the "bandwidth" of the kernel density estimate 
 
This study has used a relatively simple and computationally efficient rule for estimating 
the bandwidth λ, known as the Gaussian reference bandwidth λref
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 [Scott, 1992; 
Silverman, 1986]. 

        (4) 

where n and d refer to the sample size and dimension of the multivariate variable set re-
spectively. 
 
Identification of multiple system predictors necessitates the use of a “partial” measure of 
dependence between the dependent and independent variable set. The partial dependence 
between an independent and a dependent variable depends on the pre-existing predictors 
of the system. The term "partial" implies the partial or additional dependence the new 
predictor can add to the existing prediction model. 
 
The MI criterion presented earlier cannot be used to quantify the partial dependence be-
tween two variables. Hence, a partial mutual information criterion was developed. The 
partial mutual information between the dependent variable y and the independent variable 
x, for a set of pre-existing predictors z, can be defined as: 
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where E[.] denotes the expectation operation. Use of the conditional expectations in (6) 
ensures that the resulting variables x' and y' represent the residual information in vari-
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ables x and y, once the effect of the existing predictor(s) z has been taken into considera-
tion. 
 
A sample estimate of the PMI criterion in (5) can be formulated as: 
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where  
x'i and y'i are the i’th residuals in the sample data set of size n, and, 
fX'(x'i), fY'(y'i), and fX',Y'(x'i,y'i) are the respective marginal and joint PDF. 
 
Accurate estimation of the PMI score in (7) involves estimation of the conditional expec-
tation needed to estimate the variables x' and y'. This conditional expectation is estimated 
based on the joint probability density of the variables involved, using the multivariate 
kernel density estimator of (3). The conditional probability density fX|Z(x|z) can be esti-
mated as the ratio f(X,Z)(x, z)/fZ
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(z), where the denominator refers to the marginal probabil-
ity density of the pre-existing variable set z. The mean of this conditional density is the 
conditional expectation required in estimating the variables x' and y'. Using the multivari-
ate probability density in (3), the conditional expectation E[x|z] can be estimated as: 

       (8) 

where 
Sxz is the sample cross-covariance between x and z, 
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 is the sample covariance of z 

   (9) 

The conditional expectation in (8) is sensitive to the choice of the smoothing parameter 
λ. A high value of λ results in an oversmoothed regression function, whereas a low value 
results in the function being “rough". An ideal value of λ is often derived using appropri-
ately constructed error measures, which are usually related to the residuals resulting from 
the fitted regression line. Data based measures of the bandwidth include cross validatory 
measures such as generalised cross validation (GCV), details of which can be obtained in 
standard statistical text books on kernel density and regression function estimation. The 
present study has used the Gaussian reference bandwidth of (4) as the bandwidth λ in 
equation (9). 
 
A stepwise predictor selection algorithm can now be formulated for identifying the pre-
dictors of the system being modelled using the PMI criterion described above: 
 
Identify the set of variables that could be useful predictors of the system being modelled. 
Denote this variable set as the vector zin. Denote the vector that will store the final pre-
dictors of the system as z. This is a null vector at the start of the algorithm. 
 
Estimate the PMI between the dependent variable y and each of the plausible new predic-
tors in zin, conditional to the pre-existing predictor set z.  
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Identify the variable in zin having the highest PMI score in step 2. 
Estimate a 95th percentile randomised sample PMI score for the variable identified in step 
3, the randomisation being performed to ensure independence between the two residual 
variables, such that the 95th percentile score now represents the 95% confidence PMI 
value when there exists no dependence between the variables. 
 
If the PMI score for the identified variable is higher than the 95th percentile randomised 
sample PMI score of step 4, include the variable in the predictor set z, and remove from 
zin

 

. If the dependence is not significant, go to step 7. 
 
Repeat steps 2 to 5 as many times as are needed. 
 
This step will be reached only when all the predictors have been identified. 

Nonparametric conditional prediction 
Seasonal prediction of rainfall can proceed through a kernel estimate of the conditional 
probability density of the rainfall conditional to the current values of the associated pre-
dictors. Let us denote the rainfall as the variable Y and the predictors as the d-
dimensional vector X. The conditional probability can then be written as: 
 

)x(
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yfyfY =                     (10) 

where the numerator represents the joint probability of (y, x) and the denominator the 
marginal probability of x (a constant for a given x). Using the kernel estimator in (3), the 
conditional probability in (10) reduces down to the following expression: 
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where 
)x|(ˆ

X| yfY  is the estimated conditional probability density, 
S' is a measure of spread of the conditional density, estimated as: 
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wi is the weight associated with each kernel, representing the contribution that kernel has 
in forming the conditional probability density: 
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and n and λ are the sample size and the bandwidth respectively. 
 
Note that the above procedure is very similar to the logic used in developing the partial 
mutual information criterion described in section 2 of this paper. The main difference in 
the two approaches is that the PMI criterion requires the estimation of the conditional 
expectation or conditional mean of a variable given a set of predictors, whereas here the 
outcome is the conditional probability density function whose mean is equal to the condi-
tional expectation described in section 2.  
 
Estimation of the conditional probability density provides the basis for the hydrologic 
prediction model. Rainfall can be predicted either by resampling from the conditional 
probability density estimate in (10), or simply chosen as an appropriate design quantile of 
the conditional probability density or cumulative distribution function. Resampling does 
not involve estimation of the PDF along a grid, but simply the selection of one of the 
kernel’s that constitute the conditional probability density, and subsequent resampling 
from the kernel which is itself a legitimate Gaussian probability density function. The 
resampled rainfall values can then be used as inputs for Monte Carlo simulation studies 
for evaluating the performance of the reservoir under current or proposed operating rules.  
 
Application to Warragamba seasonal rainfall 
The predictor identification and seasonal prediction methods described in the previous 
sections were applied to 127 years (1871-1997) of quarterly rainfall data from the War-
ragamba dam catchment near Sydney, Australia, the four quarters being Autumn (March, 
April, May), Winter (June, July, August), Spring (September, October, November) and 
Summer (December, January, February). Two sets of plausible predictors were consid-
ered. In the first case, three commonly used indices formulated to measure the strength of 
an ongoing ENSO anomaly, were used. These were, the Southern Oscillation Index 
(SOI), the NINO3 index and the NINO3.4 index. While the first index is a standardised 
measure of sea level pressure anomaly differences between Tahiti (in the mid-Pacific) 
and Darwin (in northern Australia), the other two respectively measure the average sea 
surface temperature anomalies within 150°W - 90°W (an equatorial band extending from 
the mid-Pacific to the western coast of South America), and 170°W - 120°W (an equato-
rial band more towards the central Pacific than the eastern Pacific region used in deriving 
the NINO3 series) (see [Allen et al., 1996] for details). The second set of predictors were 
chosen from a grid of 5° x 5° latitude-longitude averaged sea surface temperature anoma-
lies, reconstructed from observations as described by Kaplan et al. [1998; 1997]. The 
efficiency of the selected predictors in defining rainfall characteristics was ascertained by 
fitting a Generalised Additive Model (GAM) [Hastie and Tibshirani, 1990] to the data. 
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The GAM serves as a nonparametric regression model to forecast the expected value of 
rainfall. This serves as a basis for estimating the R-square of the regression fit, which 
serves as a means of evaluating the performance of the GAM and the identified predic-
tors in an ensemble forecast context. The code “gam.fit” in the statistical software pack-
age S-Plus [Mathsoft, 1999] was used with default options in attaining the results shown 
here. 
Table 1. Rainfall prediction using SOI, NINO3 and NINO3.4. 

Season Lead time (quarters) Predictor Set PMI 95th R-Square  percentile PMI 
Autumn Lead 1 SOI 0.148 t-1 0.120 0.234 

SOI 0.142 t-7 0.112 
Lead 2 NINO3 0.148 t-2 0.117 0.203 

Lead 3-4 SOI 0.127 t-7 0.124 0.092 
Winter Lead 1 SOI 0.202 t-1 0.159 0.190 

SOI 0.154 t-9 0.150 
Spring Lead 1 NINO3 0.175 t-1 0.145 0.106 

Lead 2-4 NINO3 0.162 t-10 0.152 0.080 
Summer Lead 1 SOI 0.194 t-1 0.143 0.287 

SOI 0.182 t-4 0.156 
Lead 2-4 SOI 0.157 t-4 0.145 0.093 

 
Table 2. Lead 1-4 predictors of Warragamba quarterly rainfall using sea 

surface temperature anomaly data. The locations indicated re-
fer to the center of the 5° x 5° latitude-longitude grid cell that 
was identified as a predictor. 

Quarter Lead 1st 2 Predictor nd 3 Predictor rd Predictor 
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Autumn 

1 27.5ºS×142.5ºW 
Lag 1 

R2

47.5ºN×172.5ºE 
Lag 7 

R=0.229 2

37.5ºN×172.5ºE 
Lag 2 

R=0.355 2=0.397 
2-3 32.5ºN×72.5ºW 

Lag 10 
R2

32.5ºN×132.5ºW 
Lag 7 

R=0.197 2

62.5ºN×177.5ºE 
Lag 7 

R=0.257 2=0.368 
4-6 32.5ºN×72.5ºW 

Lag 10 
R2

32.5ºN×132.5ºW 
Lag 7 

R=0.197 2

62.5ºN×177.5ºE 
Lag 7 

R=0.257 2=0.368 

Winter 
1-4 27.5ºS×152.5ºE 

Lag 8 
R2

22.5ºS×102.5ºE 
Lag 8 

R=0.119 2

12.5ºN×92.5ºE 
Lag 4 

R=0.257 2=0.413 

Spring 

1 62.5ºN×27.5ºW 
Lag 4 

R2

2.5ºS×57.5ºE 
Lag 9 

R=0.264 2

27.5ºS×157.5ºW 
Lag 5 

R=0.349 2=0.436 
2-4 62.5ºN×27.5ºW 

Lag 4 
R2

2.5ºS×57.5ºE 
Lag 9 

R=0.264 2

27.5ºS×157.5ºW 
Lag 5 

R=0.349 2=0.436 

Summer 

1 2.5ºS×172.5ºE 
Lag 1 

R2

47.5ºN×2.5ºW 
Lag 8 

R=0.171 2

67.5ºN×27.5ºW 
Lag 4 

R=0.300 2=0.385 
2-6 22.5ºS×107.5ºE 

Lag 10 
R2

32.5ºS×57.5ºE 
Lag 6 

R=0.142 2

22.5ºN×162.5ºE 
Lag 7 

R=0.233 2=0.350 
 
Tables 1 and 2 present the results from the predictor identification study. The table gives 
a list of predictors found to be "useful" according to a significance criterion that repre-
sents the 95th percentile PMI score that exists when there is a forced independence be-
tween the variables, achieved by randomising one of the two variables considered. The 
table also presents the model R2 one would achieve when using the GAM regression 
model described earlier, using the predictors listed. A "lead 1" prediction of Autumn 
rainfall represents the use of climatic information older than 1 quarter prior to the Au-
tumn rainfall being predicted. The superior performance achieved when using sea surface 
temperature anomalies as the predictors of the Warragamba rainfall is apparent from the 
results. The number of predictors identified as significant using the 95th percentile ran-
domised PMI score is greater than the number of predictors (3) listed in table 2. The first 
three predictors were used as the predictor set for the rainfall prediction results presented 
next. This number of predictors (3) was chosen as an appropriate number given the 
length of the record that was available to formulate the rainfall prediction model. 
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Figure 2. Application of the nonparametric ensemble forecast procedure 

to the 1996-97 Warragamba seasonal rainfall.  
 
Figure 2 presents some of the predictions from the nonparametric hydrologic prediction 
model described earlier. The results shown pertain to a few select years of the War-
ragamba rainfall record. It should be noted that the data used in formulating the predic-
tion model did not include the seasons and years which have been used in the prediction 
results shown. Of interest in these figures is how better or worse are the predictions in 
comparison to what would be obtained had no prediction been made. The conditional 
probability density function represents the range of values the predicted rainfall is likely 
to take when current climatological conditions are taken into account. The unconditional 
or marginal PDF represents the range of values the rainfall has assumed based on the 
available historical record. For the prediction model to be of any good, the variation in 
the conditional PDF should be lesser than what is present in the historical record. At the 
same time, the conditional PDF should not have a high bias as regards the observed rain-
fall value. Both these conditions appear to be satisfied with regards to the predictions 
based on the SSTA data. The ENSO index based predictions, in most cases, are not sig-
nificantly better than what is offered by the unconditional or marginal probability density 
function. This is to be expected as was inferred by the results tabled in tables 1. While the 
results shown here pertain to only a few selected seasons and years, similar results, some-
times better and sometimes worse, were obtained for the other seasons studied. These 
results have not been presented here due to space limitations. 
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Figure 3. Application of the nonparametric ensemble forecast procedure 

to the 1997-98 Warragamba seasonal rainfall. 
 
SUMMARY AND CONCLUSIONS 
 
This paper presented a summary of some of the approaches developed and results ob-
tained in course of developing a probabilistic prediction model for seasonal rainfall. The 
two main approaches that were developed in course of this project were: (1) the Partial 
Mutual Information (PMI) criterion, a measure of linear or nonlinear partial dependence 
that may exist between a set of predictors and a dependent variable; and (2) a nonpara-
metric hydrologic prediction model that enables resampling of the predicted rainfall for 
Monte Carlo simulation studies, or simply produces selected quantiles the rainfall is 
likely to assume in the coming season. These approaches are of great use in a water re-
sources management context and are being put to use by various water agencies in Aus-
tralia and elsewhere. More details on this study can be obtained from [Sharma, 2000a; 
Sharma, 2000b; Sharma et al., 2000]. 
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