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Abstract 
The estimation of risks associated with alternate plans and designs for water resources systems 
requires generation of synthetic streamflow sequences. The mathematical algorithms used to gen-
erate these sequences at monthly time scales are found lacking in two main respects: inability in 
preserving the dependence attributes particularly at large (seasonal to inter-annual) time lags; and, 
a poor representation of the observed distributional characteristics. Traditional approaches for rep-
resenting such dependence consist mainly of stochastic disaggregation models. These models use 
generated annual streamflows that are disaggregated to monthly values while prescribing an as-
sumed annual to monthly dependence structure. In this process, the dependence at the year 
boundaries and between years is not reproduced. These models are characterised based on conven-
tional probability distributions that makes it difficult to represent “unusual” features such as 
asymmetry or multimodality. 
 
Proposed here is an alternative to such conventional approaches that naturally incorporates both 
observed dependence and distributional attributes in the generated sequences.  Use of a nonpara-
metric framework provides a simple and effective method for reproducing the observed probability 
density characteristics.  A careful selection of prior lags as conditioning variables imparts the ap-
propriate short-term memory, while use of an “aggregate” flow variable defined as the aggregate 
flow during the past twelve months allows representation of interannual dependence in the gener-
ated sequences. The nonparametric simulation model is tested on two monthly streamflow datasets 
– the Beaver River near Beaver, Utah, USA, and the Burrendong dam inflows, New South Wales, 
Australia. 
 
INTRODUCTION 
 
An important goal of stochastic hydrology is to generate synthetic streamflow sequences 
that are statistically similar to the observed flow record. These sequences serve as inputs 
for Monte Carlo simulation of a reservoir system, to help identify plans and policies for 
efficient management of available water resources. A key requirement in stochastic 
streamflow simulation is that the generated sequences be similar to the observed flows. 
This implies that the distributional and dependence attributes of observed flows should 
be accurately reproduced in the simulations. Representation of seasonal to inter-annual 
dependencies commonly associated with sustained droughts or periods of large flows is 
of particular importance for reservoir system management. Absence of such dependen-
cies in simulations can result in an inaccurate representation of the flows that are likely to 
occur. This can in-turn lead to biased reservoir operating policies causing both loss of 
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revenue in reservoir operation, and a possible hazard for users downstream. This paper 
presents an approach for stochastic simulation of seasonal streamflow sequences that 
attempts to reproduce such longer term dependence characteristics and the observed dis-
tributional attributes in the generated flow sequences. The approach is developed within a 
nonparametric density estimation framework that ensures accurate representation of the 
distributional attributes present in the historical flow record. Use of an aggregate stream-
flow variable, details on which are presented in later sections, ensures an accurate charac-
terisation of the seasonal to inter-annual dependencies in the model simulations. 
 
Stochastic simulation of seasonal flows has traditionally been approached using two dif-
ferent perspectives. Autoregressive moving average (ARMA) models have been com-
monly used to model both seasonal and annual streamflow sequences. These models as-
sume that the current flow is linearly related to previous observations. Many a times the 
actual flow values need to be transformed to an alternate variable that conforms well with 
the assumptions of linearity (or a Gaussian probability density) implicit in the model 
structure. Use of such a framework offers an accurate representation of the dependence 
between the current and a few past flow values, but does not necessarily ensure that 
longer-term (seasonal to interannual) dependencies are accurately reproduced. 
 
An alternative to the ARMA models discussed above are stochastic disaggregation ap-
proaches. Here the stochastic simulation proceeds in two stages. First, an annual flow 
sequence is generated using an appropriately chosen model, using previous year flows as 
the basis to prescribe the observed annual dependence structure. Next, the generated an-
nual or aggregate flow for each year is divided or disaggregated into the various seasonal 
components. This ensures that if the annual flow corresponds to a low flow year, the as-
sociated seasonal flows will also represent the same. While this offers a reasonable alter-
native to ARMA models, and also ensures that some measure of inter-annual dependence 
is translated to the seasonal flow simulations, the resulting flow sequences offer only an 
approximate representation of the processes observed in the historical flow record. Some 
of the disadvantages in the use of ARMA and stochastic disaggregation models for sea-
sonal streamflow simulation are: 
 
Representation of over-year dependence – A disaggregation approach is designed to re-
produce the dependence structure between the aggregate annual flow and the seasonal 
components, as well as the dependence amongst the seasonal flow values. However, the 
dependence between the seasonal flows from one year to the next is not modelled. Of 
particular concern here is that the first season in each new year bears little resemblance to 
the flow in the preceding season. Hence, if the pattern at the end of the year indicates the 
development of a drought, this may be completely reversed in the flow values for the 
next year. 
 
Mis-representation of inter-annual dependence – Disaggregation models use the water 
year as the basis for simulating an aggregate annual flow value. While such an approach 
is essential in the disaggregation modelling framework, the assumption that seasonal 
flows in the current year are dependent on the previous water year’s flow may not always 
be realistic.An improved alternative could be to model the dependence between each sea-
sonal flow component and the aggregate flow in the 12 months that precede the season. 
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Representation of nonlinear dependence and non-standard probability density functional 
forms – Traditional approached for stochastic simulation are often based on rigid as-
sumptions about the form of dependence between the various flow variables, or the un-
derlying joint or marginal probability density functions. Such assumptions may not al-
ways be valid, as illustrated in [Sharma et al., 1997]. An alternative that effectively re-
moves the above mentioned problem is suggested in [Lall and Sharma, 1996; Sharma et 
al., 1997; Tarboton et al., 1998]. These approaches are nonparametric and make no prior 
assumptions about the form of dependence or probability distribution. Use of the data-
based framework ensures that resulting simulations have similar dependence and distri-
butional attributes as observed in the historical record. 
 
Proposed here is a seasonal streamflow generation approach that is free from the disad-
vantages noted above. Generated sequences reproduce both the short term as well as in-
terannual dependence present in the historical flows. Use of the nonparametric frame-
work ensures that dependence and distributional attributes in generated flows are similar 
to those in the historical record. What follows is a brief background on nonparametric 
methods, their applications in hydrology and water resources, and how they can be used 
to formulate conditional streamflow simulation models. Next, methodological and algo-
rithmic details on the nonparametric streamflow simulation model proposed here are pre-
sented. The model is next applied to two streamflow datasets - 84 years (1914-1998) of 
monthly streamflows in the Beaver River near Beaver, Utah, USA, and to 105 years 
(1890 to 1994) of Burrendong dam inflows on the Maquarie River in eastern NSW, Aus-
tralia. We conclude with a discussion of the approach, its pros and cons, and mention 
some of the work that lies ahead. 
 
NONPARAMETRIC APPLICATIONS FOR STOCHASTIC 
STREAMFLOW GENERATION 
 
The past few years have seen a surge in applications of nonparametric methods for prob-
ability density and regression function estimation to a range of hydrologic problems. In-
terested readers may refer to [Lall, 1995] for a review. Some of the applications related to 
the present work are – a synthetic streamflow resampling approach using nearest 
neighbour density estimation principles [Lall and Sharma, 1996]; a nonparametric alter-
native to the Autoregressive order p model (the NPp or the nonparametric order p stream-
flow simulation model) [Sharma et al., 1997]; and, a nonparametric alternative to tradi-
tional disaggregation approaches (the NPD or the nonparametric disaggregation model) 
[Tarboton et al., 1998]. Streamflow simulation is an exercise in conditional probability 
distributions [Bras and Rodriguez-Iturbe, 1985]. Simulation of flow Xt conditional to p 
prior flows (Xt-1, Xt-2, …, Xt-p) involves estimation of the conditional probability density 
function f(Xt | Xt-1, Xt-2, …, Xt-p). Similarly, disaggregation of an aggregate flow Z = X1 
+ X2 + … + Xd into the d seasonal components (X1, X2, …, Xd) requires estimation of 
the conditional multivariate probability density f(X1, X2, …, Xd | Z). Conventional ap-
proaches assume certain distributional forms for the joint and marginal probability densi-
ties of the flow variables, from which the above conditional probability density functions 
are derived. These conditional densities are then expressed using parameters such as the 
mean, variance and skewness, and measures of dependence such as correlation. As these 
methods rely solely on parameters (mean, variance, skewness, correlation) of the data to 
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characterise the assumed probability density functions, they are termed parametric. Such 
methods are useful only if the assumptions about the underlying distributional forms are 
accurate. One often comes across streamflow records that are not easily characterisable 
by the commonly used probability distributions (see examples [Lall and Sharma, 1996; 
Sharma et al., 1997; Tarboton et al., 1998]). 
 
Nonparametric methods offer an efficient alternative to traditional parametric ap-
proaches. A nonparametric kernel probability density estimate is obtained by considering 
the cumulative effect of smooth functions called kernels placed over each sample data 
point. Using a Gaussian kernel function, the multivariate kernel probability density 

)(ˆ xXf of a d-dimensional variable set X at coordinate location x is estimated as: 
 
Error! Bookmark not de-

fined. ∑ 








 −−
−=

=

−n

i

i
T

i
ddn

f
1 2

1

2/12/X
2

)xx(S)xx(
exp

)Sdet()2(
11)x(ˆ

λλπ
  

  (1) 
 
where  
x i

PROPOSED APPROACH 

 is the i'th multivariate data point, for a sample of size n, 
S is the sample covariance of the variable set X, and, 
λ is a smoothing parameter, known as the "bandwidth" of the kernel density estimate. 
 
The bandwidth, λ, is the key to an accurate estimate of the probability density. A large 
value of λ results in an oversmoothed probability density, with subdued modes and over-
enhanced tails. A low value, on the other hand, can lead to density estimates overly influ-
enced by individual data points, with noticeable bumps in the tails of the probability den-
sity. Several operational rules for choosing optimal values of the bandwidth λ are avail-
able in the literature. This study uses the Least Squares Cross Validation approach, de-
tails on which are given in [Sharma et al., 1998]. 
 

 
This approach is aimed at accurately representing interannual dependence in simulated 
flows. Consider the flow at time t to be Xt, where t could represent annual, seasonal or 
monthly time steps. For example, for monthly flows, X1, X2, …, X12 would be the flows 
for the first 12 months, X13, …, X24 the flows for the next 12 months, and so on. The 
aggregate flow variable Zt can then be defined as: 
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where m is the number of prior flows included in the aggregate variable. This study uses 
monthly flows (m=12) to formulate the simulation model. The variable Zt thus represents 
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the annual flow during the past 12 months for the month being simulated, and its use as a 
conditioning variable enables proper representation of interannual dependence features. 
Simulation proceeds from the following conditional probability density: 
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where fm(.) represent the marginal probability density of the variable set. Note that the 
above conditional probability density is a function of (p+1) variables: Zt and (Xt-1, Xt-2, 
…, Xt-p). While use of the variables (Xt-1, Xt-2, …, Xt-p) enforces a short term (till lag p) 
dependence structure in the simulated flow value, the aggregate variable Zt ensures that 
the annual dependence pattern is correctly represented. Also note that the conditional 
probability density in (3) has been specified as a function of p prior lags of Xt. One needs 
to estimate the appropriate value for p in case of a real application using an order selec-
tion scheme such as the Akaike Information Criterion (AIC) [Akaike, 1974] or General-
ised Cross Validation (GCV) [Craven and Wahba, 1979]. The authors recommend the 
use of GCV for estimation of the optimal model lag. The present application assumes p 
equal to 1 for the sake of simplicity. The conditional density used for simulation then 
becomes: 
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Using the kernel density estimator in (1), the conditional density in (4) is estimated as: 
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where: 
( )ttt ZXXf ,|ˆ

1− is the conditional probability density estimate; 
S’ is a measure of spread of the conditional probability density, expressed as: 
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wi is the weight associated with each kernel that constitutes the conditional probability 
density:  
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 is the conditional mean associated with each kernel: 
 

; 

 
xi and zi represent observations, zi being estimated using the 12 prior flows as expressed 
in equation (2). 
 
The conditional probability density estimate in (5) can be viewed as consisting of n ker-
nels having relative areas equal to weight wi, centered at bi, and having a spread propor-
tional to S’. Each of these are slices of the trivariate kernels that constitute the joint prob-
ability density of (Xt, Xt-1, Zt), along the conditioning plane specified by (Xt-1, Zt). The 
weight wi depends directly on how far the kernel is from the conditioning plane. A 
smaller weight implies that the kernel is far from the conditioning plane and does not 
make up a significant proportion of the conditional density estimate. On the other hand, a 
large wi implies that kernel i is close to the conditioning plane and constitutes a signifi-
cant portion of the conditional density estimate. 
 
Synthetic streamflow generation from the conditional density in (4) as follows: 
 
Estimate the bandwidth λ and the covariances S11, S12, S1z, S22, S2z, Szz. 
 
Start the simulation by arbitrarily assigning values to Xt-1 and Zt 
 
Given Xt-1 and Zt, estimate the weight wi associated with each kernel 
 
Pick a data point i with probability wi 
 
The new value of Xt tit WSbX 2/1)'(λ+= can now be obtained as  where Wt is a Gaus-
sian random variate with zero mean and unit standard deviation 
 
Increment time step t, Xt-1 and Zt 
 
Repeat steps 3 to 6 as many times as required. 
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In practice the first few values simulated are discarded to reduce the effect of the arbi-
trary initialisation used. In all results reported next, the number of values discarded was 
set to 120 (the first 10 years of the simulation). 
Because of the smooth and non-varying nature of the kernel function used, if an exces-
sive percentage of observed data points lie on or close to the zero flow boundary, it can 
result in a significant amount of probability to be associated with negative (hence infea-
sible) values of flow. To get around this problem, a "variable kernel" [Scott, 1992] has 
been used for data points close to the boundary. The bandwidth or spread of the condi-
tioned kernel slice is reduced depending on how far its center is from the left boundary. 
In addition to the variable kernel approach, a special provision has been made to cater for 
any zero flows that may be present in the data. The simulated value is set equal to zero 
when the selected kernel slice is associated with a zero-valued data point. Our rationale 
for using this approach is that the zero-flows represent a “state” in the flow system for a 
particular river, which cannot be simulated if any continuous probability density function 
is used to represent the flows. Obviously, this condition is never used if the data contains 
no zero flows, and is used only for streams of an ephemeral nature. 
 
Readers should note that the model proposed here is similar to the NP1 model of 
[Sharma et al., 1997], except that the proposed model uses an aggregate flow variable in 
addition to the previous month’s flow as the two model predictors. The use of the aggre-
gate flow variable is to impose a longer term dependence in the simulated flows. Such 
dependence is missing in the NP1 or any other Markov order 1 dependence models. To 
distinguish between the NP1 model of [Sharma et al., 1997] and the nonparametric simu-
lation model proposed here, the following convention will be used: the NP1 model of 
[Sharma et al., 1997] with no long term dependence will be denoted (NP1no_longterm) 
whereas the nonparametric model proposed here will be denoted (NP1longterm
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cussions that follow. 
 

 
Figure 1. An Averaged Shifted Histogram (ASH) [Scott, 1992] probability 

density estimate of the July month flows in Beaver River near 
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Beaver, Utah, USA. Boxplots represent the PDF estimates for 
100 NP1longterm

APPLICATION TO MONTHLY STREAMFLOW FOR BEAVER 
RIVER NEAR BEAVER, UTAH, USA 

 model simulations. 

 
Eighty-four (84) years (October 1914 to September 1998) of monthly streamflow data 
from the Beaver River near Beaver, Utah, USA (USGS station number 10234500) was 
used to test the applicability of the NP1longterm simulation model. This station is at 6200 
feet above MSL and represents a total catchment area of 91 square miles. This data has 
been used in earlier studies [Sharma et al., 1997; Tarboton et al., 1998] illustrating the 
use and applicability of nonparametric techniques, for reasons evident in the probability 
density functions for the observed and simulated data sets for the month of July shown in 
figure 1. The July month streamflow has a clearly bimodal probability density function, 
which is difficult to model using conventional stochastic techniques. The boxplots in fig-
ure 1 represent the variability in the probability density function of 100 flow sequences, 
each of an 84 year length, simulated using the nonparametric simulation model described 
earlier. As one can infer from the figure, the nonparametric model is able to represent the 
bimodality is a reasonably accurate manner. This would not have been possible through 
the use of conventional parametric approaches. 
 
The monthly mean, standard deviation, coefficient of skewness, and lag 1 correlations of 
the simulated sequences were estimated and found to compare well with that of the ob-
served flows. It was interesting to note that the annual flow standard deviations and coef-
ficients of skewness was also reproduced rather well by the NP1longterm
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tions. These results are not reproduced here for lack of space, but are available from the 
authors on request. 
 

 
Figure 2. Lag 3 and 4 Auto-Correlations for Beaver River monthly flows. 
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Figure 2 illustrates the lag 3 and lag 4 correlations of the observed and simulated data-
sets. Also shown are lag 2 and lag 3 correlations of the NP1no_longterm model. The use of 
the aggregate flow variable (the running sum of the last 12 months of flow) in 
NP1longterm
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, enables the higher lag correlations to be represented well. This is an impor-
tant result, as the model was not designed to ensure accurate reproduction of these higher 
lag correlations. One would need to have a higher order Markov dependence structure in 
a conventional stochastic simulation model (an Auto-regressive lag 4 (AR4) or its non-
parametric equivalent, the NP4 model) to achieve the same results. 
 

 
Figure 3. Lag 1 and 4 month to 12 month aggregate flow correlations. 
 
Figure 3 illustrates the correlation between one month’s flow and the sum of the previous 
12 months flows, for lags of 1 and 3. Similar results are also shown for simulations using 
the NP1no_longterm model where the longer term dependence is not explicitly modelled. As 
would be expected, the proposed model reproduces well the correlations for a lag of 1. 
Higher lag correlations are also well reproduced. The NP1no_longterm model results are not 
as encouraging as would be expected for any Markov order 1 dependence model. This is 
an important result as one could now expect the simulations be perform better at repro-
ducing drought or storage related statistics where longer term dependence matters most. 
 
To understand better how well the model reproduces dependence statistics at an annual 
level, annual flows were estimated by adding the monthly simulated flow values for each 
water year. Annual flow lag-1 autocorrelations for the historical and simulated flow val-
ues are presented in table 1. Note how well the annual lag-1 correlations are simulated by 
the NP1longterm

Historical Flows 

 model. This is an important result as it represents how capable the 
monthly simulation model is at modelling longer (annual) term dependence. 
 
Table 1. Lag-1 autocorrelations for observed and simulated annual flow 

values. 
 NP1 NP1longterm no longterm 
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0.307 
25th 0.204  %ile 0.030 
Median 0.306 0.081 

75th 0.363  %ile 0.189 
 
The reservoir storage required to sustain constant monthly demands equal to 0.5, 0.6, 0.7, 
0.8 and 0.9 times the observed mean annual flow were estimated using the sequent peak 
algorithm. These storages are illustrated in figure 4. While both models perform reasona-
bly well, the bias and variance of the storages calculated for the NP1longterm model simu-
lations is marginally smaller than that for the NP1no_longterm
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Figure 4. Reservoir storage volume required to meet constant monthly 

demands. 
 
APPLICATION TO BURRENDONG DAM INFLOWS 
 
The nonparametric simulation model was next applied to 105 years (1890 to 1994) of 
reservoir inflows to the Burrendong dam in eastern NSW. The Burrendong dam is lo-
cated on the Maquarie River and has an approximate catchment area of 7500 km2. While 
flow data has been measured since the opening of the dam in 1967, the earlier periods of 
record have been estimated by the Department of Land and Water Conservation using the 
observed rainfall record and a Sacramento rainfall-runoff model. This streamflow data 
poses a few problems to the stochastic modeller. Firstly, the there are several instances 
where the flow has stayed at fairly low levels for 6-10 months at a stretch. Secondly, 
there are several 'zeroes' in the flow record, which always pose a few challenges when 
prescribing a continuous probability density function. And lastly, these flow records are 
known to be highly related to long-term climatic anomalies such as the El Niño Southern 
Oscillation, hence containing periods of significantly low flows at frequencies of 3-5 
years. Hence, whether using a single aggregate variable (sum of past 12 month flows) in 
the NP1longterm approach will be sufficient for modelling this record is a difficult question 
to answer. 
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Figure 5. Reservoir storage volume required to meet constant monthly 

demands. 
One hundred realisations each 105 years long were simulated using the two nonparamet-
ric stochastic streamflow generation models. All the statistical comparisons presented in 
the earlier section were found to produce similar results in case of the Burrendong dam 
inflows data. Hence these results are not being reproduced here but are available on re-
quest. 
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Figure 6. Variation of observed and simulated low flows with duration. 
 
Figures 5 and 6 illustrate reservoir storage related aspects of the two simulation models. 
Figure 5 shows the reservoir storages estimated based on the sequent peak algorithm, 
while figure 6 presents the monthly lowest flows in a sequence (averaged to maintain the 
same units for all durations considered) as a function of duration. Only durations shorter 
than 3 years are shown as the results for longer durations were found to be satisfactory 
for both the models. The NP1longterm model simulations lead to reservoir storage volumes 
that are more representative of the observed data, as compared to the case of the 
NP1no_longterm model simulations. However, none of the models is able to properly simu-
late the smallest low-flow sequence (up to a duration of 21 months) in the observed re-
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cord. It is likely that a separate aggregate flow variable representing a longer period of 
aggregation is needed to properly model this highly complex flow record. It is also possi-
ble, that more than one aggregate flow variables, or, more than one short term variables 
might be required to properly model this data. Future studies will investigate the effect of 
such choices on the model results. 
 
SUMMARY 
 
A synthetic streamflow generation model capable to modelling both short term and inter-
annual dependencies, as well as non-standard probability density functional forms, was 
presented. This model was tested on two monthly streamflow data sets representing very 
different climatological and topographical regimes. The results indicated that the pro-
posed nonparametric model is able to represent longer-term dependence features in a 
much better way as compared to models that do not take longer-term memory into ac-
count. These results were encouraging as the model used arbitrary choices for the lag of 
the short term dependence (1 month) and the period of aggregation for the longer-term 
dependence (12 months) variable. It is likely that results will be even better if these 
choices are based on a careful analysis of the dependence features present in the data. 
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