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ABSTRACT 

The Muskingum method is a widely used method for routing floods 

in rivers and channels. The applicability of the method has increased 

after Cunge related the parameters of the method, based on the conven-

tional difference scheme, with the channel and flow characteristics 

using the principle of diffusion analogy. Since Cunge's study a number 

of papers and reports have been added to the literature of Muskingum 

method. However, one of the disturbing fact of the Muskingum method 

is the formation of negative or reduced outflow in the beginning of 

the solution. Various remedial measures like skipping the negative or 

reduced outflow zone, finding lower bound of reach length so that the 

magnitude of the defect is reduced, accepting'this defect considering 

that it is small enough and short lived etc. ,have been suggested in 

the literature: Some researchers have even suggested not to use 

Muskingum method .for field applications due to the presence of this 

defect. Another researcher's suggestion for the amendment of the 

method, through initial conditions, in order to correct this defect 

was met with severe criticisms and it led to many controversies. 

Inspite of nearly fifty years of widespread usage, the potential for 

controversy regarding Muskingum method has not been fully explored. 

Until the reason for this anomaly is identified, the Muskingum method 

will suffer from a lack of credibility. This can only hamper its 

wide acceptance for practical channel routing applications. Taking 

this into consideration, it is attempted in this note to explore the 

theoretical basis fpr the formation of negative or reduced outflow in 

the, beginning of the Muskingum solution. 



1.0 INTRODUCTION 

Since its development in the thirties by McCarthy (1938), the 

Muskingum method of .flood routing has been extensively used in river 

engineering practice. It is widely used, because it is a simple 

method which can be applied without much complication as far as the 

procedural details are concerned. The recent development by Cunge 

(1969) made it possible to link the Muskingum method, which used to 

be treated as an empirical method, with hydrodynamics and thus enable 

to compute the parameters not based on the observed hydrographs, but 

on the channel and fldw characteristics. This improvement in the 

Muskingum method, generally referred, as Muskingum-Cunge method, has 

enhanced the predictive capability of the method, while remaining 

within the computational frame work of the conventional Muskingum 

method. Later Koussis (1976) also related the parameters of the 

method in a similar manner as Cunge, but considering linear variation 

of inflow over the routing time interval. 

Inspite of its simplicity, wide applicability and improvements 

by Gunge (1969) and Koussis (1976), the Muskingum method has the 

defect of producing negative or reduced outfloW ordinates in the 

beginning of the routed hydrograph. The presence of such defect has 

been explicitly brought out by Venetis (1969) when he derived the 

Instantaneous Unit Hydrograph(IUH) of the Muskingum method. Figure 1 

depicts the IUH of. the Muskingum channel reach. It can be seen that there 

is negative Dirac,delta function at the origin having a magnitude of 
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0 60 ) in which 0 is the Muskingum weighting factor and 6 (0+ ) is the 
(1-e) 
Dirac-delta function applied at the origin. The Dirac-delta function is 

defined as a function whose width is nearly zero and whose height is 

nearly infinite in such a manner that tha area beneath it is unity. In 

a comparative study of the performance of various two parameter hydrol-

ogic flood routing methods, Dooge(1973) also brought out this defect 

more explicitly, as shown in figure 2 by routing a hypothetical inflow 

hydrograph using these methods. 

It is an undeniable fact that the problem of negative or reduced 

outflow exists, whether one is dealing with the conventional Muskingum 

method or with that of diffusion analogy based Muskingum methods. Many 

remedial measures have been suggested to overcome this defect. However, 

as pointed out by Kundzewicz(1980), and —Perumal and Seth (1984) that 

the problem is not really solved, but it is either minimized or skipped; 

Not convinced with such remedial measures some researchers 

(Meehan,1979; and Meehan and Wiggins,1979) have even suggested for 

rejecting the Muskingum method for field use. The protoganists argue 

infavour of the method pointing to the fact that the method is simple, 

useful in the field, and the solution with negative or reduced outflow 

which develops in the beginning of the routed hydrograph for a short 

duration is mathematically correct (Nash,1959; Weinmann and Laurenson,1979; 

and Strupczewski and Kundzewicz,1980). On the other hand, the antagonists 

of this method argue that since the unrealistic outflow is produced in 

the beginningof the routed hydrograph, the method should be suitably 

amended (Gi11,1980) or rejected (Meehan,1979; and Meehan and Wiggins,1979). 

However the arguments of both these groups are not based on theoretical 

consideration but from intuitive notion. 
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It is the purpose of this note to bring out the theoretical 

basis for this negative or reduced outflow in the beginning of the routed 

hydrograph .arrived using Muskingum method. This might form the basis 

for accepting or rejecting the views of the protagonists and antagonists 

of this method. 
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2.0 REVIEW 

The Muskingum method employs the lumped continuity equation given 

as: 

I - Q ...(1) 

and the storage equation, given as: 

S = K [ 91 + (1-0)Q] ...(2) 

in which, I, Q and S are the inflow, outflow and storage at time t 

respectively; 9 and K are the parameters of the method. The conventional 

or classical Muskingum routing equation is obtained by expressing 

equation(1) and (2) in the finite difference form  (Miller and Cunge, 

1975) and their simplification leads to: 

Q2 = Co  12  + C1 1 1  + C2Q1 
...(3)  

in whic,h,Q1 ,Q2  and 11 ,12  respectively are the outflow and inflow at-the 

beginning and end of the routing time interval, At. The coefficients Co 

C
1 
and C2 are expresse as: 

c = + At/2  
0 

K9 + At/2  
C1 KTT=0)+ At/2 

K(1-0) - At/2 
C2=  K(1-B) + At/2 

The sum cf C0'  C1 
 and C2 

are equal to 1.0. SinceIl' 
12 and Q1 

are known 

for every time increment, routing is accomplished by solving equation 

(3) recursively. 

It can be seen from- the structure of equation(3) and the 

expressions for coefficients CO3C1  and C2  given by equations(4),(5),(6) 

that the solution may yield negative or reduced outflow ordinates when 
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C
0  <O. Therefore the recommendation(U.S.Army Corps of Engineers,1960; 

Miller and Cunge,1975) that At > 2K0 has been made from the considera-

tion of avoiding negative or reduced outflow in the Muskingum solution. 

Recently Hjelmfelt (1985) has shown that this condition ensures 

non-negative Muskingum solution. Although this condition apparently 

avoids the negative or reduced outflow formation, there is an obvious 

shortcoming as a result of its application. Suppose for a given 

reach and for a given observed flood, the value of 0=0.3 and K.5 

hours were estimated and the use of this condition for this flood to 

avoid negative or reduced outflow 'demands At > 3.0 hours which may be 

greather than the time interval, generally one hour, at which the 

observations are available. Therefore, the observed information at 

one hour intervals Would not be considered for the sake of avoiding 

negative or reduced outflow. This shortcoming may be serious in 

flood forecasting operations. 

Equations(1) and (2) can also be solved exactly(Kulandaiswamy, 

1966; and Diskin,1967). For the initial condition of Q0=I0  at t = 0, 

the exact solution is given as: 

e t/ 1-6) 
et/K(1-0)dt +o-71T

I(1) 
e-t/K(1-0) (1-6) I 4-  

K(1-9)
2 f I 

0 

(7) 

and for the initial condition of Q0.0 at t=0 , the solutioin reduces 

0 e-t/K(1-e) y I et/K(1-0) - +  dt ....(8) (1-6) 
K(1-8)

2 
0 

Equation (7) results in reduced outflow in the beginning due to the 

incorporation of initial steady flow present in the channel and 

equation(8) results in negative outflow in the beginning due to the 

to: 
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consideration of zero flow in the channel as the fnitial condition. 

The formation of negative or reduced outflow solution of Muskingum 

method is not very obvious from the solutions given by equations(7) 

and (8). However, for a Dirac-delta input function, it can be explicitly 

shown based on equation (8) as: 

e .(9) 
-t/K(1-6) 

.. 
u(0,t) - (1- 47-

) 
 6 (0+) + 

1  

K(1-0)
2 

The above solution depicted in figure 1 was given by Venetis (1969) 

as the Instantaneous  Unit Hydrograph of the Muskingum reach. This 

depictioin implies that for any instantaneous input there is bound to 

be an instantaneous negative outflow at the same time and in addition 

an exponentially decaying outflow. 

The remedial measures suggested by U.S.Army Corps of Engineers 

(1960), Weinmann and Laurenson(1979), Ponce and Theurer,(1982) and 

Chang et al.(1983) eigher reduces the magnitude of the negative or 

reduced outflow ordinates or it skips this unrealistic outflow zone. 

But it is proved by equations(7),(8) and (9) that this defect exists 

for any positive input. Nash (1959) had suggested the use of lag and 

route,  method instead of Muskingum method for routing floods in steep 

rivers wherein this defect may be predominant. 

Realizing that this defect is built in within the method, 

Meehan(1979) and Meehan and Wiggins(1979) recommended that the 

classical Muskingum method be retired from field use and suggested 

the use of Muskingum-Cunge method. However, these investigators did 

not realize that MuskingUm-Cungelethod also has this defect and can 

avoid the formation of negative outflow by adopting the condition 

At > 2K0. 
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Some investigators (Laurenson and Weinmann,1979; and Gi11,1979) 

attempted to find the reason behind the formation of this defect. 

Laurenson and Weinmann(1977) reasoned based on.the use of conventional 

solution given by equation(3) that when A t« K, the discharge at the 

outflow section of the reach is evaluated before any disturbance 

realized at the inflow section of the reach has been able to travel 

the reach length under consideration. However, their reasoning is not 

correct as the solution in the continuous time domain given by equations 

(7),(8) and (9) also show the presence of this defect. 

Gill(1979) attempted to solve the puzzle of Muskingum method by 

modifying the initial conditions required for the solution of Muskingum 

equations(1) and (2). Instead of considering the initial .conditions. 

1(0) = Q(0) at t = 0 ...(10) 

and 1(0) = Q (0) = o at t = 0  

he considered the initial condition: 

I (0) = Q (T ) for T > 0 ...(12) 

Gill argued that the initial conditions given by equations(10) and(11) 

assumes that the effect of inflow reaches the outlet of the reach 

under consideration instantaneously which contradicts with the flood 

movement characteristics in natural river for which the initial 

condition given by equation(12) is more appropriate. Therefore based 

on-the concept that the effect of inflow reaches the downstream point 

of the reach after certain time, of the entry of input, Gill solved 

the equations (1) and (2) as: 

Q(t) — (t) + e
—t/K(1-43) 

t/K (i-e) I(t) e dt (1-0) 2 

T ) 

K(1-9) 

 I( ( t) (t—T) /K (1-6)  

for t > T 
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But Gill (1970) used this solution to put forward his theory on pure 

translatory behaviour of the Muskingum method. This resulted in many 

controversies. Singh and McCann(1980), and Strupczewski and Kundzewicz 

(1980) criticized Gill's approach on the context that the initial 

conditions given by equations(10) and (11) are mathematically correct 

and unequivocally provdd .there exists no translatory behaviour of the 

Muskingum solution. Also in a different sense,Gill's (1979) argument 

to solve the defect of Muskingum method may not be acceptable as other 

conceptual model such as• n-linear reservoirs in series (Dooge,1973)' 

applied for flood routing in channels assumes that the effect of 

inflow is felt at, the outlet of the reach instantaneously without 

creating any unrealistic solution as in the case. of Muskingum method. 

It seems that the cause for the negative or reduced outflow in 

the beginning of the Muskingum solution May be attributed to the form 

of storage equation employed. But the way in which it is responsible 

is brought out in this note. 
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3.0 PROBLEM DEFINITION 

It is required to find the reason behind the formation of 

negative or reduced outflow which arises in the beginning of the solution 

of Muskingum method. 
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4.0 METHODOLOGY 

A physically based flood routing methodology is presented 

herein with.  assumptions involved. Incidentally it is seen that the 

mathematical analysis of the method results in the physical justi-

fication of the Muskingum method for routing floods in river channel 

The relationships between the parameter S of the Muskingum method, 

and the channel and flow characteristics are derived. 

It should be pointed out herein that Cunge(1969) and Dooge, 

et al.(1982) presented different approaches on the justification of 

the use of Muskingum method for routing floods- in river channels, 

and their approaches enable to relate the parameters of the Muskingum 

method with channel and flow characteristics. However, these 

authors have not given the reason behind the formation of reduced 

or negative outflow. Unlike their approaches the present approach 

not only relates the parameters of the Muskingum method with flow' 

and channel characteristics, but establish the reason for the formation 

of unrealistic outflow in the beginning of the MuSkingum solution, 

4.1 Physica'l Basis for the Model Development 

During steady flow in a river reach there exists a unique 

relationship between stage and discharge at any cross-section. 

This situation is altered during unsteady flow, with the disbrarge 

appearing first in a croSs-section and at the same time the stage 

Which corresponds to that discharge during steady flow appears at a 

section upstream of it . This concept has been used by Kalinin and 

Milyukov ( as quoted by Miller and Cunge 1975) to determine the 
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'unit length of reach' required for flood routing in long river 

reaches. However, the Kalinin -Milyukov method appears to be less 

flexible since the 'unit reach length' of the channel is fixed and it 

is possible that rating curves may not be available at the end section 

of the unit reach length. Conversely, interpolation of hydrographs at 

intermediate cross sections increases the level of uncertainty in the 

results. Thus there is a potential problem in the determination of 

stage hydrographs from the calculated discharge hydrographs of the 

Kalinin-Milyukov method. 

In this report, it is shown that the extension of the Kalinin-

Milyukov concept, leads to a flood routing model which is devoid of the 

restfiction imposed by the Kalinin-Milyukov method as mentioned above. 

During unsteady flow in a prismatic channel with linearly varying water 

stage along the river reach, the channel storage S in the river reach 

of length g is uniquely related to the mean water stage of the reach 

which corresponds to the steady flow stage of the discharge,Q which is 

observed at the outlet of the reach. This is the'concept of the Kalinin 

Milyukov method with the reach length, A x corresponding to the unit 

reach length. This concept is extended in the proposed method with the 

assumption that the mean water stage is uniquely related to the discharge 

at a section located'll distance upstream of the outlet section, where 

the discharge Q is being recorded, and the discharge,Q itself is 

uniquely related to the stage observed at '1' distance upstream of the 

outlet section. 

The mathematical desdription of this method incorporating this 

concept is given in the following pages with the assumptions involved. 

4.2 Assumptions 

The following assumptions are made in this method: 

12 



Section is wide rectangular 

The inflow is known 

There is no lateral inflow into the reach or lateral outflow 

from the reach 

The water stage is linearly varying 

During unsteady flow while the discharge Q arrives at the 

outflow section of the reach, the stage, which corresponds to 

the flow,Q during steady flow condition arrives at a distance 

'1' upstream of the outflow section. 

The discharge at the section'll distance upstream of the out-

flow section has its steady flow stage located at the middle 

of the reach 

The flow at any section of the routing reach is proportional 

to the water stage. This implies that the flow velocity 

remains constant at a section. 

4.3 Development of the Model 

Figure 3 depicts a river reach with uniform rectangular 

cross-Section and the upstream and downstream sections, where the 

inflow' and outflow hydrographs are measured resepctively have been 

denoted as sectiori(1) and (2). Let the distance between these sectionsl 

be A x. 

Based on assumption(5), the discharge Q at section(2) is 

related uniquely with the stage at section(3) which is located 1 1 1  

distance upstream of section(2). Therefore while the discharge, Q 

appears at section(2), the corresponding normal depth, y appears at 

section(3). Based on assumption(6), the discharge at section(3) is 

uniquely related with the stage at the midele of the reach between 

13 
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sections(1) and (2). The discharge,Qe  at section(3) is expressed as: 

Qe  = A V ...(14) 
in which, 

A= Area at section(3) 

V= Velocity at section(3) 

The velocity,V can be expressed by thezy's formula as: 

V 
=cR1/2 

S
Y
2 

where, 

c= Chezy's coeffieient 

R = Hydraulic radius, 

Se Energy slope. 

Substitution of equation(15) in equation(14) gives the expression for Qe  

as: 

Qe 
= AcR

1/2S 
1/2 

The energy slope,Sf  can be expressed in terms of bed slope,S0  and 

and the water surface slope" , after eliminating the local and convective jax  

acceleration terms from the momentum equation of St.Venant's equation 

(Henderson,1966) as: 

H ...(17) 

in which, y is the depth at section (3): Substituting equation(17) in 

equation (16) gives: 

1/2 1 
Qe AcR So /2 ( 1 - —s- 

0 • 

But 

AcR1/2 S
1/2 

Q ...(19) 
0 

1  
Substituting equation(19) in equation(18) and expanding the term(1-7— , 

ay)1/2  

'0 DA 

is Binomial series leads to : 

n n (1 _ DLL 4.  1/2 (1/2-1) ( 1 ay 12 
Qt 4 2ST a 2 "5—  717( —1 r  0 

.:.(20) 
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when the bed slope is not very flat, So» —ih(Henderson,1966). Therefore, the 

terms (1 —1.1)2  and higher orders can be assumed very small when compared 
s ax 

with 1 — ctia 
30 a x  

Under such condition equation (20) can be approximated as: 

1 w 
Qe = ( 23/ 

Since, Q the outflow is uniquely related to the depth y, 

2
.
1 (6 + 2Y)y  

ax (6/2 6+2y)Q 
DQ 
ax 

...(22) 

But for large rectangular channels RzY and therefore equation (22) can be 

approximated as: 

il-1 _a_o 
a x 13;5 ax 

in which,t
Q 

is the flood wave celerity corresponding to the discharge,Q. 

In the subsequent mathematics of the problem the large 'rectangular 

concept is adopted and so the use of equation(23) is continued. 

Substitution of equation(23) in equation(21) leads to: 

Qe = 
 DQ ...(24) 

Q 2SoBCQ ax  

Since the discharge at section(3) is uniquely related to the depth .at the 

middle of the ,reach between sections(1) and (2): 

aye 1 aQe 
at BC at 

Qe 

...(25) 

where C is the celerity of the flood wave corresponding to the discharge 
Qe 

Qe. Due to assumption(7), the wave celerity does not change with the 

magnitude of discharge and therefore Qn  = C = C. 
4e 4  

16 
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Based on aSsumption (4), one can simulate that for every unsteady 

flow situation observed in the channel reach there exists a corresponding 

steady flow situation having the discharge equal to that observed at 

section(3) and the stage equal to that observed in the middle of the 

reach. This one to one correspondence between steady flow and unsteady 

flow situations is made possible by simply tilting .the water surface 

profile of the unsteady flow situation about the stage at the middle of 

the reach in such a way that it becomes parallel to the bed surface. 

Under the corresponding steady flow situation, equation(25) can 

be used in the hydraulic continuity equation to solve for Qe. The 

hydraulic continuity equation is written as: 
aQ ay ...(26) 
ax at 

Substituing equation(25) in equation(26) and modifying it gives: 
aQ aQ ...(27) 
at ax 

aQ 
Because of the assumptions (4) and (7), _tis written as: 

aQ
e = aQ aX 

ax ax 

and the differentiation of Qe  with reference to time leads to: 

aQ 2 
e _ aQ Q a Q 1 f .aQ I f  aQ, 
at at 2S0BC ata x 2S BC ax' ' at'  

'The last. 
 term of the above equation is very small when compared with 

other terms of the equation. It can be easily seen by comparing the 

order of magnitude of this term with the term. The order of magnitude 

1 aQ  
of the last term is 2808C ax 

. Using equation(23) it can be seen 

that it corresponds to the order of 
1 ay  

- 2S 
ax . Note the otder of 

0 
magnitude of the first term is Unity. • As S » 11' 

 the last term of 
0 Dx 

equation(29) may be considered negligible. Therefore equation(29) is 

an -2 
approximated as: 4e _ aQ Q a Q ...(30) 

at - at 315ar taxx 

... (28) 
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Substituting equation(28) and (30) in equation(27) gives: 
2 

C 
9Q_ a Q ...(31) alp 

at ax 2S
o 
BC ata x 

The expression for aQ can be approximated in lumped form as: 
ax 

...(32) 
ax Ax 

where, I is the inflow at section(1). Substitution of equation(32) in 

equation(31) gives: 
a  

3Q  ÷ C ... 
at Ax 230BCAK at 

( Q — (33)  I) 

The variable 2S0 
BCLx can be fixed by taking a reference discharge,Q0  

and it is written as: 

25
0 
 BC A x 

The average travel time of flood wave in traversing the reach from 

section (1) to (2) is given as: 

A  
= x 

...(35) 
K  

Now Q and I vary only as a function of time, t and so the partial derivative 

operator' a' is replaced by full derivative operator'd'. Substituting 

equations(34) and (35) in equation(33) leads to: 

— Q = K (Ea + (1-0) Q) ]  

It can be seen that equation(36) is the Muskingum differential equation 

with the storage of the reach given as: 

S= K [e'± (1-0) Q ] ...(37) 

where 

g= the weighting factor, and 

K = the travel time 

The term within the bracket of equation(37) corresponds to (discharge 

at section(3). Multiplying both sides of equation(36) by (1-0).gives: 

I-CO I +(14)01= 
dF  K(1-G) [ GI + (1-G)Q] ...(38) 

QO ...( 34) 
0 — 
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i.e. 

I — Qe  = aTE E K (1-6) Qe] ...(39) 

The solution of equation(39) for Qe  gives: 

e—t/K(1-6) Itr I et/K(1-6) 
Q dt when = 0, at t=0 
e K(1-8) 0 

...(40) 
Or e—t/K(1-8) 

Qe 
t t/K(1-8) dt + Ioe—t/K(1-0) ' f le K(1-8) 

when I = 101 at t = 0 —441) 

Equation(40) implies that the solution for Qe  is obtained by convoluting 

the inflow, I with the Instantaneous Unit Hydrograph of a single linear 

reservoir. 

The solution for Q is obtained taking into consideration that Qe  

is a linear variation of inflow and outflow. 

Accordingly Q is given as 

e—t/1(1-49) j t/K(1-9) e dt Q — (1-8) +  
K(1-8) 2 0 

Equation(42) is the solution of Muskingum equation, when I=0 at t =0. 

Alternatively when I = I
o 

at t =0 

...(42) 

1+ e—t/K(1-9) t 
I et/K(1-8)  at + 

10 —t/K(1-8) 
....(43) 

4.4 Range of Weighting Parameter 

s Before exploring the cause for negative outflow in the Muskingum 

solution, it is essential to interpret the limits of the Weighting 

parameter 0 so as to confirm to the limits of the Muskingum method 

specified in practice. Two cases can be visualized with regard to the 

extreme limits of G. The case of the weighting parameter nearing zero 

indicates that section(3) coincides with section(2) and such a situation 
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results in the Kalinin-Milyukov method. The other extreme of the weighting 

factor nearing 0.5 indicates that section(3) apoproaches the mid-section 

of the reach. It can be visualized from the physical basis of the 

proposed method, that 0 =0.5 is the limiting case where the discharge 

preceedes the corresponding steady stage state. The situation in which 

0  > 0.5  implies • the location of section(3) upstream of mid-section of 

the reach and based on the physical basis of thy model (i.e., the discharge 

precedes the corresponding steady flow stage in unstready situation), 

the change of direction of flow could be realized. Accordingly, the 

computed hydrograph at the outflow section, i.e., at section(2), would 

be the amplification of inflow hydrograph. This mathematical, but so 

far physically unexplained behaviour of the Muskingum method solution 

has been noted by many researchers(Dooge,1973, and Strupczewski and 

Kundzewicz 1980). 

Therefore, it can be inferred that the weighting paramter, Q is 

limited to zero on its lower limit and to 0.5 on its upper limit. 

20 



5.0 CAUSE OF NEGATIVE OUTFLOW 

It can be seen that the solution for the outflow given by 

equation (42) or (43) and the interpretation of the weighting parameter 

unequivocally proves that the proposed method results, in .
the physical 

justification of the Muskingum flood routing method. It should be possi-

ble to ascertain the cause of negative or reduced outflow in the beginning 

of the Muskingum solution through this physically based method. 

Equations(40) and (41) indicate that at section(3) Qe
= 0 and 

= Io 
respectively when t=0, Invoking the assumption of linear 

(7) from t=0 cowards 

initial flow, either zero or Io 

the solution depending on whether 

fore the formation of negative or 

method may be avoided.if the assumption of linear•variation of discharge 

is not imposed in the beginning of the routing process. The description 

of the details of such remedial measure is beyond the scope of this
.  

study. 

and 'Qe  

variation 
of discharge along the reach implied by the assumptions(4) and 

necessarily leads to a discharge less than the 

at section(2) during the beginning of 

equation (40) or (41) is used. There-

reduced flow in the solution of Muskingum 
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6.0 CONCLUSIONS 

It is 0-own that the method described herein gives physical justifica-

tion for the Muskingum method for routing floods in river channels. It is 

inferred that invoking the assumption of linear variation of discharge from 

t = 0 onwards leads to tbe formation of negative or reduced outflow at section 

(2), when section(3) which is located upstream of section(2) itself has 

solution for outflow nearer to zero in the beginning. 
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