CHAPTER 2
DOWNSCALING OF CLIMATE DATA
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2.0 Role of Climate Models in Hydrological Studies

Weather conditions can be explained over a certain area in a certain time-span. In a natural hydrological
cycle, water continuously interchanges between oceans and atmosphere through multiple processes such
as precipitation, evaporation and percolation in various spatial and temporal scales. Climate change is a
complex issue involving interactions between ocean, atmosphere, and land (Jiang et al., 2007). However,
under the influence of anthropogenic climate change, this continuum is changing due to changes in
energy and mass balance of the associated processes (Bhuvandas et al., 2014). The accurate computation
of complex hydrological processes has been critical in the present and 21* century due to the acceleration of
climate change conditions. At smaller scales, hydro-climatological processes are more dynamic which may
further increase uncertainty in the present and 21% century simulations and projections, especially when
climate is changing. A comprehensive review of hydrological trends under changing climate conditions
is widely available that showed a significant variability in the global hydro-climatology from 1951 to
2100 (Karmalkar, 2018: Sharma et al., 2018; Gupta and Jain, 2018; Mishra et al., 2014). In India, the
severity of climate change has been increased and it highlighted in various hydro-climatological studies
(Sharma et al., 2018; Gupta and Jain, 2018; Mishra et al., 2014). The use of advanced hydrological
models including numerical weather predictors (Sun et al., 2016), numerical methods for hydrological
analysis (Tiwari et al., 2014), statistical and artificial intelligence approaches (Goyal and Ojha, 2012)
coupled with General Circulation Models (GCMs) and Regional Climate Models (RCMs) provide a great
asset in simulating and projecting the long-term hydro-climatological changes (Seiler et al., 2018; Sun
et al., 2016; Tiwari et al., 2014; Mishra et al., 2014; Vu et al., 2015); however, they are significantly
varied at global, regional and smaller scales.

GCMs are basically numerical coupled models that represent various earth systems, including
the oceans, atmosphere, land surface and sea-ice. Therefore, the applicability of GCMs variables in
simulating and projecting impacts of climate change depends on various factors, including topography,
climatology, weather pattern and geography of the region (Sun et al., 2016). GCMs are considered to be
the most comprehensive models for investigating the physical and dynamic processes of the earth's
surface-atmosphere system and they provide plausible patterns of global climate change (Andrews etal.,
2012). Studies utilizing GCMs conclude that the large-scale assessment of hydro-climatological changes
can be done and GCMs have been found able to capture the large-scale changes in various climate
scenarios (Karmalkar, 2018; Singh et al., 2017; Andrews et al., 2012). However, the small-scale studies
utilizing coarser resolution GCMs are less predictive and erroneous (Karmalkar, 2018). Since 2013, the
accuracy of GCMs has been improved (Andrews et al., 2012). The development of the last Couple Model
Inter-Comparison Phase Five (CMIP5) based GCMs and Regional Climate Models (RCMs) along with
low to extreme high Representative Concentration Pathway (RCP 2.6 to 8.5) scenarios have improved
the accuracy of climatic projections and forecasted scenarios (Gupta and Jain, 2018; Seiler et al., 2018;
Vuetal., 2016; Sarr et al., 2015). The large scale GCMs are re-gridded at a much finer scale through the
dynamic downscaling and the resultant product is called the RCM, which supposed to be enhanced the
accuracy of climate projections at the regional as well as smaller scale (Fenta Mekonnen and Disse,
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2018). The main purpose was to generate finer resolution RCM, minimizing uncertainties in climate
projections (Karmalkar, 2018; Singh et al., 2017). The scope of GCM versus RCMs has been analyzed
in numerous climate change studies and it has been seen that RCMs performed superior than GCMs
(Gupta and Jain, 2018; Seiler et al., 2018; Karmalkar, 2018; Singh et al., 2017).

A large number of hydrological and hydrodynamic models have been developed and performed
in various applications such as flood routing, flood forecasting, water balance analysis, water quality
modeling, hydro-climatological projections and extreme event analysis (Singh et al., 2017; Sun et al.,
2016; Apurv et al., 2015). In case of projecting long-term hydrological variables, the coarse
resolution GCMs cannot be directly coupled to hydrological models, because of the complexities
involved in the coarse resolution GCMs and the simplification of the hydrological cycle. However,
the downscaled GCM variables can be utilized as inputs to the hydrological and hydrodynamic models.
Different downscaling methods have been developed to enhance the applicability of GCMs, which are
able to highlight smaller scale climatic variations. (Singh et al., 2017; Sun et al., 2016; Humphrey et al.,
2016). While coupling GCMs and hydrological models, the undergone processes should be properly
understood. Because, each model has their own limit in terms of data-inputs, model structure, governing
equations, capability to handle time-space variations, ability to generate scenarios at the desired time
steps, calibration strategies to control model uncertainties and forecasting (Singh et al., 2017; Humphrey
et al., 2016; Tiwari et al., 2014).

The scope of downscaled GCM and RCM variables and their coupling with hydrological/
hydrodynamic models have been evaluated worldwide (Tiwari et al., 2018; Singh et al., 2017; Jiang et
al., 2007). For example, the deterministic hydrology models such as SWAT, VIC, MODFLOW etc. are
casy to couple with GCMs and RCMs for the real time forecasting and projection of hydro-climatological
variables (Singh et al., 2017; Rasmussen et al., 2012). A physically-based distributed-parameter models
have been found complex in nature, because they require large amount of data-inputs; however, they
have been successtully applied to provide satisfactory results for a wide range of climate change
applications utilizing RCMs and GCMs (Sun et al., 2016; Jiang et al., 2007). The downscaled
GCMs/RCMs with reference to observational datasets and their couplings with advanced modeling tools
are flexible in recognizing and selecting the most suitable method and also to evaluate the applicability
of GCMs/RCMs at any specific region (Karmalkar, 2018; Singh and Goyal, 2016; Goyal and Ojha,
2012).

2.1 General Circulation Models (GCMs)

Various types of climate models have been developed to investigate the Land, Ocean and Atmospheric
(L-O-A) interactions across the World. GCMs represent various physical processes which are related to
atmosphere, ocean, cryosphere and land surface. GCMs have been frequently used for modeling and
analyzing the atmospheric variability and climatic diversity and changes related to the Earth’s
environment (Azmat et al., 2018; Tiwari et al., 2018; Mishra et al., 2014; Andrews et al., 2012). GCMs
portray the climate using a three-dimensional grid over the globe (Figure 2.1), typically having a
horizontal resolution between 250 and 600 km, vertical layers (10 to 20) in the atmosphere and around
30 layers in the oceans (Carter et al., 2007). GCMs resolutions are thus quite coarse relative to the scale
of exposure units in most impact assessments. GCMs known properties must be averaged over the large
scale in a technique known as ‘parameterization’. This is one scene of uncertainty in GCMs based
simulations of future climate.
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Intergovernmental Panel on Climate Change (IPCC) Data Distribution Center (DDC) generated
different GCM versions and their simulations involving various agencies around the World. Numbers of
atmosphere-ocean-geophysical variables have been produced at different spatio-temporal scales
(https://emip.linl.gov/cmip5/data_portal html).

Short-wavelength (SW) solar radiation;
includes visible light

Figure 2.1: Complex structure of a GCM grid and associated processes (Source:
http://www.climate.be/textbook/chapter3)

There are GCMs that model just the atmosphere (AGCMs), just the oceans (OGCMs) and those
that include both (AOGCMs). GCMs characteristically include representations of surface hydrology,
sea-ice, cloudiness, atmospheric radiation, convection and other pertinent processes (Azmat et al., 2018;
Andrews et al., 2012). GCMs have coarse resolutions and therefore they cannot directly utilize for the
analysis of smaller scale climate variations. Different versions of GCMs such as CMIP2 (Goyal and
Ojha, 2012; Ghosh and Mujumdar, 2008), CMIP3 (Ghosh and Mujumdar, 2008), CMIP4 (Singh et al.,
2017) and CMIPS5 (Tiwari et al., 2018; Azamat et al., 2018; Gupta and Jain, 2018; Andrews et al., 2012)
have been widely used to analyze atmospheric, terrestrial and climatic variations across the world, but
many climatic observations based on GCMs are found reliable, mostly at the global scale (Gupta and
Jain, 2018; Xue et al., 2014).

Hydrological models are generally complex in nature and mostly govern by the small-scale
parameterizations. Therefore, the coupling of GCMs with complex hydrological tools may produce
erroneous results while analyzing the impact of climate change in various hydro-climatological
applications, especially at smaller and regional (Tiwari et al., 2018; Mishra et al., 2014; Xue et al., 2014).
The global scale variables cannot directly couple with the local scale variables (Xue et al., 2014). The
resolution of the climate model’s dataset has a strong influence on the outputs of regional and small-
scale processes. Thus, climate change studies performed utilizing coarser resolution GCMs sometimes
may be failing in providing an accurate information (Xue et al., 2014; Mishra et al., 2014). Furthermore,
GCMs are usually dependable at temporal scales of monthly means and longer.
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Sometimes, the accuracy of projected and forecasting a climatic variable is a big challenge and
we want to know how weather forecasts are so accurate? How climatic predictions have made over days
and weeks? How cyclones or hurricanes have forecasted? GCMs and some large-scale climate indices
(e.g. EL-Nino, ENSO, SOI etc.) are significantly involved in weather forecasting and they are extremely
detailed grid-based simulations of weather that use atmospheric physics to predict events over hours,
days and even further into the future. Therefore, GCMs can be utilized to predict or project climate
changes in a long term like seasonal, annual, intra-annual and intra-decadal time series durations. GCMs
may become more and more accurate as the physics of the atmosphere has become better understood. In
a basic sense, the process of GCMs can be thought of in a few straightforward steps. In summary, GCMs
provide quantitative estimates of future climate change that are valid in the global and continental scale
and over long periods. GCM models are in a continuing state of development and evolution, so in the
future, they will be more complex and realistic. The characteristics of GCM have been shown in Table
2.1.

Table 2.1: General features of GCM.

Contrasts GCM

Goal to predict climate

Spatial coverage global

Temporal range Years (1850-2300)

Spatial resolution usually coarse (>100 km? to 500 km? grid)
Relevance of initial conditions low

Relevance of clouds, radiation high

Relevance of surface (land, ice, ocean) high

Relevance of ocean dynamics high

Relevance of model stability high

Time dimension ignored

Physics equations of motion (plus radiative transfer

equations and water conservation equations)

Method Finite difference expression of continuous
equations, or spectral representation; run
prognostically

Output state variables and motion of the atmosphere in 3
dimensions
Maximum time step controlled by spatial resolution (CFL condition)
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2.1.1 Model Scenarios

The IPCC has developed a whole set of scenarios that demonstrate the possible carbon emissions history
for the next 100 years. The carbon emiission is used as a key variable in driving climate modeling for
each scenario (Taylor et al., 2012). Each scenario has been produced based on a group of assumptions
about economic growth, population growth, and adoptions we might make regarding steps to minimize
carbon emissions. A number of emission scenarios have been generated and their details are provided in
the IPCC assessment reports (IPCC 2014, 2007). In this chapter, a few latest scenarios have been
discussed. The projections corresponded to CMIP3 and CMIP5 have been utilized frequently and World-
wide (Taylor et al., 2012). IPCC emission scenarios such as SRESA2, SRESA1B and SRESBI generated
under the CMIP3 assessment (2007). SRES A2 leads to a continuation of increased annual carbon
emissions that follows the recent history. SRES AI1B scenario envisions an integrated world
characterized by rapid economic growth, a population growth and the rapid development of alternative
energy sources that facilitate increased economic growth, while limiting and ultimately reducing carbon
emissions. A SRES AIB scenario also assumes that there will be faster development and sharing of
technologies which help us reduce our energy consumption. SRES Bl illustrates an even more integrated,
more ecologically friendly world, but one in which there is still steady and strong economic growth. As
in scenario SRES A1B, the population in this scenario peaks at 9 billion in 2050 and then declines. Each
IPCC emission scenario shows emissions of carbon to the atmosphere (mainly from fossil fuel burning)
(Gt C/yr; a GT is a billion tons!), so this is an annual rate. This highlights a flow into the atmosphere.
Approximately, half of the carbon emitted will remain in the atmosphere and lead to a stronger
greenhouse effect, which will, in turn, increase global temperature and change the climate in a variety of
ways.

Under CMIP5 and earlier phases of [IPCC model development, a few GCMs which have been
frequently used in many climate change studies worldwide presented in Table 2.2. These GCMs have
been developed by various agencies from the world. Under CMIP5 projection scenarios (2013), four
representative concentration pathways (RCPs) were produced and defined by their total radiative forcing
(RF) (cumulative measure of human emissions of GHGs from all sources expressed in Watts per square
meter) pathway and level by 2100. The RCPs were chosen to represent a broad range of climate
outcomes. The four RCPs used a common set of historical emissions data to initialize the integrated
assessment models. The RCPs descriptions have been provided in Table 2.3.

Table 2.2: CMIP5 GCMs, their model components resolution and sources (Source [PCC 2014).
] w*iﬁég’gxm I
g.& Atmospherlc component, Ocean 64 x 128 Beijing
component, Land compdnent, and - Climate
- Sea ice component are fully .4, 390 Center,
 coupled. Information between the China
atmosphere and the ocean is Meteorolog
exchanged once per simulated day. ical
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carbon with the land bidsphere is ion, China
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calculated at each model time step
(20 min).

An earth system model is based on
several widely cvaluated climate
model components and is used to
~ study mechanisms of ocean-
- atmosphere interactions, natural
climate variability, and carbon-
~ climate feedbacks at interannual to
 interdecadal timescales

It is the fourth-generation
atmosphere-ocean general
circulation model.  Horizontal
coordinates are spherical with grid
spacing ~ 141 degrees in
longitude and 0.94 degrees in
latitude

The Community Climate System
Model (CCSM) is a coupled
climate model for simulating the
earth's climate system, composed
of  four  separate  models
simultaneously  simulating the
earth's atmosphere, ocean, land
surface, sea ice, and one central
coupler component

CNRM-CMS5 is an Earth system
model designed to run climate
simulations. It consists of several

existing models designed
independently and coupled

through the OASIS software

Australian Commonwealth
Scientific and Industrial Research

Organisation

64 x 128

64 x 128

192 x 288

96 x 192

Beijing
Normal
University,
China

National
Center for
Atmospheri
¢ Research
(NCAR),
United
States

National
Center for
Atmospheri
¢ Research
(NCAR),
United
States

CERFACS
(Centre
National de
Recherches
Meteorolog
iques,
France)



Bl Flexible

Global
Atmosphere-Land System
(FGOALS) model includes four
individual components (an

Ocean-

atmosphere component, an ocean
- component, a land component, and
~ a sea-ice component) that are
driven by a flux coupler module

Earth system model, which is
 named as the First Institute of
© Oceanography-Earth System
Model (FIO-ESM), is composed of
a coupled physical climate model
and a coupled carbon cycle model.

GFDL has constructed NOAA's
first Earth system models (ESMs).
The atmospheric component of the
ESMs includes physical features
such as aerosols (both natural and
anthropogenic), cloud physics, and
precipitation. The land component
includes precipitation,
evaporation, streams, lakes, rivers,
runoff, and a terrestrial ecology
component to simulate dynamic
- reservoirs of carbon and other
' tracers. The oceanic component
includes features such as free
surface to capture wave processes;
water fluxes, or flow; currents;
sea-ice dynamics; iceberg
transport of freshwater

HadGEM2-ES is Earth system
model that was used by the Met
Office Hadley Centre for the
CMIPS centennial simulations.
~ Earth system components included
~ are the terrestrial and ocean carbon

108 x 128

64 x 128

90 x 144

145 x 192

GFDL&
Institute of
Atmospheri
¢ Physics
(LASG-
[AP),
Chinese
Academy
of Sciences,
Beijing,
China

The  First
Institute of
Oceanograp
hy, SOA,
China

Geophysica
1 Fluid
Dynamics
Laboratory,
United
States

Met Office
Hadley
Center,
Unites
Kingdom



cycle and tropospheric chemistry.
Ocean biology and carbonate
chemistry are represented by diat-
HadOCC, which includes
limitation of plankton growth by
macro- and micronutrients and
also simulates emissions of DMS
~ to the atmosphere

MPI-ESM (MPG) is a 96x192 Max Planck
comprehensive  Earth  system Institute for
model and are coupled through the Meteorolog
exchange of energy, momentum, y (MPI-M),
water, and important trace gases Germany
such as carbon dioxide. The model

is developed by the MPI for

Meteorology (MPI-M) and based

on its predecessors.

Table 2.3: RCPs and their description (Source: IPCC 2014).

Rising radiative forcing pathway leading to 8.5 W/m2 in Extreme emission
2100. scenario

Stabilization without overshoot pathway to 6 W/m2 at High emission
stabilization after 2100 scenario

Stabilization without overshoot pathway to 4.5 W/m2 at Moderate emission
stabilization after 2100 scenario

Peak in radiative forcing at ~ 3 W/m2 before 2100 and decline Mitigation/low
emission scenario

2.2 Regional Climate Models (RCMs)

It is concluded that coarser resolution GCMs are not suitable for the local scale or regional scale studies,
for example: to analyze the impact of climate change in a particular river basin or may be at district level
requires more precise information than GCMs currently provide. GCMs determine a very large-scale
effect of changing global climate system. The climatic parameters computed by the GCM can be
effectively utilized as inputs to RCM for example: temperature and wind. Numerous RCMs have been
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developed, applied, inter-compared, and demonstrating important downscaling skills, but also model
deficiencies are still yet to be resolved. RCM is a numerical climate prediction model forced by specified
lateral and ocean conditions from a GCM or observation-based dataset (reanalysis) that simulates
atmospheric and land surface processes, while accounting for high-resolution topographic data, land-sea
contrasts, surface characteristics, and other components of the Earth-system. RCMs are initialized with
the initial conditions and driven along its lateral-atmospheric-boundaries and lower-surface boundaries
with time-variable conditions. Therefore, RCMs utilize to downscale global reanalysis or GCM runs to
simulate climate variability with regional refinements.

RCMs enhances the spatial resolution as compared to GCMs, because RCMs have been
produced at finer mesoscale grids (grids belong to 10 km? — 50 km?) (Singh et al., 2017; McCarthy et al.,
2012; Van Meijgaard et al., 2008; Mailhot et al., 2007). The spatial resolution-based comparison between
GCMs and RCMs has shown in Figure 2.2. RCMs can then resolve the local impacts by giving the small-
scale information about orography (land height), land use, weather and climate information at a
resolution of 50 km? or 25 km? (Karmalkar 2018; McCarthy et al., 2012) while GCMs may fail to do
this. RCMs can be applied over a given area or limited area driven by GCMs can provide information at
much smaller scales, which are capable to support more detailed impact and adaptation assessment
studies (Bhuvandas et al., 2014). Studies have shown that RCMs are able to analyze the effect of climate
change and geophysical environment better than GCMs (Karmalkar 2018; Singh et al., 2017). However,
it should be noted that solutions from the RCM may be inconsistent with those from the global model,
which could be problematic in some applications.

(a)

General Circulation
Model (GCM)

Regional Climate
Model (RCM)

Figure 2.2: Comparison in spatial resolution between GCM versus RCM (Source: Lee Hannah, in
Climate Change Biology (Second Edition), 2015).
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RCMs which are commonly used in different climate change studies around the World include
the U.S. Regional Climate Model Version 3 (RegCM3) (Pal et al., 2007); Canadian Regional Climate
Model (CRCM) (Mailhot et al., 2007); UK Met Office Hadley Centre’s Regional Climate Model Version
3 (HadRM3) (McCarthy et al., 2012); German Regional Climate Model (REMO) (Jacob and Podzun,
1997); Dutch Regional Atmospheric Climate Model (RACMO) (Van Meijgaard, 2008); and German
HIRHAM, which combines the dynamics of the High-Resolution Limited Area Model (HIRLAM)
(Tuomi et al., 1999) and European Centre-Hamburg (ECHAM) models (Tibaldi et al., 1997) generated
under different [PCC CMIP assessments. CORDEX is a World Climate Research Programme (WCRP)
framework has been developed to evaluate the RCMs performance through a set of experiments aiming
to produce regional climate projections (Singh et al., 2017). CORDEX-East Asia is the branch of the
CORDEX initiative produces RCM ensembles based on the dynamical downscaling methods forced by
multi-model GCMs. One distinct advantage of RCM application is its higher spatial (or horizontal)
resolution, which makes the RCM capable to handle more realistically certain and critically important
climate processes (Karmalkar, 2018).

2.3 Downscaling

GCMs are capable in predicting large-scale heterogeneity, climate variability and changes. Therefore,
GCMs have been successfully applied in various large-scale studies. However, due to their coarser scale
resolutions, GCMs are less capable to explore small-scale changes. Several landscape features such as
water bodies, mountains, water-balance in the basin and sub catchment scale, land-cover analysis and
climate change impact at a local scale can be better explored utilize RCMs, because they produce at much
finer scales than GCMs. However, sometimes RCM fails to incorporate very small scale and location-
based heterogeneities and changes (Karmalkar 2018). To address the small-scale heterogeneities, which
may be crucial for hydro-climatological studies and other applications, different downscaling methods
have been developed (Moalafhi et al., 2017; Ghosh and Mujumdar, 2008). Downscaling depends on the
hypothesis that local climate is a composition of large-scale atmospheric features (e.g. Hemisphere,
continental, global and regional) and local conditions (e.g. land surface properties and topography).

The derivation of fine-scale climatic information is based on the hypothesis that the local climate
is conditioned by relations between local features and large-scale atmospheric characteristics (Moalafhi
et al.,, 2017; Mishra et al., 2014). Climate studies performed on a smaller scale utilizing a similar
hypothesis-based approach concluded that it is possible to model local and large-scale interactions and
established a relationship between present-day local climate and atmospheric conditions through multiple
downscaling processes (Seiler et al., 2018). The downscaling processes enhance the information to the
coarser GCM output so more realistic data can produce at a finer scale, capturing sub-grid scale
differences (Mishra et al., 2014).

Downscaling of the large scale GCMs variables can be performed in both spatial and temporal
aspects with reference to local scale variables. According to Trzaska and Schnarr (2014), “Downscaling
is a process that converts a large-scale information (e.g. coarse resolution grid like 500%500 km?) to finer
scale information (e.g. 50 x50 km?)”. Downscaling can be utilized to convert coarser spatial resolution
GCMs to any desired local grid cell (suppose 20 km?, a higher resolution grid cell) or even at a specific
point location (Figure 2.3) (Shukla and Lettenmaier, 2013). Similarly, temporal downscaling can be
referred to convert from coarser scale temporal GCM output (e.g. monthly precipitation) to finer scale
GCM output (e.g. daily precipitation) (Xue et al., 2014).
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[n climate modeling, there are two main categories of downscaling distinguished: (i) statistical/
empirical downscaling (Wilby et al., 2014) and (ii) dynamical downscaling (Xue et al., 2014; Mishra et
al., 2014; Shukla and Lettenmaier, 2013) (Figure 2.3). The dynamical downscaling method has several
numerical advantages over statistical modeling, while dynamical downscaling has found computationally
intensive and requires a large amount of datasets and high level of manpower to interpret/produce results
(Trzaska and Schnarr, 2014). Each downscaling method contains uncertainties and has their own
limitations. No official guidance is available on downscaling or downscaling methods that best
meet the user’s need. Therefore, the research community is still developing the downscaling
methods.

2.3.1 Statistical Downscaling

Statistical downscaling methods have been developed to interpolate large-scale atmospheric predictor
variable (e.g. average of precipitation and temperature, circulation characteristics such as mean sea level
pressure, radiation, wind circulations etc.) to point scale or at gauge scale (e.g. rainfall, runoff, etc.)
(Singh and Goyal, 2017; Singh and Goyal, 2016; Ghosh and Mujumdar, 2008; Wilby et al., 1998). From
this point of view, the regional or local climate information is generated by first determining a statistical
model which narrates large-scale climate variables called “predictors” to regional and a local variable
called “predictand”. Once a relationship has been established between predictand and predictor, the
model can be setup in historical time duration and simulated scenarios can be generated along with the
regression coefficients (e.g. parameters of the regression equation). After calibration and validation, the
future climate scenarios can be predicted and forecasted under the presence of 21% century GCM
variables and regression parameters.

Statistical downscaling has been successfully applied in various climatic simulations and
projection studies where sufficient observed datasets (or predictands) are available to derive the statistical
relationships (Singh and Goyal, 2016; Ghosh and Mujumdar, 2008). Statistical downscaling has been
widely used in hydro-climatological studies around the world (Singh and Goyal, 2016; Wilby et al.,
1998). A graphical user interface (GUI) based Statistical Downscaling Model (SDSM) developed by
Wilby et al. (2004) has been successfully applied in various rainfall and temperature projection-based
studies (Seiler et al., 2018; Singh et al., 2017). Wilby et al. (2004) used a weather generator based
multiple linear regression method to build a relationship between large scale GCM outputs (predictors)
and small scale/point scale observed variables (predictands) to forecast long term rainfall scenarios.
Recently, an integrated “dynamic-statistical” approach has been presented to enhance the computations
at a smaller scale in both temporal and spatial domains (Walton et al., 2015; Sun et al., 2015).

Sun et al. (2015) presented a hybrid downscaling approach which has been found more capable
to capture spatial variations in warming even at smaller scales. Several studies utilized a “categorical
approach” in statistical downscaling, which includes some classification and clustering based statistical
techniques to relate GCM data to different groups as per large scale circulation patterns and data
attributes (Bhuvandas et al., 2014; Zorita and Von Storch, 1999). Among multiple downscaling methods,
SDSM based statistical downscaling approach has been considered to be the most suitable for
downscaling of large scale GCM outputs at a point or gauge scale, especially to forecast climatological
variables. (Xue et al., 2014; Bhuvandas et al., 2014). In case of statistical downscaling, the demand of
available data is high and this could be a weakness of this method, but on the other hand the
computational cost of statistical downscaling is comparatively low. The simplest approach of statistical
downscaling cab be described by several sequential procedures as shown in Figure 2.4.

31




Types of

Downscaling
A
Dynamical Statistical
!
|
. 4 Y
2 2
g 200km? | 200km 200km2| 200km?
Yy
=
®
2 2
200km? | 200km 200km2| 200km?
1/
\ 4/ |
[\ /
50 [ 50 50 |50 .’{
km2 | km? | km? | km?
50 50 5o | 50
km2 | km? | km?| km?
50 50 ||so0 | 50
km2 | km? || km2| km?
50 | 50 |lsp | 50 ¢ ®
km? | km? || km2| km?

Downscaling
at the
desired grid
scale (RCM)

Downscaling
at a given
location

GCM grid

Figure 2.3: Schematic representation of Dynamic and Statistical Downscaling.
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Figure 2.4: Schematic flow chart of performing statistical downscaling and climate model scenario
generation.

Selection of GCM

In many climate change impact studies, the authors have faced problems while utilizing the full
number of GCM simulations that are available; and thus, often only subsets are used. Each model may
produce different outputs because of differences in model structure and model processes. The GCM
related uncertainties have been explored utilizing a large number of GCMs and the level of uncertainty
in each model has been quantified (Sharma et al., 2018; Joseph et al., 2018; Mishra et al., 2014). Many
studies utilized multiple GCMs so that they cover different sources and levels of uncertainties. However,
in case of limited computing resources, it is difficult to process all GCMs and quantifying various sources
of uncertainties; thus, only part of the known uncertainty is considered (Sharma et al., 2018). Several
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climate change studies applied a cluster analysis method to select a subset of full numbers of climate
simulations, which are the best representatives for the given area (Joseph et al., 2018; Xue et al., 2014).

By reducing the number of GCMs, the information available related to uncertainty in the
projections and ensembles may also be reduced (Wilcke and Bérring, 2016). However, the selection of
GCMs is not straightforward; and therefore, various methods have been suggested and tested in different
studies which can be utilized such as the range of projected changes in the means (Lutz et al., 2016),
based on climate extremes (Ruane and McDermid, 2017: Lutz et al., 2016), based on skill tests and
cluster analysis (Lee and Kim, 2017; Lutz et al., 2016). Semenov and Stratonovich (2015) developed
‘climate sensitivity indices’ to select GCMs based upon mean precipitation and temperature changes.
After that, Ruane and McDermid (2017) utilized a representative temperature and precipitation
GCM sub-setting procedure and identified five individual GCMs that are able to capture a profile
of the full number of GCM ensembles. In sub-setting/selecting GCMs, the aim should be that each
GCM represents major type of change and is linked with probabilistic information correlated to the
broader ensemble (Lee and Kim, 2017).

Selection of predictors

Statistical downscaling methods produce empirical/statistical links between the large-scale and
local-scale variables. Statistical downscaling is not only useful in numerical weather prediction and
synoptic climatology, but it also provides a local-scale information, which is very useful in climate
change impact assessment studies (Singh and Goyal, 2016; Ghosh and Mujumdar, 2008). The SDSM
downscaling tool implies on the empirical relationships between the local-scale predictands and large-
scale predictor(s) (Willby et al., 2014). Because of the linear concepts of statistical downscaling, the
selection of predictors (e.g. GCM variables) can be made while performing correlation and partial
correlation analysis between predictands (e.g. observed variables like precipitation and temperature) and
predictors, and the predictor weights can be estimated via ordinary least-square method (Willby et al.,
2014). Each GCM model contains numbers of predictor variables and thus some of them can be dropped
if they do not represent the property of local variables (Singh and Goyal, 2017). In statistical
downscaling, the non-significant predictors may be dropped, if they do not show any significance
(Singh and Goyal, 2017). A simple correlation analysis may be performed for the selection of most
suitable predictors (Trzaska and Schnarr, 2018; Singh and Goyal, 2016).

To select the first and most suitable large-scale variable is relatively easy, though the judgment
of the second, third, fourth and so on is much more subjective (Willby et al., 2014). Thus, several standard
statistical evaluation methods can be performed for screening large scale variables corresponding to each
local scale variable (Willby et al., 2014). In statistical downscaling, a correlation matrix can be prepared
between large-scale predictors and local-scale predictand to find out suitable predictors. Then predictors
having high correlation coefficients (a threshold can be used like >=0.7) can be taken and arranged in
descending order (Singh and Goyal, 2016; Willby et al., 2014). Then among the selected predictors based
on high correlation coefficients, the negative correlated predictors can be dropped from the analysis and
only positive correlated predictors can be utilized as shown by Singh and Goyal (2016) and Wilby et al.
(2014). The first ranked predictor, having the highest correlation coefficient among others, can be
selected and will be defined as the first suitable super predictor (FSSP) (Willby et al., 2014). After this
the absolute correlation (R) between predictor and predictand, and the correlation coefficient between
individual predictors can also be calculated (Willby et al., 2014). Then the other highly correlated
predictors (for precipitation it is 0.5 and above, and for temperature, it is 0.7 and above in this case) will
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be taken out in order to remove any multi-co-linearity (Singh and Goyal, 2016). The correlation
coefficient up to 0.7 between two predictors is acceptable (Singh and Goyal, 2016; Wilby et al., 2014).

In case of the selection of the second, third and so on, a percentage reduction in a partial
correlation (PRP) with respect to absolute correlation can be calculated for each predictor (Singh and
Goyal, 2016). The PRP is the percentage reduction in partial correlation with respect to the correlation
coefficient. The predictor which has a minimum PRP in partial correlation (Willby et al., 2014) can be
selected as the second most suitable predictor (Singh and Goyal., 2016; Willby et al., 2014). This
predictor has almost no or a very insignificant multi-co-linearity with the FSSP. The third, fourth and
following predictors could be obtained by repeating the same procedure (Willby et al., 2014). A similar
methodology for the selection of suitable predictors has been applied by various researchers across the
world for the statistical downscaling of precipitation, temperature and other hydro-meteorological
variables (Willby et al., 2014).

Calibration and validation

After selection of predictors, the regression model can be set up between predictors and
predictands by selecting a homogenous time duration as per the availability of observed and simulated
climate data (Willby et al., 2014). The regression model should be prepared by selecting best and suitable
predictors only rather than all predictands, because multi-colinearity can affect trends and it must be
avoided among predictors (Singh and Goyal, 2016). Many studies performed calibration/validation on a
monthly and a daily time scale and both time steps gave satisfactory results (Sharma et al., 2018; Salvi
et al., 2016). For the evaluation of calibration and validation results, the statistical evaluation methods
such as coefficient of determination (R2), changes in mean, standard deviation and root mean square
error (RMSE) have been successfully performed (Singh and Goyal, 2016). The explained variance and
standard error methods also utilized to evaluate the performance of statistical regression methods (Salvi
etal., 2016), in which the observed data are plotted against the regression model based simulated dataset.
In most of the studies, it has been suggested that for regression modeling, a minimum 30 years’ time
series datasets are required (Willby et al., 2014).

Bias correction

In statistical downscaling, GCMs based simulations produced a significant amount of bias (or
uncertainties) when they downscale at a point scale (or, finer scale), because coarser resolutions GCMs
tail to explain small scale variations (Singh and Goyal, 2016). At present, GCMs simulations generally
produce a significant amount of bias in hydro-climatological projections and forecasting scenarios. To
reduce the bias in GCMs, various bias correction (BC) methods have been developed and their
applicability in error reduction has been tested in many climate studies (Ghosh and Mujumdar, 2008).
BC methods correct the simulated outputs in the presence of observational datasets in a post-processing
step (Willby et al., 2014). The detail description of the bias correction methodology and its significance
have been presented in the next chapter. After bias correction, a bias factor or mean bias can be derived
(Singh and Goyal, 2016). The future scenarios generated by GCMs may further correct by applying the
bias factor (Willby et al., 2014).

Scenario generation

In statistical downscaling, once the regression model has been successfully calibrated and
validated based on a historical dataset (or training dataset), the optimized regression coefficients (or
parameters of the regression equation) can be utilized for the 21* century scenarios generation (Willby

35



et al., 2014). In statistical downscaling, a conditional sub-model can be utilized for the projection of
maximum and minimum temperature without any transformation (Willby et al., 2014) and an
unconditional sub-model may be applied in case of stochastic variable (e.g. precipitation) with fourth
root transformations (Singh and Goyal, 2016).

2.3.2 Dynamic Downscaling

Dynamic downscaling is generally related to the use of RCM developed from mesoscale (e.g. 10 km? to
50 km* grids) atmospheric models, similar to GCM based principles. However, RCMs have higher spatial
resolution than GCM (Xue et al., 2014; Wang et al., 2014). RCMs represent mesoscale atmospheric
information which has been found suitable to produce more realistic and accurate climate information
on a regional scale (e.g. 25-50 km? grid scale) (Xue et al., 2014). The distinct choice of domain size
controls the disagreement between the RCMs and their driving GCMs. Dynamical downscaling enhances
the approach of regional climate modeling and delivers better predictors for supplementary statistical
downscaling to higher-resolution output (Guyennon et al., 2013).

The use of RCMs in climate modeling has been increased (Karmalkar, 2018; Singh et al., 2017),
thus it is important to understand whether and under what conditions the dynamic downscaling is really
capable of improving climate simulations/predictions. Few studies have compared the applicability of
RCMs against GCMs has been compared mainly to test that whether RCMs are really capable to provide
more precise climate information at different scales or not (Singh et al., 2017; Xue et al., 2014)?
Although, RCMs may provide feedbacks to their driving GCMs. Most of the dynamic downscaling
approaches have presented based on a one-way nesting approach and have no feedback from the RCM
to the driving GCM (Xue et al., 2014). The RCM based dynamic downscaling will ultimately be
evaluated by its capability to produce realistic simulations/predictions on the smallest scale (Xue et al.,
2014). Several studies demonstrated that factors such as lower boundary conditions, domain size,
physical processes and horizontal resolution have strong influence on the dynamic downscaling (Xue et
al., 2014). Many studies utilized RCMs for projecting long term climate scenarios and concluded that
RCMs performed superior than GCMs. The capability of RCM depends not only on the RCM’s
resolution, but also on the RCM’s parameterization (Wang et al., 2014). These days, the RCM based
projections of the future climate and many other applications such as producing high resolution data for
hydrological assessments have increased as seen in many studies (Shukla and Lettenmaier, 2013).

A comparative assessment has been done between statistical and dynamic downscaling methods
to highlight their various features is shown in Table 2.4:
Table 2.4: Comparison between statistical and dynamical downscaling.
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2.3.3 Advanced Downscaling Methods
ANN based methods

Artificial neural networks (ANNs) are a pattern recognition tool which have been utilized to reproduce
empirical, possible non-linear relationships between a set of ‘input’ variables and some corresponding
“output” variables (Dorji et al., 2017; Goyal and Ojha, 2012). ANNs works based on the physiology of
the brain, through a series of 'nodes’ which pass information between one another in a similar way to
cells in the brain (Goyal and Ojha, 2012). For a full description of ANN theory, kindly see Bishop (2000)
or Picton (2000) published studies. In climate dynamics, a relationship has been established between the
GCM and RCM output parameter fields, specifically temperature and rainfall. This was done by
representing properties of the GCM and RCM fields to an ANN, and ‘training’ it to be able to replicate
the relationship between the two (Dorji et al., 2017). Similar to statistical downscaling, a linear and non-
linear regression method has been employed in the ANN based downscaling approaches. In the ANN
based downscaling, a relationship can be built between large-scale and small-scale variables (through
input layers) and some weights are generated in their hidden layers to generate the prediction samples
(Dorji et al., 2017) (through output layers).
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Many studies utilized Multilayer Perceptron (MLP) neural network for the downscaling of
various hydro-climatological variables (Dorji et al., 2017; Humphrey et al., 2016). MLP method is widely
used to establish the nonlinear relationship between predictor and predictands (Dorji et al., 2017). The
neural network improves the performance function between the predicted and observed values. There is
a slight difference in statistical downscaling and MLP neural network-based downscaling, because
statistical methods are mostly based on the data distribution while MLP makes no assumption (Humphrey
et al., 2016). The complexity involved in MLP can be adjusted by increasing or decreasing the number
of hidden layer nodes, which determine the number of free parameters in the model (Humphrey et al.,
2016). Several studies utilized Bayesian ANN statistical forecasting model for the downscaling of GCMs
and RCMs (Humphrey et al., 2016). Overall, ANNs based downscaling models are found more flexible
and stable than ordinary statistical downscaling models. ANNs based methods have found better in
capturing complex and nonlinear input-output relationships from data without any restrictive
assumptions (Vu et al., 2015).

Weather generators (WGs)

Weather Generators (WGs) have significant ability to downscale weather variables and
therefore, WGs are widely used in climate change studies, especially the short-term forecasting of
meteorological variables. WGs are relatively easy to run and their outcomes are easy to post-process and
interpret. Numerous WGs currently being used, including Weather Generator, WGEN (Chen et al.,
2015); Climate Generator, CLIMGEN (Mechan et al.,, 2017); USCLIMATE; Stochastic Weather
Generators, WeaGETS; and the Long Ashton Research Station Weather Generator, LARS-WG (Mehan
et al.,, 2017). Dubrovsky et al. (2017) utilized a new gridded multivariate parametric stochastic WG
modelled by Markov chain and Gamma distribution for forecasting precipitation in Europe. Dubrovsky
etal. (2017) showed significant spatial and temporal variations in forecasted precipitation and the climate
change scenarios are derived from the selected RCM simulations (CORDEX database). International
Research Institute for Climate and Society (IRI) produced a stochastic weather generator which works
based on the generalized linear modeling (GLM) (Kim et al., 2016). The GLM based stochastic WG has
been applied mostly to forecast rainfalls and different studies, observation show that weather generator
is able to generate the probability distributions of seasonally aggregated rainfalls and minimum and
maximum temperature (Kim et al., 2016). Numerous WGs based studies performed in India revealed that
WGs are able to forecast short-term and long-term meteorological scenarios (e.g. temperature and
precipitation) (Sharma et al., 2018).

Other advanced statistical and machine learning methods

Very few studies utilized an advance downscaling method such as quantile-based regression
method for the downscaling of GCM variables (e.g. daily minimum-maximum temperatures and daily
precipitation) (Hassanzadeh et al., 2013). Quantile based downscaling successfully improved the
projection of temperature and precipitation extremes. Quantile regression methods have been found able
to capture the high and low order extreme events in the downscaled projected scenarios; while in other
statistical methods, they are underestimated (Hassanzadeh et al., 2013). Rather than using a conventional
statistical downscaling method, the data-driven techniques such as genetic programming is also
successfully applied in several hydro-climatological studies to get the more robust computational
outcomes (Fowler et al. 2007). The GP coupled with the quantile-based regression could be a useful tool
to forecast and simulate more robust outcomes of climatic scenario (Hassanzadeh et al., 2013).
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Zhai et al. (2018) presented an advanced stepwise clustered downscaling (SCD) approach
utilizing multiple RCPs to downscale minimum and maximum temperature in Ottawa and the results of
the study made satisfactory observations than previous downscaling methods. In SCD method, the
outputs of GCMs and RCPs are used as inputs to the SCD and then downscaled scenarios are generated
(Zhai et al., 2018). Azamat et al. (2018) compared two downscaling methods such as statistical
downscaling model (SDSM) and smooth support vector machine (SSVM) and the results showed that
SSVM performed better in forecasting precipitation scenarios than SDSM; however, SSVM takes a lot
of efforts to optimize the best parameters to get better simulations. Advanced downscaling approaches
based on machine learning methods such as random forest (RF) (He et al., 2016), support vector machine
(SVM) (Ghosh and Mujumdar, 2008), least square support vector machine (LSSVM) (Campozano et al.,
2016.), wavelet-least square support vector machine (WLSSVM) (Nourani ct al., 2019) and wavelet-
artificial neural network (WANN) (Assesm et al., 2017) have significantly utilized in the downscaling
of temperature, precipitation and other hydro-meteorological variables and also highlighted their merits-
demerits in simulations. Studies performed by Dorji et al. (2017) and Humphrey et al. (2016) compared
the advance downscaling techniques to ordinary least-squares regression (OLR) method and their results
showed that OLR regression is performed equally to simplest statistical downscaling method (Dorji et
al., 2017; Humphrey et al., 2016).

2.3.4 Validation of Downscaling Methods

In climate downscaling, uncertainties related to GCM data, uncertainties associated with downscaling
methods and model related uncertainties have been explored across the World (Sharma et al., 2018;
Tiwari et al., 2018; Humphrey et al., 2016). The reliability of multi-model GCMs and downscaling
methodology has been tested in both historical and 21st century. As per the progressive development of
GCMs and RCMs under different IPCC assessments, each model and their ensembles have been widely
used to assess short-term and long-term climate changes (Gupta and Jain, 2018; Sharma et al., 2018;
Tiwari etal., 2018; Smitha et al., 2018; Singh et al., 2017; Pal et al., 2007). Scientific literatures collected
based on the past studies contains a variety of studies regarding the development of downscaling methods
to evaluate the potential effects of climate change relevant to Earth-Ocean-Atmospheric processes (Ali
and Mishra, 2018). Statistical downscaling works based on the principle of empirical relationships (linear
or may be non-liner) between large-scale atmospheric-ocean and local climate characteristics and
therefore, statistical downscaling approaches have been easily applied in different heterogenous groups
such as linear methods, weather classifications and weather generators (Tiwari et al., 2018; Onyutha et
al., 2016; Sunyer et al., 2015). Statistical downscaling methods have found computationally efficient and
inexpensive than dynamic downscaling that requires modeling of physical processes (Latombe et al.,
2018). The statistical downscaling has been successfully applied for the projection and simulation of
precipitation, minimum-maximum temperatures, solar radiation, humidity, soil moisture, streamflow,
snowfall, snowmelt and groundwater flows, because the performance of statistical downscaling
techniques relies on the selection of regional/local scale parameters (Latombe et al., 2018; Tiwari et al.,
2018; Onyutha et al., 2016; Sunyer et al., 2015).

Statistical downscaling methods work on the relationship established between predictors and
predictand. However, in case of linear methods, normal distribution of the predictor is required (Singh
and Goyal, 2017; Ghosh and Mujumdar, 2008). Latombe et al. (2018) applied statistical downscaling
model (SDSM) utilizing GCMs to analyze the climate variability at the time of Last Glacier Maximum
(LGM) over western Europe utilizing GCMs and results revealed that the SDSM performed well in

39



paleoclimate reconstruction at local sites. Salvi et al. (2016) established an empirical relationship
between coarse resolution climate variables and high-resolution climate variables performed
downscaling successfully under nonstationary climate conditions. Studies also utilized linear genetic
programming (LGP) based statistical downscaling to project various hydro-climatological variables such
as discharge, precipitation under multi-model GCMs and results showed that LPG is able to highlight
the 21st century changes (Sachindra and Perera, 2018, 2016; Tofiq and Guven, 2014). A study conducted
by Sunyer ct al. (2015) utilized eight different statistical downscaling methods in the assessment of
climate change and the relevance of 8 methods to extreme precipitation has been signified in Europe.

To avoid uncertainties in large scale coarser resolution GCMs, Fenta Mekonnen and Disse
(2018) applied the statistical downscaling method over GCMs to analyse the future climate change
impact on Upper Blue Nile River basin and then applied few bias correction methods to minimize
uncertainty in outcomes. SDSM based analysis using CanESM2 CMIP5 GCMs are able to produce more
accurate average rainfall predictions than raw GCMs (Fenta Mekonnen and Disse, 2018). Azmat et al.
(2018) utilized multiple GCMs and compared the statistical downscaling with Smooth Support Vector
Machine (SSVM) (one of the data mining methods) for the improvement of climate projections and
concluded that SSVM performed superior than other methods. However, both approaches were able to
simulate precipitation and temperature with a certain amount of uncertainties. Humphrey et al. (2016)
presented a hybrid statistical ANN based forecasting model to project the monthly streamflow. The
results of this study showed that the statistical ANN based approach was more suitable than dynamicaa
dynamical forecasting modelt al. (2015) applied two different statistical downscaling methods: (i) delta
change method for the computation of mean precipitation and different return period precipitation events
and (ii) quantile-quantile (Q-Q) transformation for downscale monthly distribution of precipitations
utilizing RCMs. Results showed a significant amount of uncertainty existed in both methods, because
their results lead to a very different prediction of the direction and magnitude of change (Sarr et al. 2015).
Goswami et al. (2018) presented a coupled framework employing statistical downscaling and copulas
for projecting precipitation extremes over eastern Himalayas and calculated that copulas based 21*
Century projections are more relevant to real scenario than projections were downscaled using simple
statistical methods.

Xue et al. (2014) explored the controlling factors that have strong influence on dynamic
downscaling ability in intra-seasonal simulations and future projection. Meresa et al. (2016) utilized
multiple GCMs and RCMs for the projection of droughts in Polish catchments and observed a significant
diversity in the climate projections of GCMs and RCMs over the region. A study conducted by Vu et al.
(2015) utilized RCMs and dynamic downscaling to project future hydro-meteorological drought
scenarios and their results have been found sensitive in the analysis. Seiler et al. (2018) applied dynamic
downscaling products to minimize bias in the simulation of explosive extratropical cyclones. The
CanESM2 GCMs integrated with the CanRCM4 and this reduces the frequency bias up to -22%.
Moalathi et al. (2017) used dynamic downscaling for reconstructing hydro-climatological data in
southern Africa. Sun et al. (2016) linked ecohydrological model with (Weather Research and Forecasting
Model) WRF utilizing dynamically downscaled RCMs dataset to project water yield and ecosystem
productivity across the whole United States. A large spatial variability in the hydrological and ccosystem
productivity responses has been highlighted, because different uncertainty assumed in the simulated
outcomes. Karmalkar (2018) utilized NA-CORDEX and NARCCAP ensembles to explore uncertainties
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in regional climate change projections. It is found that NA-CORDEX GCMs poorly responded during
winter over half of the United states and the Great Plains in the summer.

2.4 Applicability of Downscaling Methods and GCMs in Indian Context
2.4.1 Downscaling Methods Suitability in India

India has a very diverse hydro-climatology at a regional scale (Tiwari et al., 2017; Singh and Goyal,
2016). In this section, capabilities of statistical and dynamical downscaling have been evaluated in Indian
hydro-meteorological conditions at both larger and smaller scales. Different downscaling approaches
have found capable for the downscaling of various hydro-climatological variables and the downscaled
products have been successfully utilized in various climate change studies across India (Goswami et al.,
2017; Tiwari et al., 2017; Tiwari et al., 2014; Singh and Goyal, 2016; Ghosh and Mujumdar, 2008).
Tiwari et al. (2018) utilized dynamic and statistical downscaling methods to predict winter precipitation
in Northern India and the results indicated that the downscaled observations generated from statistical
methods performed better than dynamical downscaling. However, both downscaling methods such as
statistical and dynamic gave reliable predictions than directly involved GCM based predictions (Tiwari
et al. 2018).

Goyal and Ojha (2012) developed a downscaling model utilizing the Multiple Linear Regression
(MLR) and ANN for the projection of minimum and maximum temperature to a lake-basin scale. The
ANN based downscaling results have given more accurate observations than MLR method, illustrating
that ANN based observations contain less bias than MLR based observations. Sharma et al. (2018)
applied statistical and dynamic downscaling methods to assess the uncertainty in the projections of
hydro-climatic variables over India are utilizing GCMs and their results clearly highlighted that statistical
downscaling-based observations are able to capture spatio-temporal variability in hydro-climatological
variables, whereas the dynamic downscaling projections were poorly performed. Joseph et al. (2018)
used dynamically downscaled RCMs and statistically downscaled GCMs outputs for comparing climate
model uncertainty and hydrological parameter uncertainty in the Ganga River basin and the results
showed significant amount of uncertainties in the future projections, especially in case of dynamically
downscaled RCMs. However, uncertainties also exhibited a seasonal dependency in a climate model.

Despite various applications of downscaling in simulation and projections of climate variables,
several studies assessed the direct applicability of GCMs and RCMs at regional and smaller scales
utilizing advanced bias correction methods (Gupta and Jain, 2018; Smitha et al., 2018; Apurv et al.,
2015). However, their direct applicability is still uncertain under regional and small-scale climate change
assessment. Gupta and Jain (2018) utilized dynamically downscaled RCMs across India to investigate
the musical impact of climate change on droughts and their results showed an increase in
evapotranspiration due to the projected rise in temperature in most parts of India and causing droughts,
but this study did not quantify uncertainties in their projections.

In this chapter, the applicability of dynamic and statistical downscaling methods has been
discussed. Both downscaling methods have performed well in different climate change forecasting and
assessment studies around the World. However, each method has shown its limitations and advantages
as per the desired area of interest. Several advance downscaling methods such as ANN based approaches,
Artificial Intelligence methods, including SVM and Random Forest (RF) etc. and Weather Generators
(WGs) have been presented to explore their applicability in various climate studies across the World and
India too. Given the diversity of developed downscaling methods, it is best to first evaluate the needs,
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relevant techniques, and limitations of the results of each method as per the desired goal and area of
interest.

In the assessment of climate change and its impacts at regional, sub-regional scales and location
based, a comprehensive appraisal of the information needs and the relevance of existing information
should be carried out first. If the need for an original downscaling of the projections is confirmed, the
method should be selected based on the information needs and also, importantly, on available resources
(data, computing resources, expertise, and time-frames). Therefore, a decision tree (Figure 2.5) has been
formulated to help the researchers and the scientists in determining an appropriate downscaling
method.
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Figure 2.5: Decision tree showing for different downscaling methods.
2.4.2 GCMs Suitability in India

In India, very few studies have been completed to evaluate the GCMs applicability and to find out best
GCMs for India (Ali and Mishra, 2018; Singh et al., 2017; Raju and Kumar, 2014). Several studies
highlighted that no suitable GCMs are available in India region that may produce accurate predictions;
for example, precipitation and temperature scenarios (Tiwari et al., 2014). Ali and Mishra (2018)
compared the applicability of GCMs in terms of bias content and results show that five GCMs (e.g.
MIROCS, MIROC-ESM IPSL-199, CM5A-MR, ACCESSI-0, and CNRM-CMS5BEST-GCMs) show
relatively lesser bias in P95 (median bias 1-15%) as compared to others. In another study done by
Balvanshi and Tiwari (2018), the applicability of multi-model CMP5 GCMs has been tested over
Madhya Pradesh Central India and GCMs such as CanESM2, CGCM3, GFDL2.0, HadCM3 and
MIROC3.2 were found suitable for the analysis.

Mishra et al. (2014) tested the reliability of RCMs and GCMs over precipitation extremes in
India and resulted that the mean ensemble of CORDEX-RCMs exhibited somewhat superior
observations; however, the whole RCMs failed to expressively outperform GCMs. Singh et al. (2017)
compared the applicability of CORDEX-RCMs (e.g. RegCM4) and CMIP5 GCMs (GFDL-CM3, GFDL-
ESM2M, GFDL-CM2PI etc.) for analyzing the hydro-meteorological changes at smaller scales over
Sikkim Himalayas and the results showed that RCMs performed well only in case of temperature
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projections under stationary conditions; while in case of precipitation, GCMs and RCMs did not account
much variability and represented similar amount of uncertainty in their outputs.

Table 2.5: Best GCMs recommended for climate change studies in India.

T
- m&-‘--ﬁ:ﬁ&ﬁg

T

o

.

»;% 1 .
%é;ggnxm :
el b

| 64x128

| 160 x 320

| 64 % 128 1850-2100 Canada 1

192 x 288 1850-2099 USA 6

| 128x256 1850-2100 ° | Erance’ 1111 10
| 90x144 18502100  USA 1

.&m
“ﬁ%fﬁtf

o

g
-
-

| 145x 192 18502100 UK i

 95x96 1850-2100  France ))

Smitha et al. (2018) used raw RCMs and GCMs (e.g. CNRM-CM5.0, GFDL-CM3.0) and
applied bias correction methods such as local intensity scaling, power transformation and distributed
mapping to correct precipitation over six different watersheds based on different climatic conditions;
also concluded that bias corrected RCM has the largest influence on the accuracy of daily rainfalls. Apury
et al. (2015) utilized raw CMIP5 GCMs (e.g. GOALS-g2, BCC-CSMI-1, [PSL-CM5A, CanCM4 and
MRI-CGCM3) and then applied bias corrections to analyze decadal floods over the Brahmaputra basin
and resulted significant flood frequency observations under regional scale varying climate conditions.
Raju and Kumar (2014) ranked the applicability of GCMs as per Indian climatic conditions and their
assessment showed that GFDL2.0, INGV-ECHAM4, UKMO-HADCM3, MIROC3, BCCRBCCM2.0
and GFDL2.1 are most suitable GCMs identified. Based on the detail literature, the best GCMs that may
be applicable to India have been presented in Table 2.5.

2.5 Concluding Remarks

This chapter describes the significance of different downscaling methods in hydro-climatological studies.
The application of GCMs and RCMs under different downscaling methods are evaluated. Based on the
literature used in this chapter, it is concluded that raw GCMs are less applicable to capturing small- and
large-scale climate information. Whereas, statistical and dynamic downscaled GCMs and RCMs outputs
are capable to capture larger scale and regional-scale climatic variations across the world. This chapter
comprehensively addresses few important topics of climate modeling such are GCMs projection
capacity, selection of downscaling method, their limitations, applicability of GCMs and RCMs under
different climate conditions etc. Dynamically downscaled RCMs have shown strong influence on the
small scale and regional scale hydro-climatological changes. It has been seen that RCMs have much
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capability to explore regional scale climatic variations because of its finer resolution, but are
computationally expensive as it involves complex physics of atmospheric processes.

Due to less resources and high parameter demands in their processing, dynamic downscaling is
not widely performed. Statistical downscaling approaches together with bias correction methods are
helpful in the transformation of large-scale variables to local-scale variables. The statistical downscaling
is well performed to overcome the special issue to get large-scale information at the finer scale. The
scope of statistical downscaling of GCMs is capable to improve the skill of the prediction at local-scale.
It is also clear that only GCMs or RCMs cannot give a proper estimation of hydro-climatological
variables at different scales, because GCMs are mainly developed to predict the average general
circulation pattern of the atmosphere-ocean-earth. Therefore, the coupling of downscaled GCMs and
with hydrological models along with other physical, topographical and local meteorological parameters
1s necessary to produce reliable simulations and predictions of hydro-climatological variables. In this
context, GCM derived climate perturbations can be utilized as model input in hydrological models.
Although, RCMs have better spatial resolutions and able to capture the regional scale assessment, but
their applicability is also limited and sometimes they also found less predictable in the case of point scale
observation. The selection of downscaling method and GCMs/RCMs should be based on the scale and
area specific, so appropriate RCMs and GCMs can be preferred that may enhance the prediction
capability of the model. A comprehensive model validation procedure must be accounted to the selected
and formulated models before they are utilized to simulate future climate change impacts.
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