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Abstract 
The most common approach used to model the transport of solutes in the subsurface is a mass bal-
ance partial differential equations, which combines two terms, viz.,  ( i ) solute displacement by 
convection with the mean pore flow velocity, and ( ii ) hydrodynamic dispersion. While the mean 
velocity convective term has a well-defined meaning, hydrodynamic dispersion in the unsaturated 
flow zone is still a subject of debate.  The relationship found for saturated flow is adopted for un-
saturated flow with values of dispersivity for one-dimensional flow taken from break-through-
curves (BTC) measured through soil column experiments in the laboratory.  The convective – dis-
persion equation describe the physical processes governing the movement, dispersion and trans-
formation of a solute.  An analytical solution describing the transport of solute in the unsaturated 
porous media with an asymptotic distance – independent dispersion relationship has been devel-
oped.  The solution has a dispersion function, which is linear near the origin (i.e., for short travel 
distance), and approaches an asymptotic value as the travel distance becomes infinite.  The results 
were compared with experimental results and with finite difference numerical solutions.  The 
comparision indicates that the theory is reliable and can be used with confidence. 
 
INTRODUCTION 
 
In water resources development, one of the major problems is that of water quality.  The 
sources of groundwater pollution can be divided into four major groups such as, envi-
ronmental, domestic, industrial and agricultural.  Groundwater contains salts carried in 
solution, which are added to by rainwater, irrigation water, artificial recharge, soluble 
rock materials, fertilizers etc.  Accidental breaking of the sewers and percolation from 
septic tank may also increase the level of pollution.  Contaminants are often leaked from 
chemical and petrochemical plants and from waste deposits.  When radioactive wastes is 
buried at great depths, the only fluid media that can possibly interact with the wastes is 
groundwater.  
 
In modern agriculture large quantities of water-soluble fertilizers are frequently applied 
to the soil surface.  A portion of them remain in the root zone, and the rest is carried un-
derground by the moving water.  To estimate the magnitude of the hazard posed by some 
of these chemicals, it is important to investigate the processes that control their move-
ment from the soil surface through the root zone down to the groundwater table.  Under-
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standing of these processes will make it possible to develop optimum management 
schemes for environmental hazard control with the purpose of preventing soil and water 
pollution. 
 
The greatest challenge at the moment, however, is to develop the capability to predict 
with a reasonable degree of certainty, the spatial and temporal distribution of contamina-
tion in groundwater with the support of mathematical models.  To model the behavior of 
a pollutant/contaminant in the soil is a complex and dynamic system and is inherently a 
difficult task.  Furthermore, a contaminant after coming in contact with the soil, can un-
dergo several biogeo-chemical processes viz., sorption-desorption, transformation/ deg-
radation and leaching.  Ideally, a comprehensive transport model should provide accurate 
predictions of the concentrations resulting from these interactions. 
 
Lakshminarayana V (1968,1990) have solved Richard’s equation for flow of water in 
unsaturated non homogeneous medium using explicit-implicit finite difference scheme 
and the Galerkin finite element model to solve 1-D and 2-D solute transport in porous 
medium.  Numerous solutions to various forms of the convection-dispersion equations 
are found in literature (Eshel Bresler, 1973; John Wilson, 1981;  Van Genuchten et al., 
1991, Yates , 1990, 1992). 
 
In general, the macroscopic rate at which a given solute moves in the soil system depends 
on the average flow pattern, on the rate of molecular diffusion, and on the ability of the 
porous material to spread the solute as a result of local microscopic deviations from the 
average flow.  For proper modeling and understanding of the manner of solute transport 
in a natural soil profile, these phenomena must be considered simultaneously.  The pre-
sent work attempts to identify the level of groundwater contamination and to predict con-
taminant movement through the aquifer.  Theoretical and mathematical tools for analyz-
ing one-dimensional transfer of solutes in unsaturated soil zone is developed.  
 
THEORETICAL CONSIDERATIONS 
 
In dealing with the problem of simultaneous transfer of solute and water, one usually 
assumes that the transport of the solute is governed by convection and diffusion.  In gen-
eral, molecular diffusion takes place together with the convective transport, and each 
process contributes to the final dispersion of the solute.  It is generally assumed that mac-
roscopic transport by convection must take into account the average flow velocity as well 
as the mechanical or hydrodynamic dispersion.  Solutes are transported by convection at 
the average velocity of the solution, and in addition they are dispersed about the mean 
position of the front. 
 
The combined effect of diffusion and convection is derived by combining their mathe-
matical expressions to obtain, 
 

( ) Cq
x
CvDJ +
∂
∂

−= ϑ,                                                    (1) 

J is total flux of solute; 
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 C is solute concentration of the soil solution; 
 x is flow direction co-ordinate; 
 D is combined diffusion-dispersion coefficient; 
 q is volumetric flux of solution;  
        v is mean velocity of flow; 
 θ is moisture content. 
 
In soils, changes in water content due to infiltration, redistribution, evaporation, and tran-
spiration bring about the simultaneous movement of water and salt.  A mathematical ex-
pression for one-dimensional transient conditions is derived from continuity considera-
tions, which leads to; 
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where,  Q is local concentration of solute in the adsorbed phase, meq/cm3 ; 

S is any sink or source rate term due to salt uptake, precipitation or                  
dissolution;  

 t is  time of travel of solute. 
 
For water q (z, t), the boundary conditions at the soil surface (z = 0) and at t > 0 are; 
 
q (o, t )    ≤    R (t)  
 
θd  ≤  θ ( 0, T )  ≤  θs 

 
Pd  ≤   P ( 0, t )   ≤  Pa. 
 
Whereas, during infiltration, 
 
R(t)  > 0,       p(0 , t )  ≤  Po   or   θ ( 0 , t )   ≤   θs. 
 
During drainage or redistribution,  R(t)  =  0 
 
and  during evaporation, 
 
R(t)  < 0        p ( 0,  t )    ≥   Pd     or       θ ( 0 , t )   ≥   θd 
 
where  q (0 , t ) is  volumetric flux of water at the soil surface, 
 p (0, t ) is  pressure and water contents corresponding to air dry soil; 
 p0, θ0  are highest pressure and soil water content, 
 R(t) is given potential flux at the soil surface. 
  
The lower boundary at a depth ‘z’ must always be chosen such that it is below the root 
zone and the wetting front, where the pressure gradient approaches ‘0’.       
     



National Institute of Hydrology, Roorkee, U.P., India  
 
406 

In a simple case of drainage, the bottom boundary conditions could be zero pressure (p = 
0) at the water table.  Thus, 
 
p = 0,   z = Z ,  t  ≥  0. 
 
P( z , 0 )  = Pn (z) ,       θ ( z , 0 )  =  θn (z),         0  ≤  z  ≤  Z. 
 
The boundary conditions at the bottom and the initial conditions are, 
t  ≥  0    z =  Z   = 0; 
t  =  0    0  ≤ z  ≤  Z;      C(z , 0 )  =  Cn (z) 
 
where Cn

ANALYTICAL SOLUTIONS 

(z) is the predetermined initial salt concentration profile. 
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The general solution is  
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Figure 1. Break Through Curves for tritium solutions as tracer when 

passing through soil columns. 
 
DISCUSSIONS AND CONCLUSIONS 

 
An analytical solution for the transport of solutes in unsaturated media has been devel-
oped for a constant flux and constant concentration.  The initial and boundary conditions 
chosen are, 
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C ( z , 0 )  =  0       ………..Initial condition 
 
C ( 0 , t )   =  Co               t ≥   0 
                     ……….. ..Boundary conditions  
C ( ∞ , t )  =  0                 t ≥   0 
 
The flow velocities and longitudinal dispersion coefficient are determined experimentally 
by allowing the solute to pass through the soil columns. The undisturbed soil columns 
were collected from Mallasandra, Chickballapur, and Makali village, Bangalore Rural.  
 

 
Figure 2. Break Through Curves for artifical nitrates (KNO3) solutions 

as tracer when passing through soil columns. 





 



National Institute of Hydrology, Roorkee, U.P., India  
 
410 

Basak and Murthy (1978, 1979) have attempted to provide useful and unique method for 
quick determination of the hydrodynamic dispersion coefficients from soil column ex-
perimental data. The percolated effluents from soil columns were collected and the con-
centration of solutes (tritium and nitrates) were measured (Ranganna, 2000).     
 
Figure (1) shows the break through curves resulted when tritium solution is passed 
through soil columns.   Figure. (2) shows the break through curves obtained after artifi-
cial nitrate solution is allowed to pass through the soil columns collected from three dif-
ferent sites.  Using the diffusion coefficients and average flow velocities computed from 
the soil columns experiments, the equation (6) is solved and the results are plotted Fig-
ure. (3) show the results obtained from the analytical solution for different diffusion coef-
ficients and places. A finite difference solution of the one dimensional transport model 
has also been developed to check the accuracy of the analytical solutions.  Figure. (4) 
show the results of the finite difference solutions of the transport equations. 
 

 
Figure 3. Analytical solution obtained for computed diffusion coefficients 

and velocity of flow. 
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The analytical expressions developed herein should prove helpful in making quantitative 
predictions on the possible contamination of groundwater supplies resulting from seep-
age of high salt concentrations in drainage ditches, canals and streams and from ground-
water movement through buried wastes.  The analytical solutions may be useful for veri-
fying the numerical accuracy of more comprehensive finite difference and finite element 
solutions to the transport equations as well as for investigating some aspects of the trans-
port process in porous media which has a distance dependent dispersion function of the 
described form. 
 

 
Figure 4. Finite difference solution of one-dimensional transport equa-

tion. 
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