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SYNOPSIS

A bivariate model for real-time flood forecasting is developed from Burg's
multivariate channel analysis. The model may be applied to any bivariate
hydrologic processes, provided that there exists cross-correlation between pro-
cesses. The model was tested for short-term flood forecasting for various
rainfall-governed events from five climatologically different watersheds. The
model is particularly suited for flood forecasting in the data-scarce regions,
since it does not require prior parameter estimation.

1.0 INTRODUCTION

A number of multivariate forecasting models have been developed in the last
quarter of the century. A good discussion of some of the models is given in
proceedings of two recent meetings: Workshop on Recent Developments in Real Time
Forecasting/Control of Water Resources Systems [11], and International Workshop on
Operational Applications of Mathematical Models (Surface Water) in Developing
Countries [5], and also by Salas et al. [8].

The most common forecasting models are time series models including AR, ARMA,
ARIMA, ARMAX, CARMA, TFN, state-space. These models are easy to use, but only for
certain hydrologic processes and under certain conditions. For complex processes,
the parameter estimation becomes more difficult. Rainfall forecasting models
(temporal and space-time models) lack the forecasting accuracy and cannot yet be
used for long-term forecasting. Their success depends on other technologies such
as radar, remote sensing, etc. Both long historical record and technical equip-
ment are needed to provide useful inputs for flood forecasting. The Bayesian
forecasting models employ Bayesian theory for forecasting, but have the same
problems as the time series models (excessive number of parameters). They are
also limited only to short-term daily forecasting, since they exclude higher order
dependencies.

The entropy forecasting models are still in the early developmental stage.

Currently, there are only three types of models. The first is general, and not
specifically developed for hydrological forecasting [9]. The second is based on
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the entropy-minimax approach and has been applied to long-term annual forecasting
of drought using seven stations in northern California [3]1. The third employs
maximum entropy spectral analysis (MESA), which was tested on Spring Creek in
Louisiana [7].

This study develops a bivariate recursive model for real-time flood fore-
casting for streamflow governed by one or more stochastic mechanisms. The model
is tested for short-term forecasting of the rainfall-governed streamflow.

2.0 MATHEMATICAL DEVELOPMENT OF THE MODEL

We study the bivariate hydrologic sequence of rainfall series and its runoff
response. The dependence of runoff on rainfall is expressed through cross-
correlation function (ccf). From known values of rainfall R(t) and runoff Q(t),
we may compute cross-correlation plz(k), extend it if necessary, and forecast the

next flood value(s). This forecasting is effective for small sampling time inter-
vals (STI) and long data base usually satisfied on large watersheds and for long
duration events when numerous sampling intervals are available before the occur-
rence of the upper rising part of the flood hydrograph. In that case, the ccf
need not be extended. However, for very small watersheds and for short duration
flash flood events, the data base is small. In that case, an extension of the ccf
is essential before the forecasting stage.

2.1 Algorithm

Let Tl denote the length of the known rainfall and runoff sequence and T the

length of the complete record. Then, we compute the ccf matrix and determine the
coefficients using the Burg algorithm for the bivariate hydrologic sequence [2].
General formulas for the coefficients are obtained after extending the ccf matrix
by one row or using the equation:
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where p(k) (k = 0, ..., N) are 2x2 ccf matrices, I is 2x2 identity matrix and the
superscript * denotes the matrix transpose. All other elements of eq. (1) are 2x2
matrices. F, and B, (j = 1, ..., N) are extension matrices essential for
forecasting.j The solutions of eq. (1) are expressed as matrix equations:
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2.2 Forecasting

In each forecasting step, the ccf matrix is recomputed and extended by one
row and column. Then the system of eqs. (2.1) - (2.5) is solved and FN’ BN

matrices are determined. Forecasting equations were developed by Krstanovic [6]
who used Fn (n =0, ..., N) matrices as weights for each rainfall-runoff pair Xt =

(Rt’Qt) such that
I F X = 0 (3)

From eq. (3), l-step ahead forecasting is
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and k-step ahead forecasting is
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Since the solution domain involves the bivariate stationary sequence of Gaussian
nature, both rainfall and runoff sequences must be Gaussian. From the nature of
the multivariate normal distribution [6], all ccf matrices must be positive
definite. Furthermore, all En and ccf matrices belong to the class of non-

negative definite matrices. Under these conditions, eq. (1) always has solution,
and the extension of ccf matrices satisfies maximum entropy conditions [2].

3.0 VERIFICATION OF THE MODEL

Necessary steps for real-time forecasting are: (a) Determine the nature of
the hydrologic event: long event, associated with a long record, or short
flash flood. (b) Transform and normalize the data (optionally). (c) For longer
STI's and short duration, high intensity rainfall, create shorter STI's assuming
some rainfall distribution within them, interpolate rainfall and runoff values,
and then proceed with multistep ahead forecasting with k > STI. (d) Evaluate the
performance of l-step ahead and multistep ahead forecasting by bivariate model.

The model was tested on five different hydrological records, as shown in
Table 1. These records belong to three different climatological groups:
(a) watersheds from southeastern USA (Goodwin Creek, Hillsborough River),
(b) watershed from the Indian monsoon climate (Krishna Wuna), and (c) watersheds
from central Italy (Tevere Torgiano and Tevere St. Lucia). The available STI's
ranged from 2 minutes (smallest watershed - Goodwin Creek) to 6 minutes and 1 hour
(medium and large watersheds). All STI's satisfied the forecasting rule specified
by Gosain [4], STI in the range 1/3 - 1/2 watershed lag time or 1/6 - 1/3 water-
shed concentration time. Thus, we can issue reliable forecasts from 1/2 hour
(Goodwin Creek watershed) to maximum several hours (other watersheds). Runoff was
" measured at the watershed mouth, except for the Goodwin Creek watershed. Rainfall
was recorded simultaneously by the rainfall stations located throughout the
watershed, and then weighted by the Thiessen method (all watersheds).

Runoff events on the Goodwin Creek watershed wore examined for different
seasons (spring and winter) and for different STI's. For smaller STI's and
forecast lead times (FLT's), relative errors in predicting time to peak were
greater than for larger STI's and longer FLT's. In forecasting the flood peak,
the magnitude of STI's was not proportional with forecast errors. A typical
example of forecasting the multiple flood event for STI = 10 min and FLT = 30 min
is given in Figure la. This spring event yielded three flood hydrographs, all
with sharp rising limbs with no intense rainfall before the first one. Thus,
forecasting of the first flood hydrograph was similar to ephemeral flood
forecasting. The Hillsborough River in central Florida is perennial, but mostly
governed by rainfall.  The presented forecast corresponds to a case with very
short STI (= 2 hours) and multistep ahead FLT (= 1 day) as shown in Figure 2. The
forecasts of the bivariate model were then better than simple forecast with STI =
FLT = 1 day.

For watersheds in central Italy, we found that for longer STI's and FLT's,
the relative forecast errors rose correspondingly. This was expected due to large
watershed areas. With STI = 6 minutes, the maximum reliable forecast was for
FLT = 1 hour. More reliable forecasts were not possible since significant
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GOODVIN CREEK WATERSHED

EVENT: 6/8 APRIL 1983, STI=10 MIN, FLT=30 MIN
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Figure 1. Goodwin Creek watershed forecasts: a. Bivariate model

forecasts, and b. state-space model forecasts.
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HILLSBOROUGH RIVER (FLORIDA)
PERIOD:DECEMBER 1962—MAY 1963,STI=FORECAST=1 DAY
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Figure 2. Hillsborough River forecasts: a. Bivariate model forecasts,
and b. state-space model forecasts.
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rainfall stopped long before the runoff peak was reached. This limited the
dimension of the ccf matrix.

The Krishna Wuna watershed was tested during the southwest monsoon season
(June-September), associated with very extensive precipitation (80 to 120 cm).
This season produced flood hydrographs of various shapes and long durations
(usually a couple of days). The STI = 1 hour, and appropriate FLT = 1 hour. The
record apparently required data with shorter STI1's, since we found that STI .=
6 min and FLT = 1 hour (10 step ahead forecast) significantly improved the results
in the early forecasting stage. A typical example of forecasting the flash flood
event is given in Figure 3a,

4.0 COMPARATIVE EVALUATION

We compared the forecasting results of the bivariate model and the state-
space model. The state-space model was fitted using Akaike's canonical correla-
tion technique and the recursive Kalman filter algorithm [1]. Two criteria were
employed for comparison of the forecasting models: (a) graphical or visual fit of
the forecast to the real-world data, and (b) numerical [10]: mean squared error
of the forecasts (MSE), coefficient of variation of the residual error (vl), ratio

of relative error to the mean (vz). ratio of absolute error to the mean (v3).

The state-space model was unable to initiate forecast during the early fore-
casting stage. For sudden flash floods, it also gave delayed and overpredicted
flood peaks, as shown in Figure 3b. In forecasting multiple flood hydrographs it
gave results comparable to the bivariate model, except usually for the first
hydrograph, as shown in Figures 1b and 2b. Numerical coefficients were comparable
for all cases, except in forecasting flood peak when the bivariate model was
usually better. We emphasize that two models were compared under the same condi-
tions, with no prior calibration of the model parameters. Thus, no information
about previous rainfall-runoff events was needed. To initiate the forecasting
algorithm, we only need first several measured rainfall-runoff values during the
test event,

5.0 CONCLUSIONS
From this study we conclude the following:

(a) A bivariate model was developed from Burg's multivariate channel
analysis., The explicit forecasting equations, valid for any
multivariate hydrologic process, were derived.

(b) The bivariate model is an extension of the univariate streamflow model
[6], where the autocorrelation function (acf) of streamflow is replaced
by ccf of rainfall and runoff processes.

(c) The model was tested for short term forecasting on five climatologically
different watersheds for various flood events governed by rainfall. The
model performed satisfactorily for all events considered.
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WATERSHED KRISHNA WUNA
EVENT: 7/8 JULY 1973, STI=FLT=1 HOUR
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Figure 3. Krishna Wuna watershed forecasts: a. Bivariate model
forecasts, and b. state-space model forecasts.
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(d) For forecasting, no prior calibration of the model parameters is needed.
Thus, the bivariate model may be particularly suited for flood fore-
casting in data-scarce regions where it would be difficult to calibrate
parameters of other sophisticated models (i.e., state-space model).

(e) The bivariate model and the state—spacé model were compared under the
same conditions. These models were comparable for single events on
large watersheds (i.e., Tevere watersheds). For sudden, very intense
flood flows, the bivariate model accommodated the rising part of the
flood hydrograph much better than the state-space model. It was
superior both with respect to flood warning (issuing forecasts on time)
and the hydrograph shapes.

(f) A disadvantage of the bivariate model is slight underprediction of the
flood hydrograph peaks,
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