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SYNOPSIS

The Contemporaneous Autoregressive Moving Average (CARMA) model is used
to forecast flows of the Ping and Nan Rivers in Thailand. Streamflow
forecasting is executed for one year ahead. The CARMA model provides only
limited information for forecasting streamflow conditions for this time-frame.

INTRODUCTION

Natural streamflows into reservoirs are not deterministic. Hence, it is
necessary to consider their random behaviour in the design and operation of
large scale water resources projects. Some information about the nature of
the random behaviour is available from the historical record of hydrologic
flow measurements. Unfortunately, the history of flows in itself in many ways
is inadequate for future planning purposes. The historical set of flows at a
specific location represents only a finite sample out of the infinite number
of potential flow sequences that could occur at that location in the future.
Planning a water resources project utilizing only the historical flow record
would be a very precarious practice since it is unlikely that the same
historical flow sequence will recur during any specified period of time in the
future.

To account for the effects of random streamflows in the planning process,
it has been customary to develop models that yield alternative potential flow
sequences which are statistically indistinguishable from the historical time
series.

The intent of the paper is to indicate the results of using one of the
types of the model, namely the Contemporaneous Autoregressive Moving Average
(CARMA) model, to forecast river flows for two rivers in Thailand.

REVIEW OF LITERATURE

Sudler [1927] was the first to synthesize flow sequences. Fifty annual
flow values were written on cards, the cards shuffled and dealt 20 times to
develop a 1000 year flow record. Sudler’s work generated flow different from
the historical data but did not provide flows more extreme than the 50 annual
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flow values in his deck. In addition, the auto-correlation structure of the
historic data was destroyed.

Thomas and Fiering [1962] developed a seasonal model which expresses
dependence between flows for successive months of the year by a Markov
process. Since the research of Thomas and Fiering, published work involving
synthetic hydrology has been profuse. A notable paper is that of Benson and
Matalas [1967] who discussed issues such as operational bias and the
importance of synthetic flows conforming to a particular distribution.

Intervention analysis by Box and Tiao [1975] and Hipel et al. [1977]
provides a means to statistically describe intervention effects and also
furnishes a stochastic model that can be used for applications such as
simulation and forecasting.

Moss and Bryson [1974] have found that the seasonal geophysical time
series exhibit autocorrelation structures which depend not only on the time
lag between observations but also the season of the year. In an effort to
account for these characteristics, a family of Periodic Autoregressive (PAR)
models is introduced. Certain PAR models are recommended for forecasting
monthly river flows by Noakes et al. [1985].

In general, water resources systems investigations may involve data
generation and forecasting of both model inputs and model outputs. Model
inputs are usually hydrologic variables, while model outputs are related to
water uses such as irrigation, hydropower and water supply. Sets of related
series defined at several points along a line, over an area or space are
multivariate time series [Salas, et al. 1980]. Multivariate time series may
also have been viewed as single or multiple series at a given site, having
statistically distinguishable properties at various seasons of the year. Good
reviews of multivariate modelling of water resources time series can be found
in Salas et al. [1985] and Hipel .[1986].

Previously, it was common for hydrologists to specify the exact form of
the multivariate model even before examining the data. For example, often the
model was assumed to be multivariate autoregressive (AR) lag one model
(denoted as AR(1l)) or a multivariate autoregressive moving average (ARMA with
one AR parameter and one MA parameter (denoted as ARMA(1,1)). Such a
procedure clearly leads to the possibility that the model will not fit the
data very well. This led to the finding that hydrologic sequences generated
from these models were inadequate [Finzi et al. 1975]. To overcome this
problem, Ledolter [1978] suggested the use of the general multivariate class
of ARMA models.

There are two principal disadvantages to the use of general multivariate
ARMA models in hydrology:

115 they are very complicated (the number of parameters increases
exponentially with the dimensionality of the model), and

2re an important feature is still being omitted, namely that the physical
structure of the system imposes restrictions on the model.

In response to the first disadvantage of general multivariate ARMA model,
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Salas et al. [1980] proposed the use of a multivariate ARMA model which was
restricted to have diagonal parameter matrices (i.e., the contemporaneous ARMA
model), arguing that this would reduce the number of parameters to be
estimated.

The CARMA model can, in many situations, cope with the second
disadvantage of the general multivariate ARMA model as well. A further
advantage of the CARMA model is that it can handle the case of time series
with unequal sample sizes, a situation commonly encountered in practice [Hipel
et al. 1985]. As is shown by Camacho [1984], it is possible to extend the
simulation technique given by McLeod and Hipel [1978] to cover the case of the
CARMA model. As illustrated by practical applications, the CARMA model can be
efficiently used to model hydrological and other environmental time series
[Camacho et al. 1985].

CASE STUDY HYDROLOGIC REGIME

The Bhumipol and Sirikit reservoirs are located in northern Thailand.
The climate of these catchment areas is influenced by the southwest monsoon,
which usually starts in May and finishes in October. The depression storms
from the South China Sea in September and October produce peak streamflows
into the reservoirs.

Historical flow records from April 1952 to March 1986 show that the
ayerage annual inflow of the Ping River into Bhumipol reservoir is 195.7
m~/sec while the average annual inflow of the Nan River into the Sirikit
reservoir is 185.7 m”/sec. Flow patterns of the Ping River and Nan River are
presented in Figures 1 and 2, respectively.

Various stochastic models are available for use in streamflow generation
and forecasting. One such model is the autoregressive moving average (ARMA)
model.

In general, for seasonal river flow data, seasonal differencing is
usually required, to reduce a seemingly non-stationary or unstable series to
an apparently stationary stable series that is easier to model. The procedure
of simplifying the series of data by seasonal differencing before modelling is
often recommended in the literature (e.g. Pandit and Wu, [1984]).

If the model is used for forecasting purposes, differencing has the
desirable property of preserving the seasonal wave pattern in the eventual
forecasting function. For simulation purposes, seasonal differencing means
that the process is nonstationary and therefore, by definition, the simulated
data are not restricted to any mean level within each season.

Accordingly, it is appropriate to first transform the data to remove
seasonality. Then a suitable stationary non-seasonal model can be fit to the
data. The procedure recommended by McBean and Hipel [1976] is to initially
choose a suitable transformation technique to remove seasonality. Then, the
proper ARMA model can be selected by wutilizing the three stage modelling
procedure of identification, estimation, and diagnostic checking.
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Figure 1 Flow Pattern of the Ping River at Bhumipol Dam
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Figure 2 Flow Pattern of the Nan River at Sirikit Dam
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In this study, after the parameter estimates have been obtained [Camacho
et al. 1985, 1987a, 1987b], the cross correlations of the residuals of the two
time series were calculated. The cross correlations at lag zero show values
significantly different from zero. This indicates that the CARMA model could
also be employed to model these hydrological time series.

The Box-Jenkins procedures of model building was applied to the two
series of mean monthly flows, the Ping River and the Nan River. The
historical streamflow data base is 34 years (from April 1952 to March 1986)
reflecting data obtained from the Electric Generation Authority of Thailand
(EGAT) .

The basic tools for identification are a plot of the original time
series, and plots of the autocorrelation (ACF) and partial autocorrelation
(PACF) functions. The plot of the original time series indicates seasonality.

Figure 3 is a plot of mean monthly flows, and Figures 4 and 5 are plots
of the ACF and PACF of the sample time series for the Ping River. Examination
of these plots indicates a strong seasonality. The ACF and PACF are
significant at lag one month, and twelve months, and the cycle is observed to

repeat every twelve lags. Therefore, it is assumed that deseasonalization or
differencing is necessary.

DESEASONALIZATION

To remove seasonality, the given data can be standardized by subtracting
the monthly mean of the time K series from each of the monthly observations and
then dividing the result by the monthly stardard deviation.

Let zr,j denote the observation in the Lol Year (x=1,2,... , N where N
= N/S, and § is the seasonal period) and the jth season (j = 1,2,.;. v )
For the jth season

e [z9] vy )
VAR [zpj)] ~ _f (2)

where Zi 3 indicates a possible Box-Cox [Box and Cox, 1984)
transformation.’

The time series: (1)
Z wH
A _ng__i (3)
lj j

is called the deseasonalized series, and it is assumed that Xr,j can be
modelled by an ARMA model [McLeod and Hipel, 1978] '

(B) X, = O(B) o, (4)
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Figure 3 Mean Monthly Flow of the Ping River
at Bhumipol Dam
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for each season can be estimated by

The parameters ¥y and 9%
N
= (1)
p=s< ) z M (5)
! r=] *J
and ..
N
~ 1 E 2 ~ 2
- o (z_ , - w (6)
3N ey r,]

The three stage modelling pfocedure is then repeated on the
deseasonalized series.

The resulting ACF exhibited characteristics of attenuation at lag 6
months; however, the PACF is significant at lag one and lag two months (see
Udayasen [1988] for further details). From these observations it seems

reasonable to suspect that a model of order greater than one will provide a
better fit to the data.

MODEL FIT TO DESEASONALIZED SERIES
Following .the Box-Jenkins modeiling procedure [Box and Jenkins, 1976],
the proper model for both deseasonalized series is the ARMA (2,0) model,
Table 1 Parameter Estimates for an ARMA (2,0) Model Fit
to the Deseasonalized Ping River and Nan River

Parameters Estimates Standard Error

1. The Ping River

¢ 0.4862 0.0490
¢, 0.1415 0.0490
2

¢, 0.6643

2. The Nan River

¢ 0.4920 0.0490
) 0.1484 0.0490
2

o 0.6527

The parameter estimates for an  ARMA (2,0) process with X = 0 are
displayed in Table 1 and the finite difference equations are shown in
Equations 7 and 8.
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Figure 5 Autocorrelation Function for Historical Flow
of the Nan River at Sirikit Dam

0.2
c
L
©
5
w 0.0+
c
L2
-
S
[
E 0.0
:
5
o
B -0.19
=
R,
n
]
o

-0.2 T T T T T T T T T T T

0 4 8 12 16 20 24 28 32 36 40

Lag (months)

Figure 6 Residual Autocorrelation Function for Deseasonalized
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APPLIED OPERATIONAL HYDROLOGY
‘The finite difference equation fer:
1, The Ping River is:
(1 - 0.4862B - 0.14158%) [4n(Z, - 1)] = o (7)
2 The Nan River is:
(1 - 0.49208 - 0.1484B%) [An(Z, - )] = o, (8

The residual autocorrelation function for the Ping River is presented in
Figure 6.

APPLIED CARMA MODEL

To elucidate the relationship between these two time series, the cross
correlation functions of the residuals have been estimated. At lag zero, a
significant difference of cross correlation has been found (Figure 7). This
indicates that the CARMA model is adequate to model these time series (Camacho
[1985]). ]

Using the parameter estimation developed by Camacho [1985] the parameter
estimates for the CARMA process are shown in Table 2.

COMPUTATIONAL AND COMPUTER PROGRAMME

The computations for the analysis of the historical streamflows and the
Box-Jenkins procedure [Box and Jenkins, 1976] were performed using the McLeod
and Hipel time series package [McLeod and Hipel, 1978]. The parameter
estimates for the CARMA model were obtained using Camacho’s CARMA parameters
estimation programme [Camacho, 1984].
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Table 2 Parameter Estimates for an CARMA Model Fit to
the Deseasonalized Ping River and Nan River

Parameters Estimates Standard Error

1. The Ping River

b1 0.5053. 0.0465
82 0.1184 0.0465
o* 0.6645
o
2. The Nan River
1 0.5320 0.0465
62 0.1186 0.0465
> 0.6536
a

The streamflow generation of a time series from a given CARMA model was
programmed in FORTRAN 77. This programme generates the time series:

Z, i=1,2,..., LW as
IP 1Q
z, - jzl ARPSZ; ;5 + PMAC + ay - jzl PMAS ;0 (9)

where
ARPS = vector of length IP containing the AR parameters of the model;
PMAC = over all MA parameters;
PMAS = vector of length IQ containing the MA parameters of the model;
g = the white noise series;
IM = Length of the time series to be generated; and

Z, = generated time series.

APPLIED OPERATIONAL HYDROLOGY

The streamflow forecasting of a time series from a given CARMA model was
programmed in FORTRAN 77. This programme computes the time series using a
fitted CARMA parameter. The model is of the form:
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where estimates of the parameters 90,¢1,¢2, s ,¢p,91,82, Lo

are the inputs PMAC., ARPS and PMAS, respectively.

The computational technique is described in Box and Jenkins 1976.

FORECASTING

The contemporaneous autoregressive moving average (CARMA) model was
selected as the streamflow generation model for the Ping and Nan Rivers.
Simulated flows were generated for the 408 month period. A plot of the
historical monthly mean and simulated flows for the Ping River is presented in
Figure 8. The results indicate that the simulated flows closely resemble the
historical flow data.

Streamflow forecasting was executed for a one year period (April 1986 to
March 1987). The comparisons among the historical, forecast and measured
monthly mean flows are presented in Figures 9 and 10 together with the upper
and lower confidence level bounds. The results clearly illustrate that the
forecast and measured monthly mean flows are less than the historical mean
flows. They indicate that the model predicted low flows for this period, but
the measured monthly mean flows were lower than the model predicted,
especially for the Ping River (Figure 9). 1In September and October 1986 the
measured values were less than the lower confidence level.

CONCLUSIONS

It can be concluded that the streamflow forecasting for one-year ahead by
CARMA mode provides only limited information for conditions of Thailand for
the one-year reservoir operation plan.
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