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ABSTRACT

Hydrodynamic models of overland flow and channel flow are based on
the shallow water-wave theory that is described by the St. Venant (SV)
equations. These models are derived from either the kinematic-wave (KW)
approximation, the diffusion-wave (DW) approximation or the dynamic-wave
(DYW) representation of the SW eguations. In thHe studies reported to
date, different types of criteria have been established to_evaluate the
adequacy of the KW and DW approximations, but no explicit relations either
in time or in space between these criteria and the errors resulting from
these approximations have been derived yet. Furthermore, when doing
hydrologic modeling, it is not evident if the KW and DW approximations are
valid for the entire hydrograph or a portion thereof. In other words,
most of these criteria take on fixed point-values for a given rainfall=
runoff event. This paper attempts to derive, under simplified conditions,
error equations for the KW or DW approximation for space-independent
flows, which provide a continuous description of error in the flow-
discharge hydrograph. A dimensionless parameter Y is defined which
reflects the effect of initial depth of flow, channel-bed slope, lateral
inflow, and channel roughness. The kinematic wave, diffusion wave and
dynamic wave solutions are parameterized through y. By comparing the
kinematic wave and diffusion wave solutions with the dynamic wave
solution, equations are derived in terms of ¥ for the error in the

kinematic wave and diffusion wave approximations.

INTRODUCTION
Physically-based models of overland flow, channel flow, surface
irrigation, and many other phenomena involving unsteady, free surface open

channel flows are based on the shallow water wave (SWW) theory. These
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models are based either on the kinematic wave (KW) approximation (Light-
hill and Whitham, 1955), diffusion wave approximation (DW) or diffusion
analogy (DA) or dynamic wave (DYW) representation. Lighthill and Whitham
(1955) showed that at the Froude numbers less than one (appropriate to
flood waves) the dynamic waves are rapidly attenuated and the kinematic
waves become dominant. Using a dimensionless form of the St. Venant (sSV)
equations, Woolhiser and Liggett (1967) obtained what is now referred to
as the kinematic wave number, K, as a criterion for evaluating the
adequacy of the KW approximation. For K greater than 20, the KW approxi-
mation was considered to be an accurate representation of the SV equations
in modeling of overland flow. However, no relation between K and the
error in the KW approximation was suggested. Morris and Woolhiser (1980)
modified the above criterion with an explicit inclusion of Froude number,
Eqs and.showed, based on numerical experimentation, that FOZK 2 5 was a
better indicator of the aaequacy of the KW approximation. A relation
between this criterion and the error resulting from the KW approximation
was not derived, however.

Using a linear perturbation analysis, Ponce and Simons (1977)
derived properties of the KW and DW approximations as well as DYW repre-—
sentations in modeling gf open channel flows. They derived a spectrum

}showing the regions offthe validity of the'KW and DW approximations.
Menendez and Norscini (1982) extended the work of Ponce and Simons by
including the phase lag between the depth and velocity of flow. Their
results were, however, similar to those of Ponce and Simons (19/7). 1In
another but similar study, Ponce, et al. (1978), based on propagation
characteristics of sinusoidal perturbation, derived criteria to evaluate
the adequacy of the KW and DW approximations. Daluz Viera (1983) compared
solutions of the SV equations with those of the KW and DW approximations.
for a range of Fy and K, and defined the regions of validity of these
approximations in the K-F( space.

Fread (1985) developed criteria for defining the range of applica-

tion of the KW and DW approximations. These were based on an analysis of
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the magnitude of the normalized errors {n the momehtum equation due to
omission of certain terms. In a comprehensive study, Ferrick (1985)
defined a group of dimensionless scaling parameters to establish the
spectrum of river waves, with continuous transitions between wave types
and subtypes. With the aid of these parameters he was able to discern
when the KW and DW approximations would be valid.

In most of these studies, different types of criteria have clearly
been established to evaluate the adequacy of the KW and/or DW approxima-
tions, but no explicit relations either in time or. space between these
criteria and the errors resulting from these approximations have been
derived yet. Furthermore, when doing hydrologic modeling it is not evi-
dent if the KW and DW approximations are valid for the entire hydrograph
or a portion thereof. 1In other words, most of these criteria take on
fixed point values for a given event. The objective of this study is to
derive, under simplified conditions, error equations for the KW and DW
approximations for space-independent flows, which specify errors as a

function of time.

SHALLOW WATER-WAVE (SWW) THEORY
The SWW theory can be described by some form of the SV equations.
For flow over an infiltrating plane subject to uniform rainfall, these
equations can be written in one-dimensional form on a unit width basis as:

Continuity equation,
oh . 9 e 1
o Fox (M ma-f v

Momentum equation,

du 9 il .2 i = -
5 + == (2 u‘ + gh) g(SO S.)

(2)
f
where h is the depth of flow (L), u is local mean velocity (L/T), q is

gk

uniform rainfall intensity (L/T), f is uniform infiltration rate (L/T), g
is acceleration due to gravity, x is space coordinate in the direction of

flow (L), t is time (T), Sy is bed slope, and Sg is frictiopal slope.
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Note Q@ = uh is discharge (L3/TL) per unit width. S¢ can be approximated

as
= —_—
S p (3)

where B is some resistance parameter. If the Chezy relation is used for
representing the friction then B = g/Cz, where C is Chezy'’s resistance
parameter,

The DYW representation employs the full form of .equations (1) and
(2). The KW approximation is based on equation (1) and equation (2) with

the left side omitted,

g(s, - S_) —=—=20 (4)

The DW approximation uses equation (1) and equation (2) with local and

convective acceleration deleted,

oh _ - e
e g(so Sf) = (5

Analytical solutions of the SV equations or their variants in the KW
and DW approximations are tractable only for simple cases. To that end,
the space independent case is considered in this study. 1In this case, the

water surface is flat.

Space—-Independent Flows

For space-independent (or uniform) flows, equation (1) takes the
form

dh o o =
= q f (6)

and equation (2) becomes

dh _ - I e 3
at g(S0 Sf) o (7)
Equations (6) and (7) are the governing equations for the DYW
representation for spatially uniform flows. The KW approximation is based
on equation (6) and equation (7) with the left side dropped,
qu
— |8 - — =0 8
9(50 f) o (8)
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The DW approximation uses equation (6) as well as equation (8).
Therefore, for the spétially uniform flows, the KW aéproximation is
identical to the DW approximation. Equation (8) can also be approximated
by neglecting the momentum exchange between lateral inflow and
longitudinal channel flow as

Sg = S¢ (9)
which can be expressed as equation (3). Similarly, equation (7) can be

written as

gh _ = 10
at g{S0 Sf) (10)

Depending upon the presence or absence of f, equation (6) can also
be simplified. If £ = 0, then

dh _ 11
dt q (11)

Types of Scenarios

Depending upon the presence of lateral inflow and infiltration, four
different scenarios can be considered:
1. f =0, g=gqp = constant
This includes the case g = 0
24 q = gp = constant

f = fO = constant

This includes the case q = £ =0
3. q-£f =0, g= gy = constant

This includes the case q = £ = 0
4. q=0, £ =1£f; = constant.

This includes the case f = 0

It may be noted that the scenario with g = 0 in equation (1l) or (g -
f) = 0 in equation (6) applies to the recession hydrograph. The same

applies if (q - £f) < 0.

Initial Conditions

Two types of initial conditions can be assumed:

(1) h(0) = hg, u(0) = ug, (12)
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(2) u(0) =0, h(0) =0 (13)

Scenarios for Determination of Error

Error equ%;ions have been derived for the KW and DW approximations
under the above~hentioned conditions for four differentlscenarios (Singh,
1992a, 1992b). To summarize, the following cases were treated and are
summarized in Table 1:

(1) Scenario 1: Equations (11) and (8) are the governing
equations for the KW approximation, and equations (11) and (7) for the DYW
representation, with the initial condition given by equation (12).

(2) Scenario 1: Equations (11) and (8) are the governing
equations for the KW approximation, and equations (11) and (7) for the DYW
representation, with the initial condition given by equation (13).

(3) Scenario 1: Equations (11) and (9) are the governing
equations for the KW approximation, and equations (11) and (7) for the DYW
representation, with the initial condition given by equation (12).

(4) Scenario 1: Equations (11) and (9) are the governing
equations for the KW ;approximation, and equations (11) and (7) for the DYW
representation, with the initial condition given by equation (13).

(5) Scenario 1: Equations (11) and (9) are the governing
equations for the KW approximation, and equations (11) and (1U) for the
DYW representation, with the initial condition given by equation (12).

(6) Scenario 1: Equations (11) and (9) are the governing
equations for the KW approximation, and equations (11) and (10) for the
DYW representation, with the initial condition given by equation (13).

(7) Scenario 2: Equations (6) and (8) are the governing equations
for the KW approximation, and equations (6) and (7) for the DYW
representation, with the initial condition given by equation (12).

(8) Scenario 2: Equations (6) and (8) are the governing equations
for the KW approximation, and equations (6) and (7) for the DYW

representation, with the initial condition given by equation (13).
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(9) Scenario 2: Equations (6) and (9) are the governing equations
for the KW approximation, and equations (6) and (7) for the DYW
representation, with the initial condition given by equation (12).

(10) Scenario 2: Equations (6) and (9) are the governing equations
for the KW approximation, and equations (6) and (7) for the DYW
representation, with the initial condition given by equation (13).

(11) Scenario 2: Eguations (6) and (9) are the governing equations
for the KW approximation, ana equations (6) and (10) for the DYW
representation, with the initial condition given by equation (12).

(12) Scenario 2: Equations (6) and (9) are the governing equations
for the KW approximation, and equations (6) and (10) for the DYW
representation, with the initial condition given by equation (13).

(13) Scenario 3: Equation (11) with g = 0 and equation (8) are the
governing equations for the KW approximation, and equations (11) and (7)
Zor the DYW representation, with the initial condition given by equation
(12) .

(14) Scenario 3: Equation (11) with g = 0 and equation (9) are the
governing equations for the KW approximation, and equations (11) and (7)
for the DYW representation, with the initial condition given by equation
(12 .

(15) Scenario 3: Equation (11) with g = 0 and equation (9) are the
governing equations for the KW approximation, and equations (11) and (10)
for the DYW approximation, with the initial condition given by equation
(12) .

(16) Scenario 4: Equations (6) with q = 0 and equation (8) are tﬁe
governing equations for the KW approximation, and equation (6), with q = 0
and equation (7) for the DYW approximation with the initial condition
given by equation (12).

(17) Scenario 4: Equation (6) with q = 0 and equation (9) are the
governing equations for the KW approximation, and equation (6) with g = 0
and equation (7) for the DYW approximation, with the initial condition

given by equation (12).
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(18) Scenario 4: Equation (6) with q = 0 and equation (9) are the

governing equations for the KW approximation, and equation (6) with q = 0
and equation (10) for the DYW approximation, with the initial condition
given by equation (12).

We consider cases 6 and 7 for derivation of error equations, where

f =0, and q = qq-

ERROR EQUATIONS: USE OF NONZERO INITIAL CONDITIONS

Kinematic Wave and Diffusion Wave Solution

Equation (11), subject to equation (12), has the solution:
h = ho + qot (14)
From the kinematic wave approximation,

S

It is convenient to define a dimensionless time 1T as

_h _hpt dot

T = h #0, 121 (16)

hq hy 0

Equation (14) can be expressed as
h=h01

In dimensionless form, the flow depth is

w W o
By Sg-= ¢ (17)
Equation (15) can be expressed as
Sph
oo | 0 0)0.5 0.5 (18)

In dimensionless form

v =4 - £0.5 (19)
U
where
Sph
U= ( 0 0}0.5 (20)

In terms of discharge Q,

S
o(t) = :BQ)°-5 (hy + qot)l-S (21)

Equation (21) can be expressed in terms of 1T as
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S !
Q(n) =z 03 nge3 113 (22)

In terms of dimensionless discharge Qu,

= 1.5
Q, = %3 =1 (23)
where
S
Q0 = (=% nl:5 (24)

0 B o

The kinematic wave (KW) and diffusion wave (DW) solution is given by
equations (14) and (15). The dimensionless velocity and dimensiconless
discharge are plotted against T, as shown in Figures 1 and 2, respec-—

tively. Evidently, the velocity increases parabolically with T.

Dynamic Wave Solution

Equation (11) has the solution given by equation (14). Egquation (2)
reduces to

du _

2 - gp uo (25)

s
g h

0

This can be expressed in terms of T as

du . By | g u? (26)
dt dg apT
In dimensionless terms,
dv _ 9 0.5 _ 9 0.5 v?
& = Z_ (BsS.h - = h A (27)
If
2
4g BSnsh
- 29 BSghy  en
)
0
L AL R o K (28)
dt 2 2 1 2 21 '

In terms of discharge, equation (25) can be expressed as

2
do - 9 h _ N (29)
at " Fp ¥ qpt 2 " 9% g * 9t gp hg + dot)

Equation (29) can be expressed in terms of T as

2
40 o Q4 Soho 9B 2 (30)

In terms of dimensionless discharge, equation (30) becomes
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VELOCITY

0

Figure 1.
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TAU (H/Ho)

Dimensionless kinematic wave velocity as a function of
dimensionless time.
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Figure 2. Dimensionless kinematic wave discharge as a function of
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dQ* Q* g

: 2
29 9 0.5 ., _ 9 0.5 9x
+ = (SOBhO) 2 0 (soﬂho)

dr T ..:2
or
. 0 o?
L SR AR o ]
it T T3 3 -2 (3]

Equation (28) is a special case of the Riccati equation, and so is
true with equation (31) . The dynamic wave (DYW) solution is given by
equation (14) and the solution of equation (28).

When 7. = 1, v =1, and dv/dTt = 0. With these initial conditions in
hand, equations (28) and (31) were solved by using the 4th order Runge-
Kutta method. For various values of y, the dimensionless velocity and
dimensionless discharge are plotted against 17, as shown in Figures 3 and
4. For a fixed ¥, v increases with increasing 1, and for a fixed 1, it
increases with Y. However, for Y 2 1.5, v is not very sensitive to y.

The maximum velocity is obtained by equating equation (28) to zero:

v = 105 (32)

.where is the same as the kinematic wave velocity.

Error in KW and DW Approximations

The error can be defined as

=VK"VD 33
E = (33)

and the error differential equation as

dE _ (E+1) Vg _ (g+1)2 dvg (34)
dzt Vi dt VK drt

where v, is given by equation (19), and vp by the solution of equation

(28) . To that end,
d v
VK 1 = K (35)

—_— v
dt 270.5" D E+1
By inserting these terms, and equations (19) and (28) into equation (34),

one obtains

dE _ 2 - >
- CO(t) + Cl(y,r) E + Cz(y,t) E<, E(1) 0, T 21 (36)

where
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Figure 3. Dimensionless dynamic wave velocity as a function of

dimensionless time.
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DISCHARGE
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Figure 4. Dimensionless dynamic wave discharge as a function of
dimensionless time.
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C(T) = —i- (37)

0 21
S - 0ix5
Cl(T,T) T (i 2Tz ) (38)
r
C . AY7T) = = (39)
2 270.5

Equation (36) is a Riccati equation and has to be solved numerically.
Equation (6.21) also holds for error in discharge. This equation was
solved by using the 4th order Runge-Kutta method. At T = 1, E(1) = 0, the
error derivative dE/dT was obtained by use of forward differencing. The
distributicn of error in T is shown in Figure 5. The distribution is
highly skewed, with a sharp rise and gradual decline over an extended
range of T. For a fixed T, error increases with decreasing Y, and for a
fixed ¥y, it follows the distribution of Figure 5. Except for a small
range of T, 1 £ T £ 25, the error derivative is almost independent of Y.
It has the highest value in the beginning, declines sharply, then rises a
little bit, and tends to asymptotically approach a constant wvalue. Cp is
independent of Y, and is inversely proportional to T and is always
positive. Both C; and C, are quite sensitive to T, and are negative for
all values of 7. Both coefficients have the lowest wvalue in the beginning
and increase with increasing 1. For a fixed 1, both have higher wvalues

with lower values of Y and vice versa.

ERROR EQUATIONS; USE OF ZERO INITIAL CONDITIONS

Kinematic Wave and Diffusion Wave Solution

Equation (11), subject to equation (13), has the solution
Equation (2) takes the form

S
(EQJD.S hO.S (41)

It is convenient to define a dimensionless parameter T as

tg

—_ g, T20 (42)
9o

L A

In terms of 1, equation (40) becomes
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In dimensionless terms h,,

h =0
* ho

where

I0
h TE
0 g

T
*

and equation (41) becomes

S
0,0.5 0.5
u(t) = (=)~ ¥ 1
% 'SP
er
V-=H= 10'5
U
where
N $0,0.5
U= q 3

In terms of discharge Q,

s
0(t) = (_Bg)o.s gl+5 ¢1.5

Equation (49) can be expressed in terms of T as

S q3
(1) = ( 0)0.5 0_ 1.5

g1.5

In terms of dimensionless discharge Q. = Q/Qq, equation (43) becomes

Qx = gl-3

where

0

S q3
6. = 0)0.5 0

gl.S

The kinematic wave (KW) and diffusion wave (DW) solution is given by

equation (43) and (47). The dimensionless velocity and dimensionless

discﬁarge against T follow the curves shown in Figures 1 and 2,

respectively.

The velocity increases parabolically with T.

349

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)



Dynamic Wave Solution

Equation (11) has its solution given by equation (39). Equation (2)

takes the form given by equation (25). Therefore,

de . L L 2

at 2 2t B
where

I = 2(sqgP) %3, y = 454gp = 10-3 ©(54)

The dimensionless discharge Q. can be expressed as

Q2
*

(55)
2

dOx O«
T

.
& ..
at 7"

(STl

The dynamic wave (DYW) solution is given by equation (43) and the solution
of equation (53).

Equation (53) was solved by using the 4th order Runge-Kutta method.
At T = 0, v = 0 and the derivative dv/dt has a singularity. The
derivative at T = 0 was estimated by using the forward differencing.
Dimensionless velocity and dimensionless discharge against T for wvarious
values of Y will be similar to those shown in Figures 3 and 4. For a
fixed T, the velocity is higher for higher values of ¥ and vice versa.
For y 2 1.5, it is wvirtually insensitive to Y. The maximum velocity is,

again, the kinematic wave velocity.

Error in KW and DW Approximations

Because the dimensionless solutions in this case are of the same

form as im the preceding case, the error equation, by analogy, should

follow
57 Colm +CT ) B+ Cp(r, 1) EZ, E(0) =0, T 20 (56)
where
(™ = 5 (57)
c (v = 2,1[— (1 - 21 19-5) S
Bl W = = 215.5 (59)
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Equation (56) is a Riccati equation, and was solved by using the 4th order
Runge-Kutta method. This equation also describes error in discharge. The
error derivative has a discontinuity at T = 0. The value of the
derivative can be estimated by using finite differences in a manner
similar to that of the previous section.

The distribution of error in the KW or DW solution is shown in
Figure 6 for various values of Y. For a fixed T, the error increases with
decreasing Y. For a fixed ¥, the error distribution is highly skewed,
with a sharp rise to a peak and then recession over an extended T,
approaching almost a constant value. The error derivative the highest
value in the beginning, declines sharply for 0 = 1 < 3, and approaches a
constant value. For T 2 15, the error derivative is virtually independent
of ¥, and for T < 15, it is only marginally sensitive to y. Cq is
independent of Y, is always positive, and is inversely proportional to T.
C, assumes both negative and positive values, depending upon Y and T.
Except for Yy = 0.5, C; is always negative, with the smallest wvalue in the
beginning and approaching almost a constant value as 7 becomes large. C5
is always negative, has the lowest value in the beginning and rises to
almost a constant value as 1T increases. It is inversely proportional to

the square root of 7T.

CONCLUSIONS
For space-independent flows, the kinematic-wave and diffusion-wave
approximations are sufficiently accurate when the dimensionless parameter
Y 2 3. This parameter reflects the effect of initial flow depth, bed
slope, lateral inflow, and channel roughness. The error of these approxi-
mations declines exponentially when the dimensionless time exceeds 5. The

dimensionless time is obtained with the use of initial depth.
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