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ABSTRACT

A finite element model with options of simulating the
kinematics, diffusive, and complete hydrodynamic behaviours of
river flow has been developed. The computer program is written in
FORTRAN 77 and the program is portable and can be run on both
microcomputers and mainframe computers. The model performance with
all the three options has been presented for channels of irregular
cross-sections. A test application of the finite element
hydrodynamic model to the river Jamuna in Bangladesh has been made.
The results of test application, in terms of water level and
discharge have been compared with the results of a well calibrated
modelling system, the MIKE 11 and found very close and
satisfactory.

INTRODUCTION

Mathematical modelling of river flow has become an accepted
powerful engineering tool these days. Finite difference methods
have been extensively used for river flow simulation and currently
a good number of software are available commercially. But the
finite element method is the new comer in river flow simulation,
aithough this method has been used largely in sub-surface flow
simulation. In the present study, considering some advantages, the
finite element method coupled with the Galerkin’s weighted residual
principle is applied to solve the one dimensional spatially varied
unsteady flow for predicting the .discharge, depth, and velocity
in rivers. The model developed has options to simulate the
kinematics, diffusive, and complete hydrodynamic behaviours of
rivers.

The model performance with all the three options has been
presented for channels of irregular cross-sections. A test
application of the finite element hydrodynamic model to the river
Jamuna, one the largest river in Bangladesh has been made. The
results of the test application have been compared with the results
of the MIKE 11 modelling system(DHI, 1989), developed by the Danish
Hydraulic Institute, Denmark.
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THEORETICAL CONSIDERATIONS
Governing Equations

The treatment of unsteady flow in an open channel is credited
to Barre'de Saint Venant, a French mathematician who developed the
complete one-dimensional equations of unsteady flow on the
following assumptions:

(i) The flow is one dimensional i.e. the velocity is uniform over
the cross-section and the water level across the section is
horizontal.

(ii) The stream 1line curvature is small and the vertical
acceleration is negligible, hence the pressure is hydrostatic.

(iii) .The effects of boundary and turbulence can be accounted for
through resistance laws analogous to those used for steady state
flow.

(iv) The average channel bed slope is small so that the cosine of
the angle it makes with the horizontal line may be replaced by
unity.

In terms of depth of flow, y, and discharge, Q, the Saint
Venant equations may be written as:
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In terms of depth of flow, y, and velocity of flow, @, these
equations may be written as:
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where, A= area of flow, C= Chezy resistance coefficient,

= acceleration of gravity, y= stage above horizontal level,
Q=discharge, & = momentum distribution coefficient, R= hydraulic
radius, q= later inflow, and v= velocity of flow.
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Boundary Conditions

Upstream stage or discharge hydrographs are always required
for natural rivers and can usually be obtained easily. Since the
real stage and discharge relationship is multivalued in unsteady
flow, the results along the downstream reaches of the model will be
distorted if a steady flow (single-valued) rating curve is applied
at downstream limit. Therefore, it may be advantageous to use water
stage hydrograph at downstream boundary. However, while water stage
hydrographs may be available for some past floods, and can be used
for model calibration, they will not be. known a prior for the
exploitation runs unless the models ends at a lake or reservoir, or
tidal condition.

Forms of Models

The solution of the complete one-dimensional unsteady flow
equations often results in erormous computer time and storage
particularly for floods of long durations. This has attracted
significant interest in the use of simplified models, such as the
kinematic and diffusion flow models. If the momentum equation is
rearranged with the friction slope, Sf being the subject of the
formula and letting q(x,t) equal zero, the resulting equation is:
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Steady uniform flow
(Kinematic model)

Steady non-uniform flow
(Diffusive model)

Steady non-uniform flow

Unsteady non-uniform flow
(Dynamic model)

In rivers with sufficiently steep slope and without backwater
effects the terms can be neglected as being small compared with
the bed slope. The resulting relationship is known as the kinematic
model, and the momentum equation is expressed simply as:

niv: 2
T 4
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S,=8,= for Manning's equation and

S,-So-c—v; for Chezy's equation
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where n, is the Manning’s roughness coefficient and M is the
Strickler coefficient.

The kinematic model has been successfully applied in
simulating flows in natural floods in steep river slopes of the
order of 2m per km or more, overland flows, and slow rising
hydrographs. The solution of kinematic equation requires one
initial value of dependent variable at each points and one boundary
condition. Dropping inertia terms and differentiating with respect
to x and t the momentum equation may be written as parabolic
partial differential convection-diffusion equation which is a good
model for flood propagation if the inertia terms are in fact
negligible. It is capable of presenting the backwater influence of
tributaries, dams, etc., since it requires two boundary conditions
one upstream and one downstream, as in the case for any diffusion
equation. )

FINITE ELEMENT FORMULATION
Figure 1 shows a mesh for the finite element method. Here, the

solution is approximated by a piecewise continuous function such as
a series of straight line.
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Figure 1. Finite Element Computational Mesh
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The piecewise continuous function can be expressed as:

N
h(x,t)=;:¢j(X)bj(t)----..-..-----..-...--.(6)
=1

where the §.(x) are interpolating functions, h.(t) are a time
varying appr&ximations of the exact continuous éolution at mesh
peint j, and N is the <otal number of nodes.

After the piecewise continuous approximation has been written,
it must be adjusted to give a best fit to the exact continuous
solution. Two techniques are commonly used to perform the
adjustment, the method of weighted residual and an approach based
on the calculus of variation.

When the piecewise continuous approximation is substituted
into the partial differential equation, a residual will exist,
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because, the exact Eontinuous solution is not matched, The residual
may be defined as:

R=<L(h)>-L{h)bo--------a-.unn----u.-----01(7)

where L (h) is the partial differential equation and <L(h)> is the
discretized form of the partial differential equation. To obtain a
‘best fit' between the piecewise continuous approximations and the
exact continuous solution, the residual R must be minimized. In
the method of weighted residuals, the residual R is multiplied by
a series of weighing functions, Wl, integrated over the length of
the solution domain L and set to zero:

In principles, there are now N equations for N unknown
solution variables at the mesh points.

Implementation of the finite element formulation of the flow
equations is carried out in four basic steps: (1) channel
discretization and selection of approximaticn function, (2)
derivation of element equations, (3) assembly of element equations,
and (4) transient solutions of the systems of equations. The
details of finite element formulation is shown elsewhere (Hoque,
1989).

The natural channel shown in Figures 2(a) and 2(b) is
idealized as an straight line as presented in Figure 2(c); because
the flow equations are one-dimensional. The channel is divided into
small reaches called elements. Each element will be modeled with
the same flow equations but with different channel geometry and
hydraulic parameters. The element equations are later assembled
into global matrix equations for solution. By applying the
Galerkin’s principle(Hoque, 1989; Hoque, 1988; Segerlind, 1976) to
the continuity equation the follow1ng equatlon is obtained:

ETH T v qx ) dx=0. i (9)
1=1 x, ox
k=1
in which ?% is the expression for sugmary individual element

equations from 1 to (k-1) elements and N transpose to the shape
functions.

Using the shape functions, Equations (9) may be written as:

E}D'N’[%Z+Y-§+v-gl—q(x, t)lLds=0.............. (10)
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In matrix form the global continuity equation can be written
as:

(A1 o (Bl yCFO. e o ow wu{RAY

where A,B are the matrices and C is the column vector; y is the
dependant variable. The global momentum equation can be formed
similarly.

The solution of time dependant global matrix Equation (11) is
sought through a semi-discrete approach. This approach requires the
time derivative of the dependant variable at each node to be
replaced by finite difference scheme in time domain. The forward,
backward, and central difference schemes are given below with time
level k as:

Forward difference,
1_ok

%’- e AT Bl e eeeeneen..(12)

Backward difference,
k_ k-1

ey vant EEEE R T PEPRD s o oo s susgew o (13)

Central difference,

dy y*i-yk (14)
dc SAT tttttetetecetesessiesaiaan.

Substitution of Equation (12) in Equation (11) yields

(A Lt (Bl y 4GP0 e (15)

An implicit equation will be generated from Equaetion (15) with
the aid of the time weighing factor.

The kinematic model is deveioped in implicit form as a set of
non-linear tridiagonal matrix equations which are solved by the
Newton-Rapson iterative method. The diffusion and the complete
hydrodynamic models result in non-linear bitridiagonal matrix
equations which are solved by the triangular decomposition
technique(Von Rosenberg, 1969). Formulation of the numerical models
to predict depth, velocity, and discharge is given elsewhere
(Hoque, 1989).



COMPUTER TMPLEMENTATION

A computer program has been written to implement the finite
element solution algorithms developed for solution of unsteady flow
equations in open channel in different forms such as kinematic wave
flow, diffusive wave flow, and dynamic flow as described in the
preceding sections. The program has been written in FORTRAN IV
language and run on an IBM PC/AT microcomputer. The computer
program is simple and portable and with minor changes can be run on
any mainframe computers and on the microcomputers with at least 2
MB random access memory (RAM). The program has three options either
to implement kinematic flow model, or diffusion flow model, or the
complete hydrodynamic model according to the need of the users. The
capability of the model to simulate the in bank river flow with
each of three options have been verified.

MODEL VERIFICATION AND TEST APPLICATION

The accuracy of the numerical solutions of the unsteady flow
equation in open channel can be evaluated by analyzing the river
flow problems for which analytical solutions are available, the
model results can then be compared with the analytical results. The
validity of numerical model can also be evaluated by comparing its
performance with the performance of the existing numerical models
for the same problem.

Application to Irregular Channel

The channel discretization is shown in Figure 3. Initial
depths of flow were generated by backwater calculation starting
frum a downstream depth. Discharge values at intermediate nodes
were estimated by linear interpolation applied to the two initial
discharges at upstream and downstream locations. Nodal velocities
corresponding to initial depths are calculated by dividing the
nodal discharge by corresponding cross section. At the upstream
point, the discharge was prescribed as a function of time. At the
downstream boundary rating curve was imposed. The initial discharge
values are given by the unsteady nonuniform flow of 18 m3 /sec at
point A and 22 m3 /sec at point B (see Figure 3) at time t = 0.
Figures 4 and 5 show the observed discharge hydrographs at station
A and B and the rating curves at these Stations. Computed flow at
Station B, 81 km from station A was compared to the observed at the
same Station.

The kinematic, diffusive, and the complete flow models are run
for a simulation period of 96 hours. The results in terms of
discharge, depth, and velocity for every time step at every node
are generated. The results in terms of discharge, depth,’ and
velocity for nodes 1, 14,and 26 are plotted in Figures 6, 7, and 8.
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Figure 2. Natural Idealized Sections:(a) Longitudinal Profile,
(b) Vertical Cross-Sections, (c) Channel Discretized
into Finite Elements.

Lateral inflow

Station B
Figure 3. Discretization of an Irregular Channel.
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Figure 4. Discharge Hydrograph at Boundaries of Irregular
Channel AB.
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Figure 5. Rating Curve at Boundaries of frregular
Channel AB.
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Application to Natural Big River

The river Jamuna is selected for test application of the model
in a natural big river. The mean annual flood peak of the river
Jamuna is 65,200 m3/sec. The river reach of about 230 km from
Noonkhawa to Aricha as shown in Figure 9(a) is considered. The
model schematization is shown in Figure 9(b). The reach is divided
into 17 elements on the basis of the availability of cross-
sectional data. The discharge hydrograph at Noonkhawa and the water
level hydrograph at Aricha are considered as upstream and
downstream boundaries, respectively. The internal inflow and
outflow between Noonkhawa and Aricha are not taken into account for
this test application. 1In addition to the finite element
hydrodynamic model, the hydrodynamic component of the MIKE 11 (DHI,
1989) modelling system of Danish Hydraulic Institute, Denmark is
applied to compare the results of the two models which 1s the main
objective of the test application. The MIKE 11 is a well known
river modelling system and currently work is under progress at
Bangladesh Water Development Board for adaptation of MIKE 11 for
flood forecasting in the major rivers of Bangladesh. The MIKE 11
hydrodynamic component is developed using the implicit finite
difference technique,

The finite element hydrodynamic model and the hydrodynamic
component of the MIKE 11 have been run for a period of two months,
April-May, 1986. The results obtained by the models in terms of
water level and discharge hydrographs at 40 km downstream from
Noonkhawa are plotted with time in Figures 10(a) and 10(b),
respectively. It is observed that the finite element model has
produced very close results to that of the MIKE 11, although some
phase differences are observed. However, it may be concluded that
the finite element hydrodynamic model developed is capable of
simulating flow in large natural rivers.

CONCLUSIONS

The results presented have proved the ability of the finite
element model to produce good approximate solutions to a variety of
river flow problems. Thus, from this study the following
conclusions may be made:

1. For management of surface water this model may be used as a
basic tool to evaluate the effects of varying withdrawal rates and
pattern for planning purpose.

2. This model can be coupled with a groundwater flow model and used
to evaluate surface water and groundwater interactions.

3. This model can be used as a component of water resources
forecasting management model for formulating a plan for conjunctive
use of surface water and groundwater.

4. This model can be coupled with a transport diffusion model and
used to analyze movements of pollutants and salinity in rivers.
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comments by the author on the observations by General Reporter

1

2.

The finite element method has some inherent advantages over
the finite difference method, particularly in hand1l1ing the more
complex network and boundary conditions. The present paper is,
however, based on application of finite element method in
simulating flow in a single channel, where hardly any advantage
of finite element over finite difference could be shown. When
the present model is extended to a network of channels, the
advantages of finite element over finite difference would be

presented.

During monsoon season the Jamuna river, in many places, flows
overbank. The model presented can not handle the overbank flow
or flood plain. Therefore the application of the model could
not be extended to a complete year.

3. The watershed does not belong to a mountainous onhe.

4. A regular time step of 1 hour has been used in simulation.
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