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The kinematic wave model of surface water hydrology is reviewed with a look towards the future,
The paper focuses on three areas of concern: (1) the applicability of kinematic waves, (2) the role of nu-
meyical diffusion in kinematic wave modelling, and (3) the nature of kinematic shock. A brief discussion
on the role of the Vedernikov number in flood wave diffusion is included. The paper closes with an
attempt to answer the question: Where do we go from here in kinematic wave modelling?

INTRODUCTION

The hydrology of surface waters in mountainous areas is characterized by steep slopes. Flow in
steep channels is governed primarily by the gravitational and frictional forces (i.e., those associated
with the channel bed slope S o and friction slope Sf, respectively), and to a much lesser extent by the
force originating in the flow depth gradient (i.e., the water surface slope minus the channel bed slope),
or by the inertial force. The kinematic wave is a shallow water wave model that considers only the
gravitational and frictional forces.

The theory of kinematic waves dates back to the middle 1950’s (Lighthill and Whitham, 1955).
In the last three decades, its application to overland flow and streamflow has gained considerable mo-
mentum (Wooding, 1965; Woolhiser and Liggett, 1967; Ponce and Simons, 1977; Hydrologic Engi-
neering Center, 1990). There is a substantial body of knowledge on the kinematic wave, and papers
continue to appear in the literature describing what the model can and cannot do (Hromadka and
DeVries, 1988; Ponce, 1990a). There is, however, still some misunderstanding about the precise role
that kinematic waves play in surface water hydrology.

Current areas of concemn focus on the following issues: (1) Are kinematic waves applicable to
mountain streams and well as to alluvial rivers? (2) Can the kinematic wave describe physical diffu-
sion? If so, under what circumstances? (3) Under what conditions will the kinematic wave steepen to
the point where it becomes a kinematic shock? This paper answers these as well as the following
question: Given the current status of kinematic wave modelling, where do we go from here?

KINEMATIC WAVES

The kinematic wave can be defined in more than one way. First and foremost, a kinematic wave is
a wave that transports mass, in contrast to the inertial or "gravity" wave of classical mechanics, which
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transports energy. In flood hydrology, a kinematic wave is characterized by the existence of a one-to-
one relationship between discharge and stage. In surface water hydrology, a kinematic wave is a
shallow water wave that considers only the gravitational and frictional forces and neglects the forces
arising from the flow depth gradient and inertia.

These definitions are all related. To put them in the proper perspective, we turn to Lighthill and
Whitham (1955), who, in introducing the concept of kinematic wave, saw fit to subtitle their paper
Flood Movement in Long Rivers. Flood waves transport mass; kinematic waves also transport mass.
However, while flood waves are kinematic in nature, not all kinematic waves are flood waves. To
clearly distinguish between flood waves and kinematic waves, we explore Lighthill and Whitham's
subtitle a little further. What is a long river? Surely, they did not mean to imply that the kinematic
wave could be used only for long rivers. If that is the case, the kinematic wave could not be applied to
mountain streams, which are short compared to most alluvial rivers. We now know that kinematic
waves apply to both "short" mountain streams as well as to "long" alluvial rivers.

The resolution of this conflict was made possible by the work of Ponce and Simons (1977), who
identified the length parameter describing the applicability of kinematic waves. In fact, the laiter is
controlled, not by the "length" of the river, or by the length L of the shallow wave, by rather, by the
dimensionless ratio L /L, where L  is a reference channel length (a function of channel bed slope and
frictional characteristics), defined as the length of channel in which the reference flow drops a head
equal to its depth: L = d /S , with d = reference flow depth, and S = channel bed slope. According
to Ponce and Simons (1977), a wave is kinematic if the dimensionless wave number ¢ = (2nt/L)L | is
sufficiently smali. For a given Froude number F [F = u J&d 0)”2, in which u_ = mean flow velocity
and g= gravitational acceleration], the smaller the value of o, the more kinematic the wave is. There-
fore, it is neither L o, nor L that determines whether a wave is kinematic, but rather their ratio L OIL.

The concept of reference channel length L o 18 clear, provided a value of reference flow depth can
be established, which is usually the case. The same cannot be said for the wavelength L, which needs
to be converted to the temporal domain if it is going to be of any practical use in hydrology. (Under-
standably, hydrologists are reluctant to relate to the concept of flood wavelength, and prefer instead to
describe flood waves in terms of flood and/or stage hydrographs). Since L = cT, where c is the wave
celerity and T is the wave period, the ratio L /L can be expressed as: L [L = d J(S cT). We use
Seddon’s law (Seddon, 1990; Chow, 1959) to express the kinematic wave celerity ¢ in terms of the
mean flow velocity: ¢ = (3/2)u o applicable to Chezy friction in wide channels. Therefore, the ratio
L,/L can be expressed as: L /L = (2/3)d OI(TS oMo)- Furthermore, assuming that the flood wave period
T (a concept foreign to flood hydrologists) can be expressed in terms of the more familiar flood wave
time-of-rise ¢,, say T = 2, then: L /L=(1/3)d /(1S u,).

While ¢, and S, tend to vary within a broad range in nature, d  and u , are usually restricted within a
narrow range. In fact, the flood wave time-of-rise 7, can be as short as 5 to 15 minutes in small steep
catchments, and as long as 3 to 6 months in large mild-relief catchments. (To give an extreme exam-
ple, the time-of-rise of the Upper Paraguay river at Porto Murtinho, Brazil, is approximately 6
months). The channel bed slope S typically varies between § = 0.1 (or steeper) in mountain stream
situations, and S o= 0.00001 in some deltaic and tidal settings. Thus, in general, the ratio L OIL is in-
versely related to the product 7.S . It is this latter product that determines whether a kinematic wave is

applicable: For a given Froude number, the larger the product ¢S , (and therefore, the smaller the ratio
L OIL), the more kinematic the wave is.
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In light of the preceding consider.. ons, the meaning of Lighthill and Whitham’s subtitle Flood
Movement in Long Rivers is now fully elucidated: The adjective "long" should be construed as refer-
ring to a large 7.5 product. This implies that either t,or S, or both, should be large. Experience
reveals that Mother Nature has contrived not to make these two parameters large simultaneously.
Either the time-of-rise ¢, is long (as in the case of a large mild-relief catchment), or the channel bed
slope $, is steep (as in the case of a mountain stream, or altematively, steep overland flow), but usu-
ally not at the same time. This behavior confirms the wide range of field situations in which the kine-
matic wave is applicable: for both steep and mild catchments, and both fast-rising and slow-rising
hydrographs, provided the product #,§ is sufficiently large.

Ponce et al (1978) developed a criterion for the applicability of kinematic waves, and subsequently
modified it for practical applications (Ponce, 1989). The criterion states that for a shallow water wave
(whether flood wave or overland flow wave) to be kinematic, it should satisfy the following dimen-
sionless inequality: N = ¢S (u _/d ) > 85. The larger the value of N, the more kinematic the wave is.
For instance, if t=6h,S o = 0.01, mean velocity u =2 ms™, and flow depth d ,= 1 m, it follows that
N = 432 > 85, confirming that this wave is kinematic. According to our definitions, this wave will
have the following properties: (a) it will transport mass, (b) it will not diffuse appreciably, (c) it will
describe a one-to-one relationship between discharge and stage at any cross-section, and (d) the forces

arising from the flow depth gradient and inertia will be so small so as to be negligible compared to the
gravitational and frictional forces.

DIFFUSION WAVES

The specification of a one-to-one relationship between discharge and stage, a key trait of the kine-
matic wave, imposes a significant physical and mathematical constraint: The wave cannot diffuse;
i.e., it can travel downstream and transport mass in the process, but it cannot dissipate (i.e., spread in
space and time) its discharge or stage. This limitation of the kinematic wave is grounded in the mathe-
matics: The neglect of the flow depth gradient and inertia terms results in a first-order partial differen-
tial equation goveming the motion. This equation cannot describe diffusion, since diffusion is a
second-order process. From a physical perspective, the one-to-one stage-discharge relationship im-
plies that wave diffusion is clearly out of the picture, since wave diffusion is caused by the presence of
a loop (however small!) in the stage-discharge rating.

Since in nature there exist shallow water waves which do diffuse--although in small amounts--the
theory of kinematic waves is incomplete without a means of incorporating this important diffusion
mechanism. Lighthill and Whitham (1955) clearly saw this when they suggested the extension of ki-
nematic waves to the realm of diffusion waves, i.e. of kinematic waves that incorporate a small amount
of diffusion. To accomplish this, the mathematics of kinematic waves is modified to include the flow-
depth gradient term, while still excluding the inertia terms.  This significant extension allows the
description of looped stage-discharge ratings, and consequently, of the diffusion of kinematic waves,
properly now, diffusion waves. To put it in a nutshell: diffusion waves are still kinematic in nature;
they still transport mass; however, unlike kinematic waves, diffusion waves have the capability to
undergo small amounts of physical diffusion.

This physical diffusion is confirmed by theory and experience: As long as the flow depth gradient
is not negligible, it will produce a looped stage-discharge rating for every shallow wave, which will in
tumn cause the wave in question to dissipate as it travels downstream. In practice, as the channel bed
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slope S, decreases (as the flow moves from mountain streams to alluvial rivers), the friction slope S
decreases accordingly (as channel roughness typically decreases in a downstream direction), and the
flow depth gradient becomes increasingly too important to be disregarded. Intuitively, while kine-
matic waves are seen to apply to mountain streams, diffusion waves are seen to apply to valley
streams and alluvial rivers. A rule of thumb, validated by experience, says that if the channel bed slope
is greater than 1 percent (S, > 0.01), the wave is most likely to be kinematic (and to feature a one-to-
one relationship between dlscharge and stage, and not diffuse appreciably). If the channel bed slope
is less than 1 percent, the wave may not be kinematic; it may be a diffusion wave. If so, it will feature
a looped stage-discharge rating and show a small but appreciable amount of diffusion.

Ponce (1989) has presented a practical criterion for the applicability of diffusion waves. The crite-
rion states that for a shallow wave (whether flood wave or overland flow wave) to be a diffusion wave,
the following dimensionless inequality should be satisfied: M =15 (g/d, )2>15.  For instance, if
t,=6h,S =0.001, and flow depth d_= 1 m, it follows that M = 67.6 > 15, confmmng that this wave is
a d1ffus1on wave. According to our defmmons this wave will have the following properties: (a) it will
transport mass, like the kinematic wave; (b) it will diffuse appreciably, unlike the kinematic wave; (c)
it will describe a looped stage-discharge relationship at any cross-section, and (d) the force arising
from the flow depth gradient can no longer be neglected.

It should be noted that in the example of the previous section, had the channel bed slope been S =
0.001, then N = 43.2, and the wave would not have qualified as a kinematic wave. However, in the
example of this section, if the slope is § = 0.01 instead, then M = 676, and the wave would still qualify
as a diffusion wave. It is concluded that while the kinematic wave model does not apply to diffusion
waves, the diffusion wave model does apply to kinematic waves. In other words, the theory of diffu-
sion waves (repiesented by the diffusion wave equation) can properly describe both kinematic and
diffusion waves. The converse does not hold true: The theory of kinematic waves (represented by the
kinematic wave equation) is limited only to kinematic waves and cannot describe diffusion waves.

DYNAMIC WAVES

At this point, we leave Lighthill and Whitham and their concept of kinematic/diffusion waves and
approach the problem of shallow water wave propagation in its most general form, i.e., by considering
the "dynamic" wave, that which, in addition to gravitational, frictional and flow-depth gradient forces,
also includes the inertial force. This leads us to a set of two partial differential equations of continuity
and motion, also referred to as the "Saint Venant equations."

Before we give up on theory and resort to our computer models, branding the often-repeated dic-
tum "There is no known analytical solution of the Saint Venant equations,” it is worthwhile to reckon
the existence of a number of incomplete yet illuminating analytical solutions which are scattered
throughout the literature (Lighthill and Whitham, 1955; Dooge, 1973; Ponce and Simons, 1977). In
particular, the linear solution of Ponce and Simons is significant because it gives us great insight into
the behavior of shallow water waves, including kinematic, difusion, dynamic, and inertial waves.

The work of Ponce and Simons (1977) can be summarized in the following statements:

1. The dynamic wave lies towards the middle of the dlmensmnleqs wave number spectrum (10 <0<

10%), while klnematlc/dlffusmn waves lie to the left (10 < ¢ < 10%) and inertial waves to the right
(10" < 6 < 10%.
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2. In the stable flow regime (Vedernikov number V < 1, Chow, 1959; Ponce, 1990), the dynamic
wave shows very strong diffusive tendencies.

3. At the threshold of flow instability (V = 1), the Seddon and Lagrange speeds (Chow, 1959) are the
same, and kinematic, dynamic, and inertial waves have the same celerity and lack diffusion.

4. In the unstable flow regime (V > 1), kinematic, dynamic, and inertial waves have a tendency to
amplify during propagation.

The findings of Ponce and Simons (1977) pose an interesting theoretical question which helps
place the nature of shallow water waves in the proper perspective. Granted that kinematic waves (and
by extension, diffusion waves), lying to the left of the ¢ spectrum, transport mass. This is an intuitive
conclusion which cannot be challenged. On the other hand, the inertial wave, the so-called "gravity"
wave of classical mechanics, lying to the right of the ¢ spectrum, transports energy. What, then, do
dynamic waves transport, since they lie towards the middle of the wave number spectrum? Mass, or
energy? It stands to logic that the answer is:* both. Therein lies the reason for the markedly strong
dissipative tendencies of the dynamic wave: Shallow water waves can transport mass and energy si-
multaneously only at the expense of wave diffusion. In the stable flow regime (V < 1), the more
dynamic a wave is, the more strongly dissipative it is (Ponce et al, 1978). At the threshold of flow
instability (V = 1), dynamic waves lose their ability to dissipate, and their properties coalesce with
those of kinematic and inertial waves.

The preceding discussion raises a practical question which has been in the minds of many research-
ers and practitioners who have dealt with the dynamic wave. If the dynamic wave is so strongly dissi-
pative in most cases of practical interest, is it worth attempting to compute it? Would it not dissipate
shortly after it is generated, with its mass going to join the underlying larger, kinematic/diffusion,
wave? Or, can it be tracked downstream as it propagates? If so, what is its characteristic speed? A ~
more practical question is: If the dynamic wave is so strongly dissipative, could it be properly con-
strued as a flood wave? These questions continue to trouble those who use the dynamic wave.
Lighthill and Whitham (1955) put it in a nutshell when they stated (op. cit., p. 293): "Under the condi-
tions appropriate for flood waves... the dynamic waves rapidly become negligible, and it is the kine-
matic waves, following at lower speed, which assume the dominant role."

In summary, dynamic waves do not apply to floods in mountain streams. Attempts to do this will
be futile, given the accumulated body of theoretical and practical experience pointing otherwise.
There is still the unresolved question of whether dynamic waves apply to the routing of flood waves in
any physically realistic setting. = Dam-break flood waves notwithstanding, perhaps the only clear
statement that can be made today is that the dynamic wave applies to tidal flow and similar such situ-
ations where there is a significant downstream control of the flow.

PHYSICAL VS NUMERICAL DIFFUSION

If kinematic waves cannot diffuse, why is it that numerical models of kinematic waves are able to
show some wave diffusion? The resolution of this paradox lies in the conversion of a partial differen-
tial equation into a finite difference equation. This conversion can cnly be done at the expense of
introducing an error. This error is a function of the grid size (Av and Ar) and tends to disappear as the
grid size is progressively refined. In flood routing, the error that creeps into a typical computation
using finite differences manifests itself as numerical diffusion and numerical dispersion effects.
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These effects are the direct result of specifying a discrete space-time domain, and are not necessarily
related to the physical diffusion and dispersion which are inherent in the nature of flood waves.

Numerical diffusion arises because the calculated wave amplitude is smaller than the physical
wave amplitude. Numerical dispersion arises when the calculated wave celerity is different from the
physical wave celerity. In conventional finite difference (F.D.) shallow water wave models, the aim
is to minimize numerical diffusion and dispersion by choosing a grid size sufficiently small to drive
these errors to inconsequential amounts. Then, the convection and diffusion of the shallow water
wave can be properly described by the numerical model.

Unfortunately, not all F.D. kinematic wave models have sought to minimize numerical diffusion
and dispersion. Often, a F.D. kinematic wave model has inadvertedly used the numerical diffusion as
a way of showing a certain amount of "physically realistic" diffusion in the calculated results (Li et al,
1975; Curtis et al, 1978). A detailed treatment of this subject is out of the scope of this paper. The
interested reader is referred to the paper by Ponce et al (1979), which treats the various numerical
schemes of the convection-diffusion equation (of which the kinematic wave equation is a special
type), and their numerical diffusion/dispersion effects (amplitude and phase portraits). For our present
purpose, we quote Cunge (1969) in stating that finite difference schemes of the kinematic wave equa-
tion introduce varying amounts of numerical diffusion and dispersion. The latter interfere with the
physical effects, modifying them (Abbott, 1976; Ponce, 1990a). Thus, a finite difference kinematic
wave model may be able to show some diffusion, the actual amount being a function of the grid size
and weighting factors (used in discretizing the terms of the kinematic wave equation). The fact that
this diffusion is artificial and intrinsically related to the grid size can be readily demonstrated by
solving the same problem several times, each time halving the spatial increment Ax and temporal in-
crement Az. Carried to the practical limit, this test leads to the eventual disappearance of the numerical

diffusion in question, with the result approaching the analytical solution of the kinematic wave, which
is nondiffusive.

We are now in a quandary! If we solve the kinematic wave properly, achieving the complete
elimination of numerical diffusion and dispersion, we can only hope to describe kinematic waves, but
not diffusion waves; if the problem does have some physical diffusion, the latter would be entirely
missing from this approach. Conversely, if we solve the kinematic wave improperly, introducing
numerical diffusion and dispersion by our choice of grid size, there is no guarantee that these will be
related to the diffusion and dispersion, if any, of the physical problem. Any arbitrary choice of grid
size will cause some numerical diffusion and/or dispersion, and since the latter are unrelated to the
physical problem, the solution degrades accordingly, from deterministic to conceptual. It would be
hit and miss, as far as the accurate reproduction of wave properties is concerned.

Fortunately, there is a way out of this difficulty. As shown by Cunge (1969), and subsequently by
others (Natural Environment Research Council, 1975; Ponce and Yevjevich, 1979; Ponce, 1989), the
numerical diffusion and dispersion of F.D. kinematic wave models can be managed! There is a way
to optimize the numerical diffusion while minimizing the numerical dispersion, to make the method--
and its inherent errors--work for us instead of against us! By a careful match of the numerical diffu-
sion with the physical diffusion, the F.D. kinematic wave model can reproduce both kinematic and
diffusion waves, in a methodology that has been referred to as the Muskingum-Cunge (M-C) method.

In a nutshell, the M-C method is a variant of the Muskingum method of flood routing in which the
parameters K and X are calculated directly, based on hydraulic data (channel friction, bed slope, and
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cross-sectional characteristics), instead of indirecily, based on the conventional hydrologic data
(storage-weighted flow relations). The M-C method was first applied to open channel flow, and later
to overland flow (Ponce, 1986). Extensive tests have shown that the method holds promise for over-
land flow, since unlike conventional finite difference kinematic wave models, the M-C model is essen-

tially grid independent. In other words, the solution does not depend on the choice of grid size (Ponce,
1986).

In summary, a conventional F. D. kinematic wave model will diffuse numerically, with the diffu-
sion being dependent on the choice of grid size. If the grid size is refined to eliminate the numerical
diffusion, no physical diffusion (if present) can be simulated. If the grid size is not refined, the
amount of numerical diffusion is arbitrary and not related to the physical diffusion (if any), and the
model degrades into a conceptual status. If the M-C method is used, the numerical diffusion is
matched with the physical diffusion; consequently, the result is independent of the grid size, and thus,
the deterministic character of the method is preserved.

KINEMATIC SHOCK

Kinematic waves lack physical diffusion. However, kinematic waves are nonlinear (or rather,
quasilinear), a property which gives them the inherent tendency to change their shape upon propaga-
tion: either steepen or flatten, depending on the stage relative to the channel cross-section (flow inbank
or out-of-bank). Under the right set of circumstances, a kinematic flood wave can steepen to the point
where it becomes for all practical purposes a "wall of water." (In overland flow situations, the "wall
of water" would be 2 small discontinuity in the water surface profile). This is the kinematic shock, L€,
a kinematic wave that has steepened upon propagation to the point of being nearly discontinuous.

Contrary to conventional wisdom (Kibler and Woolhiser, 1970; Cunge, 1969), ihere is no physical
unreality about the kinematic shock. If the steepening tendency is allowed to continue unchecked, the
kinematic shock will form in due time. Diffusion, however, acts to counteract the steepening tendency.
Therefore, in cases where diffusion, either physical or numerical, is present, the development of the
kinematic shock is likely to be arrested. This explains the pervasive presence of kinematic shocks in
analytical solutions of the kinematic wave, which have no diffusion, numerical or otherwise. On the
other hand, kinematic shocks are shown to be conspicuously absent from finite difference kinematic
wave models, particularly from those that have appreciable amounts of built-in numerical diffusion.

Ponce and Windingland (1985) have clarified the conditions under which the kinematic shock is
likely to develop. Based on theoretical considerations supported by extensive numerical experiments,
they established the following conditions for kinematic shock development:

1. The wave must be kinematic, i.e., it must have negligible physical diffusion. Diffusion tends to
counteract the development of the shock.

2. The ratio of base-to-peak flow Qb/Q must be small, with zero as the lower lirhit, such as in the
case of an ephemeral stream (recall the flash floods occurring on dry beds).

3. The channel is (a) hydrauiically wide, i.e., of nearly constant wett=d perimeter, to allow the wave

steepening to progress unchecked by the cross-sectional shape: and (b) sufficiently long to allow
enough time for the shock to develop.
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4. The flow is at high Froude number, within the stable flow regime (V < 1). The higher the Froude
number within the stable flow regime, the smaller the physical diffusion, and the more likely the
shock can continue to develop unchecked. In the limit, as the Vedernikov number approaches 1
(and the Froude number approaches 2, for hydraulically wide channels with Chezy friction), diffu-
sion vanishes as the flow reaches the threshold of instability.

In practice, all four conditions may prevail at the same time in a given situation. Whether a kine-
matic shock will form will depend on the strength of any one condition, or, if more than one is present,
on their combined strength. For instance, an analytical solution of the kinematic wave in an overland
flow plane satisfies conditions 1 and 3 (a), and maybe even 3 (b) if the plane is long enough. The case
of a flash flood in an ephemeral stream in an arid or semiarid region satisfies condition 2, and prob-
ably even 3 (a), 3 (b), and 4. The fact that kinematic shocks are not a common sight in nature points to
the practical difficulty of satisfying all of these conditions.

Condition 1 is satisfied in channels where the product #,S, is large. Condition 2 is satisfied in
ephemeral streams. Condition 3 (a) is satisfied in inbank flow in wide rectangular channels, but not if
the flow goes overbank, since in this case the wetted perimeter would cease to be nearly constant.
Condition 3 (b) is dependent of the catchment’s physiography, geology, and drainage density. The
longer a stream, uninterrupted by lateral inflow at tributary confluences, the better the chances for the
shock to develop. Condition 4 is dependent on the channel aspect ratio, boundary friction, and pres-
ence or absence of riparian vegetation. In this regard, we echo Jarrett (1984) in reminding the reader
that Mother Nature does not like high-Froude-number flows! So condition 4 is more likely to be the
exception rather than the rule.

In closing, it should be noted that kinematic shocks, particularly those associated with flash floods,
are very difficult to document precisely, given the obvious likelihood of bodily harm and possibly
even death for those daring enough to attempt it. For the conditions prevalent in mountainous areas,
kinematic shocks (and flash floods) would be associated with one or more of the following: (1) intense
cloud bursts, (2) an arid or semiarid region, (3) a steep ephemeral stream, (4) a low-friction channel
(in both bed and banks), and (5) a catchment of low drainage density.

ROLE OF THE VEDERNIKOV NUMBER IN FLOOD WAVE DIFFUSIO

As pointed out by Hayami (1951) in his classical paper on diffusion waves, the hydraulic diffusiv-
ity is the physical parameter controlling the diffusion of diffusion waves. The hydraulic diffusivity is:
v=gq 0/(2.5' o) in which ¢ o= reference unit-width discharge, and § o= channel bed slope. Therefore, the
amount of diffusion that a flood wave undergoes during propagation is directly proportional to the
unit-width discharge and inversely proportional to the channel bed slope. In other words, the steeper
the channel bed slope, the lesser the amount of flood wave diffusion. In the limit, as the channel bed
slope increases, the diffusion disappears and the flood wave becomes a kinematic wave.

Hayami’s hydraulic diffusivity is properly a kinematic hydraulic diffusivity [ v, = g, /(25 ) ], be-
cause it lacks inertia altogether. It is strictly applicable to flow well within the stable regime, i.e., for
small Vedernikov numbers, in the range 0 <V < 0.25 (0 < F < 0.5, for hydraulically wide channels
with Chezy friction). By including inertia in the formulation. Dooge (1973) and Dooge et al (1982)
have extended the concept of hydraulic diffusivity to the realm of dynamic waves. This leads to the
concept of dynamic hydraulic diffusivity: v, =(1 - V) q,/(2S ) (Ponce, 1990a; 1990b).
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It is seen that unlike its kinematic courterpart, the dynamic hydraulic diffusivity is also a function
of the Vedemikov number. As the Vedemikov number approaches 0 (in the case of low-Froude-
number flows), n; reduces to n,. Conversely, as the Vedemikov number approaches 1 (V = 1 is the
threshold of flow instability), n y reduces to 0, and wave diffusion vanishes (obviously, a process
which could not be simulated with n,). It is seen that n, applies through a wider range of flow condi-
tions than n; (in the range 0 <V < 1) . Since n; does not significantly complicate the expression for
hydraulic diffusivity, it should be the preferred way of modelling flood wave diffusion. In practice,
since wave diffusion is usually small (most flood waves are diffusion waves!), the dynamic contribu-
tion to wave diffusion turns out to be also small.

The inclusion of the Vedernikov number in the expression for hydraulic diffusivity has the advan-
tage that it can also account for channels of arbitrary cross-sectional shape, i.e., those other than hy-
draulically wide. Taken to the limit, i.e., for the inherently stable channel (Ponce, 1990b), V = 0,
regardless of Froude number, and the kinematic and dynamic hydraulic diffusivities are one and the
same. It is seen that in this case, the flood wave attenuation is govemed by the kinematic hydraulic
diffusivity, for all values of discharge or stage.

WHERE DO WE GO FROM HERE?

Having reviewed the status of kinematic waves, it is only fitting that we now take a stab at the
question: Where do we go from here? We know very well that kinematic waves are useful tools in
applied hydrology. They describe the flow in steep streams (recall the theme of this symposium: The
Hydrology of Mountainous Areas), and they do it very well. With the applicability issue now clearly
settled, there is no doubt that kinematic waves will continue to be used in the future. In fact, when the
extension is made to diffusion waves, the applicability issue is no longer a serious roadblock. In this
the last decade of the century, the burden of proof is seen to be slowly shifting to the dynamic wave.

The dynamic wave has yet to show, beyond reasonable doubt, that in most cases of practical interest, it
is there for us to calculate it.

Caution should be exercised when applying the kinematic wave to overland flow and streamflow in
the context of a numerical computer model, now that we know that numerical diffusion is likely to
creep in and degrade the accuracy of the computation. In this regard, the method of matched diffusivi-
ties (M-C method) holds particular promise, given its demonstrated grid independent for a wide range
of grid sizes. The M-C method is an analog of the diffusion wave model, and therefore, can be used
to solve for botk kinematic and diffusion waves. Furthermore, when the dynamic hydraulic diffusivity
is used in lieu of its kinematic counterpart, the method can account for most of the wave dynamics,
including the Vedernikov number and its effect on cross-sectional shape and boundary friction.

More research is needed into the nature of kinematic shock and its relevance to the modelling of
flash floods. Given that the conditions under which these shocks develop have now been clearly iden-
tified, the following question is posed: =~ Can a hazard rating be established for flash floods, in terms
of regional climate, catchment geology, physiography, and drainage density, and channel slope, fric-
tion, and cross-sectional shape? Thic question is in need of immediate attention if we are going to

apply the theory of kinematic waves to guarantee the safety of the populations that are currently at risk
all over the world.
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