DYNAMIC PROGRAMMING
by

Dr. S K Jain,
Scientist E, NIH, Roorkee.

INTRODUCTION

Dynamic programming is an enumerative technique developed by
Bellman in 1953. This technique was developed to optimize a
problem which can be represented as a multistage decision process.
The entire formulation of dynamic programming is based upon the
Bellman’s principle of optimality, Fig. 1. According to this
principle an optimal policy has the property that whatever the
initial state and decisions are, the remaining decisions must
constitute an optimal policy with respect to the state resulting
from the first decision. The ©proof can be obtained by
contradiction. If the optimal path for going from A to C is I-II
then the optimal path from B to C will be II and not II’.

To decompose a general problem into stages with decisions
required at each stage, the value of every stage should satisfy
the separability condition and the monotonicity condition
(Nemhuser,1966). The validity of DP regarding separability can be
extended by increasing the number of states, but this extension is
achieved at the cost of increased computations. For example,
reservoir inflows are Markovian rather than random in the
transition equation. If the returns are additive, multiplicative,
or of the minimax or maximin variety, it is sufficient to check
that the returns are independent.

Where there is no special reason for choosing either backward
or forward formulation, the backward recurrence is normally used.
The procedure of making first a backward and then a forward pass
is convenient especially in problem involving time, as it gives
the optimal policy in the chronological order; in stochastic
problems backward recurrence is essential, since each stage
depends on the results of the former stage. But, forward
recurrence is advantageous when a deterministic problem has to be
solved several times with different planning horizons. This may
occur because a plan is periodically reviewed or where the
appropriate horizon is unknown and a sensitivity analysis is
undertaken. The value can be extended forwaré in time without
repeating previous calculations.

Constraints which restrict only the state or decision space
are advantageous in DP because they reduce the amount of
computation. By contrast, state and decision space constraints can
cause considerable procedural difficulties for other optimization
techniques. However, when DP is applied to a multiple reservoir
system, the wusefulness of the technique is limited by the
so-called curse of dimensionality which is a strong function of
the number of the state variables. For computational efficiency,
problems should have no more than a few state wvariables at a

58

|
{
|

II

FIG.1 ILLUSTRATION OF THE PRINCIPLE OF OPTIMALITY

time.All method of dimensionality reduction involve decomposition
into subsystems and the use of iterative procedures. Also, there
are difficulties in developing stochastic DP for a multiple
reservoir system where serial and cross correlations are prevalent
between streamflows. These difficulties could be partially
overcome with the combined use of deterministic DP and simulation.

In a Dynamic Programming problem formulation, the dynamic
behaviour of the system is expressed by using three types of
variables, as described below
a. State variables - which define the condition of the system.
For example, in studies dealing with reservoirs, the amount of
water stored in the reservoir may represent its state.

b. Stage variables - which define the order in which events
occur in the system. Most commonly, time is taken to be the stage
variable. There must be a finite number of possible states at each
stage.

c. Control variables - which represent the controls applied at a
particular stage and transform the state of the system. For the
reservoir operation problem, the release of water from the
reservoir is a typical decision variable.

With each state transformation, a return is associated which
may either represent benefits or costs. The state of reservoir
will be transformed by releasing a certain amount of water from
it. This water can be used for some useful purpose like irrigation
and will lead to monetary returns. The water released from a
reservoir may also cause flood Jamages downstream and hence a cost
can be associated with these damages. The problem is to find the
control variables which optimize the returns. Typically the
benefits are maximized and the costs are minimized. The optimal
decision made at a particular stage is independent of decisions
made at previous stage given the current state of the system. A
set of decisions for each time period is called a policy. The
particular policy which optimizes the objective function is called
the optimal policy. The set of states which result from the
application of a policy is called the state trajectory.

The dynamic behaviour of the system is expressed by an
equation known as the system eqguation. It can be writter in
discrete form as :

s(t+l) = f[(s(t), u(t),t)] t = 1,2......N
where s(t) is the state variable at time t, u(t) is the control
applied at time instant t, which last for a duration t and f is

the given functional form.

The state of the system at any stage t should lie in the
domain of admissible states at that stage. Similarly the control
at any stage should also lie in the admissible domain at that

60

stage :
B(t) & 8{t); u(t) € U(t)

where S(t) and U{t) are the domains of admissible states and
controls at stage t.

THE SOLUTION ALGORITHM
Let R(s(t), u(t), t] be the return obtained if the system is
at state s(t) at stage t and the control u(t) is applied at

instant t lasting for a duration t. Further, let F*[S(N),N] be the
sum of returns from application of controls from some initial
stage at t = 0 to final stage at t = N. The objective of
maximizing the sum of returns from the system can be expressed as

Max F[s(N), N]

Let the state of system at t = 0, 8(0) € S(0) is known and

*
the returns F([s(0),0] are also known. Let F [s(0),0] be the
optimum value of these returns. Now consider the first stage (of
duration t). The optimal return for this period is given by

F*[s(l),l] = Max R(s(Q),u(0),0) + F*[S(O),O]
u(0) € U(0)

This equation is solved for each discrete level of state at
t=1 as a function of control variables u(d). To do this, the state
is discretized into a number of discrete levels (refer Fig. 2).
Now a particular lattice point is chosen and all the admissible
levels of decision variables which lead to this state are chosen.
For each of these decision variables, the return F[(s(1),1] is
cglenlated. The maximum among these returns given the value of
F [s(1),1). This computation is repeated for each discrete value
of s(1) and the results are stored.

The computations are performed in similar fashion for stage
2,3....N. The recursive equation for any stage t can be written as

F[s(t),t] = Max R(s(t-1),u(t-1),t-1] + F[s(t-1),t-1]
u(t-1l) € U(t-1)

Thus at the end of N stage, the wvalues of F*[s(t),t],
t=1,2...N are available. The optimal value of control variables or
the optimal policy is obtained by tracing back the values of
returns, corresponding to those states which satisfy the initial
and final values and the constraints. The optimal state trajectory
can be determined by using the gystem equation once the optimal
policy is known.

The above computational scheme of dynamic programming is
known as the forward algorithm since the computations start at the
initial value of the state variable at stage 1 and move forward.
In contrast to this, the computatiors can also commence at the

61

final value of state variable at the last stage and can move
backwards. The optimal policy is retrieved by tracing forward from
the returns. This algorithm is called the backward algorithm.

Let us consider the problem of determination of optimum
release from a reservoir. If DP is applied for the determination
of reservoir release, the state variable is the storage and the
decision variable is the release. The stage is represented by the
time period i. The stage-to-stage transformation is characterized
by the characterized by the continuity equation,

subject to:

s . = < S
min %+l max

Suppose an objective function J(S, R) has been chosen for
maximization. Note that J in general is a function of release as
well as storage. A typical forward DP recursive equation can be
written as

) =max [J (Ri, S, + fi(si)]

i+l i+l
R, i
i
SO = given initial storage, and
i = 0; 1y 2% weeess s

The state variable (storage) is generally discretized into a
number of feasible states shown in Fig. 2.

Suppose that the inflow sequence is given and the evaporation
term e, is temporarily ignored, the continuity equation now

becomes

If Si+l and Si are chosen, Ri can be directly computed from

the above continuity equation. The optimization is over the proper
choices of Ri's. The problem of interpolation is avoided, since

the Ri’s are computed by fix‘ng the states Si+ and Si' Solutions

1
are imbedded in the discretized states. The infeasible transitions
are discarded in the solution process.

The inclusion of the evaporation term e, poses no difficulty,
since evaporation is a function of the average storage gi which is

1t s + i
equa o (i4 Si)/2

1

The recursive equation is carried out until the final stage T

62

X 3

x(0)=2

o " 4

0 1 2

FIG2 TREE GENERATED BY ENUMERATION

is reached. The optimal solutions can then pe traced back to
determine the consequent release and storages.

ADVANTAGES AND DiSADVANTAGES OF DYNAMIC PROGRAMMING

Dynamic programming is essentially an enumerative technique
which is specially suited to multistage decision problems. There
are a number of advantages in using this technique for analysis of
a water resources system. Some of the advantages are :

i) The dynamic programming formulation is same for linear as well
as nonlinear problems. Thus, no extra effort is required for
nonlinear problems. This property is very useful in case of water
resources systems since many related problems can not be
realistically linearized.

ii) The incorporation of constraints in linear and nonlinear
programming problems is more difficult than in dynamic programming
problems. In case of dynamic programming, the constraints serve a
useful purpese. They do limit the feasible region and thus many
lead to reduction in computational time requirement.

iii) The stochastic nature of a problem can be easily considered
in the dynamic programming formulation. The algorithm developed
for a deterministic problem does not have to be significantly
changed to incorporate stochasticity. This is in contrast with
other techniques where incorpcration of stochasticity reguires too
much change in the algorithm and significant increase in
computational time.

Besides the above advantages, there are some disadvantages in
using the dynamic programming formulation. These include:

i) The dynamic programming is not basically tailored ian such a
fashion that generalized programs can be written using it. Thus a
new computer program has to be developed or an existing program
has to be significantly mcdified and tested for each new
application of the technique. On the other hand standard computer
programs are widely available for the linear programmind.

ii) It was stated above that to solve a particular problem, the
state and control variables are discretized at each stage and
these discretized values are then used. This approach is known as
the Discrete Dynamic Programming(DDP) technique in which the state
and control spaces are discretized by finite sets of vectors. For
each stage and state, the continuous variables are replaced by the
discrete node points and these values have to be stored in the
computer memory from where they can be drawn as and when required.
The number of discretized values goes on increasing with the
fineness of the discretization. For large problems, the memory
requirement becomes a major limitation. This requires judicious
choice to be made for the accuracy reguirement, computer memory
available and computational time available.

Several techniques have been proposed by Jdifferent
investigators to reduce the dimensionality problem associatad with

analysis of water resources systems using dynamic programming
technique. These include the Incremental DP (IDPY) and the Discrete
Differential Dynamic Programming (DDDP). The basic approach in
these techniques is the same and their are only minor differences
regarding the increments in state and stage variables. It may be
noted that these schemes are some sort of ‘successive
approximation’ schemes. An initial estimate of the policy is made
and this is used to construct an improved estimate. This improved
estimate becomes the input to the next stage and so on until some
convergence criterion is satisfied. The scheme can not assure the
global optimum and may converge to a local optima. However, by
starting from different initial solutions, the possibility of
finding the global optimum is increased.

DISCRETE DIFFERENTIAL DYNAMIC PROGRAMMING

The Discrete Differential Dynamic Programming proposed by
Heidari et al (1971) is an iterative procedure in which the
recursive equation of dynamic programming is solved within a
restricted set of quantized values of the state variables. The
optimal solution is obtained by gradually improving the initial
solution. This technique is particularly suitable for invertible
systems. A system is called invertible if for that system, the
order of the state vector is equal tc the order of the control
vector. Thus the knowledge of stage variables enables one to
compute the decision variables. The water resources systems are
mostly invertible. For example, assuming that the inflows to a
reservoir are known, the releases from it can be determined if the
states of the reservoir at different times are known.

The DDDP computations start with either a known stage
trajectory or a known policy. Because of the property of
invertibility the knowledge of one variable enables the
determination of the other. The initial values must always satisfy
the constraints.

Now a set of incremental values of stage variable is assumed.
When these incremental values are added and subtracted from the
trial trajectory at a particular stage, a subdomain is formed
around the trial trajectory. This subdomain is called a corridor.
At this stage optimization is performed constrained to this
corridor and a better value of the trajectory is found. For the
next iteration, this trajectory is considered as the trial
trajectory. The computations are performed by varying the
composition of the corridor in such a way that the algorithm
converges towards the optimal solution.

One such corridor is shown in Fig. 3. In this case the trial
trajectory lies at the centre of the corridor though this is not a
necessary condition. More than one quantized states on either side
of the trajectory may be chosen but the choice of three quantized
states at each stage is most suitable for computational
efficiency.

To obtain good convergence, two criterion were suggested by

65

DNIWWYYDOUd DIWVYNAQ TVYILNIII44IA F1IFDSIA £ -FJANDIA

—_—— JNIL

1 —//.r..l..r..r....

! SvV+ <! ~

“ I ~o _SV-(})s

! "

| EESS

| g i

| e ™ | .IJ..;/

2 ! S |
I -~

” ; AJMNOd VILINI _

| t[o]e]l<1<lon) ! _

" 40 Advannog ~_ | 278 e ANE e
I ~ ~” \ &

" _ W AT T d

| I /ﬁ\ // \ | s

| I SV+(L+))s 8 e SN z=

| | -~ Ny s

1 |

| |

| |

! _

|

| RN

" mqi:%\
|

|

e

66

==—— ALlIDVdV¥D 39v30l1S

Hall (1968). These are guidelines about the increments to the
state vector. The first is that the increments to the state
variables must be kept small and constant throughout any
iteration. The second is that the size of increments should be
reduced as the iterations proceed. However, the size of increments
should be chosen such that entire feasible region could be
inspected if required. There is a strong correlation between the
number of iterations required for good convergence and the size of
increments at each iteration. It was also suggested by Yeh (1982)
that several iterations with a small increment should be allowed
at the end of each computation cycle to improve the value of
objective function

The technique of dynamic programming has been described in a
number of excellent texts, scme of these are given in references.
Yakowitz(1982) has reviewed the applications of DP to water
resources. Yeh(1985) provides an excellent review of applications
of DP to reservoir operation.

Incremental DP with Successive Approximations (IDPSA)

Another way of alleviating the problem of "curse of
dimensionality" is by wusing Bellman’'s concept of successive
approximations which decomposes an original multiple-state
variable DP into a series of subproblems of one state variable in
such a manner that the sequence of optimizations over the
subproblems converges to the solution of the original problem.
This technique has also been applied to solve problems involving
multiple reservoirs. It has also been extended to a more
generalized case of higher-level combinations, such as
two-at-a-time or three-at-a- time combinations.

REFERENCES
Hall,W.A., and J.A. Dracup, Water Resources Systems Engineering,
Tata McGraw-Hill Publishing Company, New Delhi, 1979.

Loucks, D.P., J.R. Stedinger, and D.A. Haith, Water Resources
Systems Planning and Analysis, Prentice Hall Inc., New
Jersey, 1981.

Rao, S.S., Optimization, Theory and Practice, Wiley Eastern,
1979.

Yakowitz,S., "Dynamic programming applications in water
resources", Water Resources Research, 18(4), 673-696, 1982.

Yeh, William W-G., "Reservoir management & operation models : A

state of the art review", Water Resources Research, 21(12),
1797-1818, 1985.

* kK

