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1.0 INTRODUCTION

For real time operation of the reservoir, it is
necessary to have real time inflow forecast. For this purpose a
lumped conceptual hydrological model is generally needed. When a
particular model has been chosen, it has to be fitted and tested
on observed data before using it for real time flood forecasting.
Even during the forecasting period also it would be desirable to
specify the cecrrect choice of parameters so that computed flow
give sufficiently close reproduction of the rkserved Iflows. In
order to estimate the optimum parameters such that the computed
flood hydrograph has the close agreement with the observed flood
hydrograph an optimisation problem may be formulated. Generally,
in simulation of flood hydrograph, sum of the squares of the
deviations (S) between observed and computed flood hydrographs is
minimised. Here S, which is non-linear function, is known as the
objective function.

General mathematical form of an optimisation problem can
be formulated as:

Min (or Max) f(x)
Subject to

h, (x) =0, = 1.s4m ee (1)

g (x) =0, j = (m+l)...p

Where f(x) denotes the objective function, hi(x) denote the
equality constraints and gj(x) denote the inequality constraints
and x = [xl, Kyeoor xn] is a row Vector of the parameters to be
optimised. Since gj(x) = 0 can be written as - % (x) = 0,
inequality constraints can be denoted by gj(x) < 0. Here m and p
are non-negat.ve integers. If m=c and p=0, then problem (1) is
said to be unconstrained problem. If f(x), hi(x) for i=1l...m and

gj(x) for j=(m+l)...p are all linear functions, then problem (1)
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is said to be a linear programming problem (LPP). On the other

hand, an optimisation problem, in which either the ocbjective
function and/or even one of the constraints is non linear, is
called a non-linear programming problem (NLPP)

Since a non-linear function can have various forms, the
development of a general optimisation technique is needed, which
may handle all types of non-linear optimisation problem, that
arise from real life situations. A large number of computational
algorithms is available for solving a general non-linear
optimisation problem (Flatcher, 1980, Himmelblau, 1972, Nash,
1984). A particular technique, which is efficient for solving a
particular type of problem, may not be so efficient to solve
another type of non-linear optimisation problem. So the selection
of a particular technique depends on the formulation of the
problem and the experience of the analyst. The methods available
to solve a non-linear programming problem may be classified in the
following two categories:

1. Methods for unconstrained optimisation
25 Methods for constrained coptimisation

The problems, in which an objective function f(x) is to
be optimised, without satisfying any constraints, are called
unconstrained optimisation problems whereas the constrained
optimisation problems invclve the optimisation of an objective
function subject to one or more given constraints. Constrained
non-linear programming problems are much harder to solve than
unconstrained problems with a comparable number of independent
variables and degree of non-linearity, because of the additional
requirement that the solution must satisfy the constraints.

When the objective function is not explicitly defined as
in the case of most of the hydrological problems, it is necessary
to examine the behaviour of the objective function before taking
up the solution of the optimisation problem in hand. In general

the following aspects are considered:

11 Maximization or Minimization Problem

While formulating the optimisation problem, one should
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ensure whether maximization or minimization of the objective
function is to be carried out Fig.l shows a typical objective
function (F) evaluated wusing the different wvalues for the
parameter x. The nature of the objective function (F) indicates
that the problem is a one parameter maximization problem. On the
other hand, if the nature of the objective function (F) is
somewhat similar to Fig.2, it would be a one parameter

minimization problem.

FOR MAXIMA (Fig.1l)

aF

3% = 0 cee(2)
2

Q-g <0 wwe{3)

ax

FOR MINIMA (Fig.2)

dF

3% =0 «ee(4)
2

'2-% > 0 a5

ox

If the objective function (F) is evaluated using the
parameters xl and x2 and the surface of the objective function (F)
contour is such that the optima cccurs at hill of the contour
(Fig.3), the problem would be two parameters maximization problem.
However, in case optima lies in the valley of the contours of the
objective function (F) as shown in fig.4 the problem would be two
parameters minimization problem. Similarly the objective function

can also be visualized on different planes for more than two

parameters.

1.2 Parameter Sensitivity
Before taking up the optimisation problem sensitivity

analysis is to be performed with an objective to identify the

sensitive parameters. The objective function (Fl) shown in fig.5
%

is less sensitive to the parameter X, as the gradients 5x (rate
X
1
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of change of the objective function with respect to the parameter

xl) is less steep than the objective function (F2) shown in fig.6
F

which has the higher gradient function -z~=- . Similar inferences

can be drawn from fig.7 for two parameter minimization problem

wherein the parameter X, is less sensitive in comparison to the

parameter xz. Note that the higher the angle of intersection

2
(é—%) the better is the definition of the optimum value of the
dx

parameter (x). Therefore the value of the second derivative at
XOPT is an index of the stability of =xOPT. This relationship
should be developed so that the index becomes a measure of
stability.

During optimisation the sensitive parameters must be
dealt cautiously as small change in the parameter values may cause
considerable change in the value of the objective function. On
the other hand, over estimation or under estimation of least
sensitive parameters may not have the pronounced effect over the
objective function. Thus to the certain extent one may afford to
have the over estimated or under estimated values of the
parameters which are least sensitive. On the contrary deviations
from the optimum wvalues of the sensitive parameters may give

higher value of the objective function.

1.3 Global and Local Optima

Some times the surfaces of objective Function (F) have
more than one peak (Fig.8 for one parameter maximization and
Fig.1l0 for two parameter maximization) or more than one trough
(Fig.9 for one parameter minimisation problem and Fig.ll for two
parameter minimisation problem). In such a situaticn one may end
up at local optima if the incorrect choice of initial parameter
values are made for the optimisation runs. The wvalue of the
objective function at local optima is more than the global optima
in case of minimisation problem and vice versa for the’

maximisation problem.
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1.4 Parameter Dependence

As far as possible the parameters involved in
optimisation should be independent. If the several parameters are
mutually independent then the index of stability of the optimised
values may be obtained by considering the second derivative
parallel to each axis only. If however substantial dependence
exists between two or more parameters this is not sufficient. 1In
fig.4 the dependence between X, and x, is indicated by the valley
in the surface roughly along X, + x, = const.

The optimum values x10pT and x20pT may indeed be found
and cross sections parallel to the axis may look like those of
fig.4. A cross section along the valley, however, would appear
very different, indicating that while a function of xOPT and yOPT
is well defined, the separate values are not. The occurrence of
such a relationship could be discovered only by taking the second
derivative in all directions through the minimum point of F.
Ordinarily, the introduction of a new part in to a model will
enable a better reproduction of the output to be obtained oven if
the additional part does not truly represent a physical prccess in
the catchment. It is therefore necessary to have a test to judge
whether the observed improvement in fit is accidental or real.

Although various methods are available in literature for
solving the non-linear programming problems, here only three
methods viz Rosenbrock optimisation Technique, Gauss Newtor method
and Marquardt Algorithm have been discussed as these methods have
been extensively used for solving the non-linear programming
problems in hydrology. Rosenbrock optimisation Technique is a
multivariable Numerical optimisation technique bLased on search
strategy. Gauss Newton method is generally used to optimise the
nonlinear regression equation. Marquardt Algorithm is an

improvement over the Gauss Newton method.




2.0 ROSENBROCK OPTIMISATION TECHNIQUE

The procedure is based on the direct search method
proposed by H.H. Rosenbrock (1960). No Derivatives are required.
The procedure assumes unimodal function, therefore several sets of
starting values for the independent variables should be used if it
is known that more than one minimum exists or if the shape of the
surface is unknown. The algorithm proceeds as follows
(minimisation problem):

i. A starting point and initial step sizes, Si i=1,2....N
are picked and the objective function evaluated.

ii. The first variable X, is stepped a distance S1 parallel
to the axis, and the function evaluated. If the value
of F decreased, the move is termed a success and Sl
increased by a factor a, o = 1.0. If the value of F
increased the move is termed as a failure and 51
decreased by a factor §, o < f§ < 1.0, and the direction
of movement reversed.

iii. The next variable, X0 is in turn stepped a distance Si
parallel to the axis. The same acceleration or
deceleration and reversal procedure is followed for all
variables in consecutive repetitive sequences until a
success (decrease in F) and failure (increase in F) have
been encountered in all N direction (for minimisation
problem).

iv. The axes are then rotated by the followiig equations.

Each rotation of the axes is termed a stage

(K)
M;.K;]') R cee(6)
’ K) 2 1/2
( mplthh Y
121 *'J
(K) (K)
where Di,l = Ai,l e (7)
j=1 b
p{®) = a(K) _ g (( L M(K+1)—A(K?)-MFK+1)] j=2,3...N
1,3 1,3 n,1 Red el
1=1 n=1
... (8)
N
K _ (K) _ ,(K)
e R B R o

80



where
i = Variable index
3 = Direction index
= Stage index

= Sum of distances moved in the i direction

i
since last rotation of axes
Mi j = Direction vector component (normalized)
r
(v) Search is made in each of the x-directions using the new

co-ordinate axes:

new x\ %) = o1a x{¥) + g{K) (K s )
i i 3j 133
(vi) The procedure terminates when the convergence criterion

is satisfied. The fcllowing convergence criteria may be

incorporated in the procedure.

- Maximum number of times program is to evaluate
objective function

— Maximum number of times axes are to be rotated

- Number of successive failures encountered in all
directions before termination.

- Error in objective function to be reached before the
termination of the procedure (taken as difference
between current value and previous stage value)

A flow sheet illustrating the above procedure is given

in Fig.12.
3.0 GAUSS-NEWTON METHOD

The procedure is based on linearization of the proposed
model. A least square objective function is utilized. It solves

for the coefficients in a multivariable, non linear regression
equation Y = F (xl, XoooorXyi Al, AZ...AM) utilizing N data points
for Yi and xK,i, i=1,2...N, K=1,2,...M. The method has proved
effective where good starting estimates of the unknown
coefficients are available. The algorithm proceeds as follows:

i. The model is linearized by expanding Yi in a Taylor

Series about current trial values for the co-efficients

and retaining linear terms only.
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A A

Ak ayi dy . P dy . A

-~ A~ *
Y =Y +(-=5)" an_ 4 (-1 AA2+...+(—;£) AR, (11)
i i oa : TN oA :
1 2 M
where
AR, = [A, - A ], 3=1,2...M
5 i 3 : Ir 3

The asterisk designates gquantities evaluated at the

initial trial values.

ii. A least square objective function is formulated
Minimize N A2 (12)
s= L (y,-v,)
; i i
i=1
iii. The linearized model is substituted into the objective

function and the "normal equations" formed by setting
the partial derivatives of the objective function with

respect to each co-efficient equal to zero;

=== =0, § =1,2...M s {13

The resulting normal equations will be of the form

T T A
(A"A) AA = A (y-y ) so s LIS
where F ~ a A ]
Wy Wy %1
6A1 6A2 aAM
%, %2 %y
dA 1 JA 5 (i} "
Wy Wy %y
LaA 1 dA 2 JdA ¥ j
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-

= * i
An = S S TR T I & I e
A Ak i A %
(Ay-R, ") (¥5¥ )
‘A A K A %
(A,-A, ) (% ~Yy )

L . L |

AT is the transpose of the B matrix. The derivatives in the A

matrix may be evaluated analytically or numerically.

iv. The normal equations are a system of linear

algebraic
equations and are solved by an appropriate technique for
A%. The A% Vector and § will approach zero as
convergence is acnieved. If converygence is achieved,

the final co-efficients are calculated from

A A K A
A, = A, + An, i = 1,2......M .+ (15)
j 3 S ! (

If cdnvergence is not achieved, A* is updated by replacing
the old values by the new values and the process repeated.
A flow chart illustrating the above procedure is given in

Fig.13.

4.0 MARQUARDT ALGORITEM

The procedure was proposed by Marquardt (1963) as an
extension of the Gauss-Newton method to allow for convergence with
relatively poor starting guesses for the unknown co-efficients. A
least square objective function is utilized. In this method, the

Gauss-Newton normal equations are modified by adding a factor A

[ATA + NI AR, w BT (Y—;[*) ... (186)
Where I is the identity matrix. Thus A is added to each term of
the main diagonal of the ATA matrix. It can be shown that when
approaches +o, Marquardt’'s method is identical to steepest Descent
(Jacoby et.al., 1972). When A equal zero, the technique reduces
to Gauss Newton. In general a Steepest Descent Procedure would be
expected to converge for poor starting wvalues but requires a

lengthy solution time. Gauss Newton, on the other hand, will
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converge rapidly for good starting estimates. Thus in the
Marquardt procedure, the initial values of A are large and will
decrease toward zero as the optimum is approached. All other
computational details parallel the Gauss Newton procedure. The

above procedure is illustrated through a flow chart in Fig.14.

5.0 HYDROLOGICAL MODEL PARAMETERS OPTIMISATION
The selection of a parameter optimisation algorithm for
solving the non-linear programming problems particularly in the

area of hydrological modeling is complicated by the decisions

taken about the type of mcdel, the selected model functions and
their structure, the time interval and the length of historic
record available and its quality. The routine application of a
particular technique can lead to a needless precision in the
values obtained for parameters and consequent waste of computing
resources, or if the model parameters have a degree of dependence
then the operation of the model structure can be badly affected.
In this case although a good fit has been apparently obtained in
the calibration period the effect on the model structure of badly
skewed parameters can lead to failure in prediction mode even
though the concepts used in the expressions are valid; their
rethinking would have little effect.

The array of search techniques in use range from the
direct application of the experience and subjective judgments of
the modeler on a ‘trial-and-error’ basis using field parameters
spatially averaged over the whole basin to the use of automatic
search techniques. The latter should perhaps be called ‘semi
automatic’ since they can not be applied without experienced
analysis of the results. All the search techniques including
Rosenbrock optimisation technique are a form of direct search in
which a parameter is changed and the result testad against
observed data and previous model cutputs. The variations occur in
the strategy adopted in changing parameters and testing the
results from the model. The only significant variations from this

are the derivative based techniques where the matrices of first
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and second derivatives of the gradient vectors are considered to
obtain a Hessian, confirming that a minimum has been reached in
the hyperspace generated by the parameters. With data derived

from a function that is smoothly analytic this is the probably the

best type of algorithm to use and convergence can be extremely
rapid. However, the position is not so simple with a data set
containing errors and possible short term bias. This can affect
the Jacobian of gradient Vectors Very Significantly, and the
consequent ill conditioning of the set of parametric Vector
equations must lead of failure in obtaining a unique set of
optimal parameters. The problems of using these derivative based
algorithms on observed data have not been investigated thoroughly,
though there are models which are designed to avoid the problems
(Marquardt, 1963).

With the direct search techniques the success of the
variation of a parameter can be assessed either by direct
comparison of plots of the observed with the model predicted
hydrograph subjectively or by the use of some objective function
based on the residual errors between the two sets of flows. This
function assumes particular importance with an automatic  search
algorithm as it generates the parametric hyperspace in which the
search takes place for the minimum, the hyperspace having the same
number of dimensions as there are parameters. The most commonly
used direct search technique is the Rosenbrock technique which is
very sensitive to gradients in the hyperspace topography and
quickly finds the nearest local minimum. At convergence the
optimum obtained has to be tested in an endeavour to find out if
it is a local or global optimum, and one satisfactory way of
achieving this was found to be restart the algorithm itesrations
with a new set of parameters. By this repeat of tne process from

a new starting point a larger area around the optimum is searched.
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