TUTORIAL-6

DESIGN FLOOD ESTIMATION USING UNIT HYDROGRAPH APPROACH

Problem

The ordinates of a mass curve of rainfall from a severe storm in a catchment is given. Ordinates of a 12 hour unit hydrograph applicable to the catchment are also given. Using the given mass corve, develop a design storm to estimate the design flood for the catchment. Taking ϕ index as 0.15 cm/hour, estimate the resulting design flood hydrograph. Assume the base flow to be 50 m³/s.

Time (hour) 0	Cumulative rainfall (cm) 0 10.2	12 hour unit hydrograph ordinate (m³/s) 0 32			
12	30.5	96			
24	34.0	130			
36 48	36.0	126			
60	161 Highwight In them I from Held of he go	98			
72		75			
84		50			
96		30 15			
108		7			
120		ó			
132					

Solution

The computational steps are:

- (i) Enter the time intervals in column (1) of Table T 6.1
- (ii) Enter the cumulative rainfall (cm) in column (2) of Table T 6.1.
- (iii) Compute the 12 hour increment rainfall and enter in column (3) of Table T 6.1.
- (iv) Enter the given ordinates of 12 hour unit hydrograph in column (4) of Table T 6.1.
- (v) Arrange the maximum rainfall increment against the maximum unit hydrograph ordinate, the second highest rainfall increment against the second largest unit hydrograpo and so on as shown in column (5) of Table T 6.1.
- (vi) Reverse the sequence of rainfall increments obtained from step (v) in such a way that the last item becomes first and the first item becomes last. The sequence of rainfall is called as design sequence of rainfall increment. Enter those values in column (6) of Table T 6.1.

- (vii) Enter the infiltration loss (= 0.15×12 cm) equal to 1.8 cm in column (7) of Table T 6.1.
- (viii) Compute the rainfall excess of design storm atter subtracting the infitration loss from the design sequence of rainfall increments. Enter those values in column (8) of Table T 6.1.
- (ix) Enter the time from start of effective rainfall in hours in column (1) of Table T 6.2
- (x) Enter the 12 hour unit hydrograph ordinates in column (2) of Table T 6.2.
- (xi) Enter the excess rainfall for design storm, obtained at step (viii). in column (3) of Table T 6.2.
- (xii) Compute the direct surface runoff in cumecs due to different excess rainfall and enter them in column (4), (5), (6) and (7) of Table T 6.2 respectively.
- (xiii) Compute the total direct surface runoff ordinates at each time interval after adding the corresponding values of column (4), (5), (6) and (7). Enter these values in column (8) Table T 6.2.
- (xiv) Enter the constant base flow values in column (9) of Table T 6.2
- (xv) Add the values of column (8) with the values of column (9) and enter them in column (10) of Table T 6.2. These values are the design flood hydrograph ordinates.

Table T 6.1 Calculation of Design Storm

Time (hour)	Cumulative rainfall (cm)	12 hour incre- mental rainfall (cm)	Ordinate of 12 hour unit hydro- graph (m³/s)	First arrange- ment of rainfall incre- ment (cm)	Design sequence of rainfall increment (cm)	Infiltra- tion loss	Rainfall excess of design storm (cm)
1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0
12	12.2	10.2	32	0	3.5	1.8	1.7
24	30.5	20.3	9 6	2.0	10.2	1.8	8.4
36	34.0	3.5	130	20.3	20.3	1.8	18.5
48	36.0	2.0	126	10.2	2.0	1.8	0.20
60			98	3.5	0.0	0	0
72			75				
84			50				
96			30				
108			15				
120			7				
132			0				

Table T 6.2 Computation of Design Flood Hydrograph

Time from start of effec- tive	12 hour unit hydro- graph ordi-	Rainfall excess of design storm		runoff of ive rainfa nents 8.4 cm		di su	otal rect urface unoff	Base flow	Design flood hydrograph orcinate
rainfall (hours)	nates (m³/s)	cm		(cm³/s)		(m³/s)	(m³/s)	(m³/s)	(m³/s)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(9)	(9)	(10)
12	32	1.7	54.4	_			54.4	50	104.40
24	96	8.4	163 2	268.8	_	_	432 0	50	482.00
36	130	18.5	221.0	806.4	592	0 —	1619.4	50	1669.40
48	126	0.20	214.2	1092.0	1776	6.0 6.4	3088.6	50	3138.60
6 0	98		166.6	1058.4	2405	5.0 19.2	3649.2	50	3699.20
72	75		127.5	823 2	2331	.0 26 0	3307.7	50	3357.70
84	50		85.0	630.0	1813	0 25.2	2553.2	50	2603.20
96	30		51.0	420.0	1387	.5 19.6	1878.1	50	1928.10
108	15		25.5	252.0	925	5.0 15.0	1217,5	50	1267.50
120	7		11 9	126.0	555	.0 10.0	702.9	50	752.90
132	0		0	58.8	3 277	.5 6.0	342.3	50	392.30
144				0	129	.5 3.0	132.5	50	182.50
156					0	1.4	1.4	50	51.40
168						0	0	50	50.00

The shall be a second to the second of the s

	23 17 1-34								