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INTRODUCTION
The term channel routing can be defined as the mathematical
method to predict the changing magnitude, shape & speed of a flood

wave as it propagates through waterways such as canals, rivers,
reservoirs or estuaries, Fread (1985). The channel routing methods
can be classified 1in three categories : empirical methods,

hydrologic methods, and hydraulic methods.

Since a flood is a unsteady flow phenomenon, it can be best
described by equations which take into account the unsteady aspect
of flow. The basic equation of unsteady flow were first developed
by a french scientist DE SAINT VENANT in 1871 and are called the
Saint Venant equations. The implicit method of routing which isg
concerned with solution of the St. Venarnt equations is described
in the following.

SAINT VENANT EQUATIONS

These equations are the fundamental equations of unsteady
flow. Although several modifications of these equations have been
suggested since their development, the basic equations have
remained the same. These eguations are
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where,

A = wetted ¢ross section area of channel,

Q@ = discharge in the channel,

QS= lateral inflow per unit channel length,

8 = acceleration due to gravity,

¥ = depth of flow,

X = distance along the channel from some upstream reference

point,




S = bottom slope of the channel,

o
Sf= friction slope,

v = velocity of lateral inflow in the direction of main flow, and
t = time.

Oof the above egquations, eq. (1) has been derived from
continuity principle and eq. (2) has been derived from momentum
principles. In the equation (2), the first two terms represent the
rate of change of momentum of water, the third and fourth term
represent change in pressure force and the last term is due to
resistance effects. These two equations form a set of non-linear
first order hyperbolic partial differential equations describing
unsteady flow in open channels.

The fundamental assumptions underlying the derivation of
Saint Venant equations are

1) The water surface varies gradually. This implicates that the
pressure distributicn along a vertical is hydrostatic and vertical

acceleration is small.

2) The friction losses in unsteady flow are not significantly
different from those in steady flow.

3) Velocity distribution along the wetted area does not
substantially affect the wave propagation. In other words, the
veloclty distribution is uniform.

4) The holtom slope of the channel 1is small so that
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The channel is straight and prismatic.

Attempts have been made to establish the experimental
verification of St. Venant equations. It has been found that the
results obtained by numerical integration of these equations are
sufficiently close to the experimental results.

NUMERICAL SOLUTION OF ST. VENANT EQUATIONS

It is not possible to obtain closed form analytical solution
ot St. Venant equations. In the beginning of current century, some
graphical methods were developed and were in use for quite some
t.ime, But with the advent of fast computers numerical methods have
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taken a leaa over them. Now with the help of computers, solutions
up to the desired accuracy can be obtained quickly.

Due to various problems associated with the solution of
complete St. Venant equations, various simplifications have been
suggested by various investigators. .These simplifications are
classified as the kinematic wave model and the diffusive wave
model. These are depicted in the following
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The available numerical methods of sclution of St. Venant
equations can be classified as

(a) Method of characteristics,
(b) Explicit finite difference methods,
(¢) Implicit finite difference metheds, and

(d) Finite element methods.

In the following, the implict. methods are described in
details.

IMPLICIT METHODS OF FLOOD ROUTING

Since all real 1life floods have to be routed for a
relatively long duration and the distances involved are also
comparatively large, the earlier discussed methods were found
unsuitable. The need and search for a method which could work
under such conditions led to the development of implicit routing
techniques.

In the implicit methods, the x derivatives of the unknown
terms of Saint Venant equations are replaced in terms of the
finite differences evaluated at time to+t. The resulting equations

are nonlinear in character.Since the unknowns implicitly appear in
the equations, the name of solution method is implicit method. The
solution of these equations is more-complex than in the explicit
method.




Although the various implicit schemes are unconditionally
linearly stable, instability could occur if the time step size is
too large and the x-derivative terms are not sufficiently
advanced towards the future time line when modelling rapidly
varying transients. Also a too large time step size should not be
used for the sake of accuracy. In general, At depends on the Ax
size, the shape of the hydrograph, the type of implicit scheme
chosen and the nonlinearities introduced due to irregularities of
the cross-section etc.

In past several implicit schemes have been developed. The
first detailed description of an implicit scheme appeared in 1956.
One of the earliest developed implicit scheme for flood routing
was suggested by Preissmann (1961). He adopted a four point grid
in (x,t) plane and also introduced a weighting factor. Liggett and
Woolhiser (1967)developed a six point implicit scheme. The method
permitted slightly larger values of time steps than that allowed
in characteristics method but it is difficult to apply a six point
method to an irregular space mesh. However Abbott and Ionescu
(1967) successfully applied the six point scheme to irregular
space mesh by using a weighting procedure.

Amein and Fang(1970) used a four point scheme or box scheme
and an improved versions of this scheme was used by Fread(1973)
and Amein and Chu (1975). This scheme has also been used in the
Dynamic wave Model, FLDWAV, developed by Fread(1985).

FOUR POINT TMPLICIT SCHEME

This scheme is also termed as Preissmann scheme. In this
scheme the numerical solution of equations (1) and (2) is obtained
in two steps. 1In the first step the equations are replaced by two
algebraic finite difference equations and the second step consists
of solution of these equations. The salient features of the
Preissmann 1ype schemes are the following

- They are consistently approximate integral conservation laws,

- They compute both unknown variables at the same computational
grid points,

- They link together flow variables at only two adjacent sections;
thus the space intervals may be variable while the accuracy of
approximation is unaffected,

- They are schemes of first order approximations except for the
special case when €=0.5 when the approximation is of the second
order,




- For a special choice of At and Ax, they furnish the exact
solution for the fully linearized flow equations.

The numerical solution is obtained over a discrete
rectangular net of points on (x,t) plane as shown in Fig. 1. The
lines drawn parallel to x-axis represent time and those parallel
to t-axis represent a channel location. The intersection points of
these lines are called node points. The spacing of these lines is
At and Ax respectively which need not be constant. The scheme is
termed as four point scheme because the continuity and momentum
equations are applied to two adjacent computational Cross
sections.

Let o be any variable such as Q, y, A or u etc. The partial
derivatives of with respect to t and x can be expressed as

da(M)/dt = [ a(P) + a(T) - a(R) - a(s) ]/24t (5)

da(M)/dx (1-8)[a(R) - a(S)]/AX + a[a(P)-a(T)1/Ax (6)

Where
© = a weighting factor, At’/At
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Fig. 1 Network in (x,t) plane used in diffusive scheme




The factor @ has been introduced to impart artificial damping
in the system. The value of @ varies from 0 to 1. When =0, the
scheme reduces to explicit method. The value 0.5 produces box
scheme or centered finite difference scheme. The weighting factor
allows flexibility in placing derivative terms. The weighting
factor must greater than 0.5 to provide wunconditional linear
stability with respect to time step size. Fread(1985) has pointed
out that the accuracy of the scheme generally decreases as the
weighting factor approaches unity. The effect becomes more

pronounced with increase in the time step size. However, the
resulting equations with & =lare simpler in structure. While the
box scheme is stable for slowly varying flow, it may produce

numerical oscillations under certain conditions. A value of £=0.55
has been recommended to minimize the loss of accuracy and to avoid
weak instability. To generalize the approach, the equations given
here are with 0.5 = & = 1.

Using equations (5) and (6), the equation of continuity or
eguation (1) can be expressed in the finite difference form as
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Here subscripts refer to longitudinal location and

superscripts refer to time step. Simplifying the above equation

o Jd r2s J j+1_ j+1 j+1
[(1 9)(Qi+1 Qi) + 9(Qi+1 Q )] +0.5&~x/£&t[(Ai+_1 +
Jj+1 J J _
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Similarly the finite difference form of momentum equation or
equation (2) is obtained as
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The equations (8) and (10) are ftinite difference form of
equations (1) and (2) as used in the implicit scheme. All the
variables occurring with superscript j are known and with
superscript j+1 are unknown. However, all the wunknowns are not
independent. Thus egquations (8) and (10) contain only four
unknowns, i.e., the value of discharge and depth at grid points
(i,j+1) and (i+1,j+1). Another striking feature is that Ax and
At need not be constant and 4Ax can be varied at any xi and At can

be varied at any time t .
J

These two equations constitute a system of two nonlinear
algebraic equations in four unknowns. TIf a channel has N sections
or (N-1) grids thah in all 2N unknowns need to be evaluated at any
state of iteration. Equations (8) and (10) can be written for
any grid. But since two unknowns 4are common to two adjacent
grids, the applicdtion of the eyuations gives 2(N-1) equations.
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Hence two additional equations are needed to solve this system of
equations. They are provided by boundary conditions.

BOUNDARY CONDITIONS
The two boundary conditions required to solve the system of
equations provided by the upstream and downstream boundaries.

The upstream boundary condition can

a) Flow depth as a function of time, or
Discharge as a function of time.

The downstream boundary condition can be

(a) The flow depth as a function of time, or

(b) Discharge as a function of time, or

(¢c) A stage discharge relationship - say as rating curve or the
relationship if a control structure such as a weir or gate etc.
exists.

If the depth at upstream boundary is known as a function of
time then

¥y v t3thy = o (11)

j+1
where y'(t‘J ) = known depth of flow at upstream boundary at time

j+1.
tJ

If discharge is known instead of depth then

j+1 1 j+1
Q) -e (! =0 (12)
Either of equations (14) and (15) can be used as a
supplementary equation. In generalized form we can write

FO(YI,QI) =0

Similarly at downstream boundary, if the depth is known as a
function of time then
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If discharge is known as a function of time then
j+1

Q = Q& (t
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Again equation (13) or (14) can be used as second
supplementary equation. In general form

FN{yN,QN) =0

SOLUTION OF SIMULTANEOUS EQUATIONS
Putting together all the equations, 2N simultaneous equations

for 2N unknowns are obtained. These are assembled here
Fol(yy s Ql) = 0
F lyyr @y ¥0 Q) =0
G (¥yyr Qs ¥y Q) = 0 (16)
F oo Qe F09085) =0
G lir Or 7083 y! =10
Folyg 9 ) = 0

Here symbol Fi denotes equations obtained by application of

equation (8) and Gi for those obtained from equation (10).

Equations (16) form a system of 2N equations in 2N unknowns.
Any eliminations or matrix inversion can be used to solve them.
Each time the system is solved, a better approximation of unknowns
is obtained. The process can be stopped when the required accuracy
is obtained. The computations can be now advanced to the for next
time step. As for initial approximation, the value of unknowns at
previous time step can be taken as starting value. It has been
reported that instead of linear interpolation a parabolic
interpolation gives faster convergence.




The Newton-Raphson method, which makes use of Taylor series
expansion of a nonlinear function by neglecting all terms of
second and higher order, is an iterative technique to solve a
system of nonlinear equations. The algorithm is

J’(xk)ax = -f(xk) (17

where, Xk is a vector, J' 1is the  Jacobian, and f(Xk) is the
nonlinear equation evaluated with X values, and AX is a vector
containing 2N unknowns in terms of flow depth and discharge. The
Jacobian matrix is composed of the partial derivatives. The vector
AX represents the difference between the solution at two
successive stages of iteration, i.e.,

+1
Xk ™ Xk (18)

AX =
where k is the iteration number. Convergence is achieved when the
guantities contained in AX become less than some specified value.
The final values of depth and discharge at the previous time
interval provide a good starting estimate of the wunknowns.
Fread(1985) suggests following formula to obtain the first
estimates

x5 = x3°1 (x‘]_1 -XJ'Z)a (19)

where & is a weighting factor in the range zero to one, XJ is the
solution vector at time j.

The coefficients of equations (16) are banded around main
diagonal and some efficient solution technique taking advantage of
the banded structure of the coefficient matrix can be used for
fast solution. Such procedures have been suggested by Fread(1971)
and Liggett and Cunge(1975).
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