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UNSTEADY FLOW TO A WELL IN MULTIPLE CONFINED AQUIFERS

SITA RAM SINGH

ABSTRACT

Transient ground water flow to a fully penetrating well
installed in n-confined aquifers (n is an integer) separated by
aquicludes has been analysed. The aquifers were in hydraulic
equilibrium before the start of pumping. Explicit equations for
drawdown distribution in each agquifer as well as its contribu-
tion to the well discharge have been developed, The solution for
drawdown distribution in each aquifer is simple like Theis equa-
tion in which aquifer transmissivity is replaced by an effective
transient transmissivity of the aquifer. When the diffusivities
of the aquifers are equal, the solution reduces to Theis equation.
The solution is approximate and is valid for large times such
that the variable r2 S5;/4T;t < 0.05. The analysis has revealed
that (1) the contright}on of an aguifer to the well discharge
during transient state is governed by the aquifer diffusivity,
(11) at the start of pumping the ground water flow to the well
is more from an aquifer of the least aquifer diffusivity, and
(111) the flow from aquifers of equal diffusivities is invariant
over time and is proportional to aquifer transmissivities with
proportionality constant being equal to the inverse of the sum
of the aquifer transmissivities. The difference in drawdowns
between two radial distances in each aquifer follow a Thiem type
equation.

INTRODUCT ION

Very often wells draw water from a complex multiple aquifer
system. Such a system consists of a series of aquifers separated
from each other by confining layers of relatively low hydraulic
conductivity. These confining beds may be considered aquitardsor
aquicludes depends upon whether the leakage through them is appre=-
ciable or not. Hydraulics of wells in nonleaky and leaky agquifers
have primarily been developed for wells having their screens in a
single aguifer (Hantush, 1964)., Exception to this tend of ana-
lysis has been the work of Sokol(1963) who was the first to
derive the steady state solution to hydraulic head changes in
aquifers connected by a non-pumping well. Papadopulos (1966)
obtained asymptotic solutions for transient discharge and hydrau-
lic head distributions around a well tapping two-confined aqui-
fers of different piezometric levels when the well was initially
unpumped and then pumped with a constant rate. The duration for

# Department of Soil and Water Engineering, College of Agricultural
?ngineﬁring, Punjab Agricultural University,Ludhiana-141 004
India '

V — 68




which his asymptotic solution is valid is not specified. Khader
and Veerankutty (1975) analysed unsteady ground water flow to a
well having screens in two aquifers - a water table aquifer over-
lying a confined aquifer. They employed Laplace and Hankel trans-
forms in conjunction with Schapery's method of inversion to
develop drawdown and discharge relationships in each aquifer for.
a well of (i) zero discharge and different initial heads, and
(11) constant discharge and identical initial heads.

Shakya and Singh (1986) and Shakya et al. (1986) developed
analytic solutions to several problems of steady ground water
recharge through a well having screens in two leaky confined
aquifers, Equations for rate of recharge and hydraulic head
distributions in each leaky aquifer were developed for a constant
hydraulic head (Shakya and Singh, 1986) and constant injection
(Shakya et. al., 1986) boundary conditions at the well bore. The
latter also incorporated the effect of accretion from a ponded
land surface. Using discrete kernal approach Mishra et., al. (1985)
analysed unsteady flow to a well in two aquifers separated by an
aquiclude, They made extensive computations and found that the
contribution of an aquifer to the well discharge is governed by
its hydraulic diffusivity value, Nautiyal (1984) followed the
same method of analysis to solve problems of transient ground
water flow to a well installed in (i) more than two aquifers
separated by aquicludes, and (ii) two aquifers separated by an
aquitard. Though the discrete Kernel approach is elegant it
requires successive computation to get the contribution of each

:g:ifer to the well discharge as well as drawdown at a particular
e,

The objective of this study was to develop analytic solutions
for unsteady ground water flow to a well installed in n-confined
aquifers separated by aquicludes, where n is an integer. The -
initial piezometric levels of all the n-aquifers were assumed to
be the same and the well screens fully penetrated each aquifers.
Equations using exponential integrals have been obtained for
(1) the drawdown distribution in each aquifer, and (ii) contri-
bution of each agquifer to the well discharge computations of .
drawdown and discharge for a well in two confined aquifers have
been compared with analytic-numeric results of Mishra et al.(1985).

THEORETICAL ANALYSIS

Consider a constant discharge well fully penetrating n-
confined aquifers, each separated by an aquiclude. The aquifers
are homogeneous, isotropic and infinite in areal extent with
transmissivities T., and storage coefficients S o 1=1,2, 0N
Before the start of pumping the piezometric hea&s in all the
aquifers are in equilibrium (Fig.l).

The following form of the differential equation in cylin-
drical coordinates adequately describes the flow of ground water
to the well in each aquifer
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.fOI‘ i = lgz’oooo.n,

r, £ r < o,
in which s,(r,t) is the drawdown in the ith aquifer at radial

distance r and time t, Ti = kibi is the aquifer transmissivity

L?T'l, Si=ss bi is the storage coefficient, dimensionless, K,

is the h{draulic conductivity, LT’} S¢ is the specific storati-

vity, L™, bi is thickness of the aqui}er, L, r, is the radius

of the well, L, and subscript i to any quantity is for the ith
aquifer. The auxiliary conditions to (1) are

si(r,o) =0 forr >r, (2a)
lin f-  8y(rt) = 0 (2b)
n S.
w —

and

lim, rwsl(r,t) = lim_ rw52(r’t) = & 5 @

= lim__ rwsn(r,t) (24)

The differential equations (1) in conjunction with the auxiliary
conditions (2a,b,c,d) constitute a system of n simultaneous par-
tial differential equations which are coupled only at the well

bore through the boundary conditions (2c) and (2d¥.

The usual approach for solving the boundary value problem(1)
and (2) is with the help of the integral transform techniques,
Very often the transforms of the boundary value problems have
been approximated (Hantush, 1964, Papadopulos, 1966, Khader and
Veerankutty, 1975) to develop solutions for short and large
times. Here an approach is devised in which in place -of approxi-
mating the transform, the solution itself 1is assumed and later on
its validity is established. In well hydraulics the approximation
is introduced at the level of differential equation itself, The
differential equation of flow of slightly compressible fluids in
deformable porous media is nonlinear (Zear, 1972). It is approxi-
mately linearised by neglecting the nonlinear term resulting in
(1). The error on account of the neglect of the nonlinear term
has been analysed by Singh and Sagar (1980) for flow of water
and petroleum in deformable media.

The solution of ground water flow to a fully penetrating
well in a confined aquifer involves exponential integral(Theis,
1935), Large time solution of the constant head well problem is
also approximated by the exponential integral (Hantush, 1964
p 309). Herein the solution of the boundary value problem (15
and (2) is assumed as the product of the exponential integral,
w(u), and an arbitrary function of time, i.e.,

Si(r’t) = Ai(t) W(ui)’vi ?11-2r e o oy Iy (3)




in which

o =X
w(ui) = f "x_' dxl ' (4)
Ui L
rzsi i = 1,2 "(5)
u = y 1 = 9<se 9o o9 N
1 T AT |

and Ai(t), i=1,2,. « « yn, are unknown time dependent arbitrary

functions to be determined as part of the solution, Herein, the
functions w(ui) are chosen as they satisfy the initial and boun-

dary conditions (2a) and (2b). The unknown functions Ai(t) are
determined to satisfy the boundary conditions (2¢) and™(2d) at
the well bore. _

Sdbstitutihg'YB) in (2d) and solving for Aj(t),3=2,3,....n.
in terms of unknown Al(t), one gets

_ f;(t) W(ug.)

A(t) = . ' (6)
J W(ujw)
where 2 o
. r= 8.
u. o e al (7)
Jw 4Tjt '

The function Al(t) is determined by using the boundary informa-
tion (2¢). The derivative of (4) with respect to r could be
obtained using chain rule and Leibnitz rule. It is helpful in
evaluating the space derivative of the drawdown.

Substituting
0s. =Y
i _ _ e
T = -2A & (8)

"and the value of A; from (6) in (2c), one gets

: ‘
Al(t) = Z;FZ' o (9)

Putting (9) in (6) yields




F, has the same dimension as aquifer transmissivity. Hence it

could be considered as effective transient transmissivity of
the ith aquifer in n-a?uifer system. The system of equations(3)

together with (9) and (10) is the solution to the system of
partial differential equations (1).

Quantity of Flow to the Well From Each Aquifer

Let Q,(t) is the rate of flux to the well from ith confined

agquifer, 1pm application of Darcy Law ir conjunction with (8)
yields

Qu(t) = 4nT; A, e~%w, 1=1,2,...,n (12)

The pumpage from the well bore is replenished by the ground water
fluxes from the individual confined aquifers., Thus

n

5 Qi(t) (13)

Q =
i=1

At any time t, the ratio of discharges from aquifers i and j is
given below

Q(t) Ty  Wlugy) =Yy (14)
n}m - T.j W( uiw) e-ujw

When the well is pumped for a very large time the drawdown
in each aquifer reaches steady state. Under such condition (14)
approaches to a limiting constant ratio, Using L' Hospital's
rule (Fulks, 1967, pp 130-133) on the functions inside the square
bracket one gets

0 wii
%im [3€ W(ij) € iw
->‘°°{ -l .
e uJW

}
5% w(uiw)

- -U
2 Jw/t % iw

- Lim e (15)
t 5 e e—uiw/t & Jw
Thus (t)
Q;(t T
i . 4 16
P T T, (16)

Substituting (9) and (10) in (12) one could obtain the ratio

of ground water withdrawal from the ith aquifer to the total
discharge of the well, i.e.




Qi(t) - 1
Q 1; (;3) e tiw { W(uy,,)
J:l i e"‘uiw W(ujw)

(17)

The limiting value of (17) as t ~ = could be obtained using
L'Hospital's rule as in (15).

Hence
Q,(t) Ty
1im -LQ = — (18)
t >0 y T
=1 ¥

At short time the u - of an aquifer having smallest diffusivity
Di = Ti/si’ approaches to a large value faster than the u - of
the other aquifer, For large value of u, , i.e. for u > 8,

iw iw =
W(uiw) = 0 and (17) becomes

Q,(t
1é)=1 (19)

Hence at short time the entire discharge of the well is drawn
from the aquifer having the least aquifer diffusivity. For

Dl =Dy =44 .= Di = ... =D, one gets Uy S Wy =« o o
= Uy = e .. = U Substituting these data in (17) one gets
a t%me invarient ground water withdrawal from the ith aquifer:

Q;(t) Ty
Q " n
z T,
=1 Y

Thus the effect of equal aquifer diffusivity on the contribu-
tion of an aquifer to the total well discharge is the same as
that of the steady contribution to the flow.

(20)

With the help of extensive computations Mishra et al;(1985)
obtained the results of equations (16), (18) and (19). However,
they derived (20) algebraically using discrete kernal approach.




Reduction to Theis Equation

The widely used Theis (1935) equation describes drawdown
distribution around a fully penetrating constant discharge well
in a homogeneous and isotropic confined aquifer of infinite
areal extent. The flow under such concition is radial, and the
drawdown 1s independent of depth. Let us study the drawdown in
n-aquifers of equal diffusivities. Thus for Tl/Sl=T2/S2=. “ s

= Tn/sn = D, one gets U=up= . . . =u,=u, and uy _=u, =. . .=u

n nw
where
r2
u = 7pT ¢ (21a)
r 2
and u_ = Z%E (21b)

Hence when all the aquifers have the same diffusivities, (3)
with help of (9) and (10) becomes

sy(r,t) = - s i W(u) (22)

Yy
4ne ; Ps
% ng J

Eqn.(22) gives the same drawdown distribution around a finite
radius well of negligible storage in all the confined aquifers,

Since lim r, 0, exp (-uw) = 1, therefore (22) reduces to

s(r,t) = —3 . w(u) (23)
n
4n ¢ T.
j=1 Y
Thus the well known Theis equation is also applicable to awell
installed in n-aquifers provided they have the same aquifer .

diffusivities. In (23) the subscript i has been dropped as draw-
down is the same in all the aguifers.

Reduction to Thiem's Equation

3g§§ u; < 0.05, w(ui) is approximated by (Hantush, 1964,
Da

Weu,) = 1n(0.562/u; ) (24)

Thus at large times (u, < 0.05) the drawdown at any radial

distance is obtained by substituting (24) in (3). The difference
in drawdowns at r, and r in the ith aquifer is given by

Q o2

s_i(rw,t) - si(r,t) == z;%'—.- ln(-l:,;) (25)
1




Thus unlike a well in a single aquifer, the difference in draw-
downs at two radial distances in a particular aquifer due to
pumping a well in n-confined aquifers does not follow Thiem's
equation. But considering F. as an effective transient trans-
missivity, (25) is a form of Thiem's equation., However, if the
aquifer diffusivities were equal, (25) would reduce to Thiem's
equation for an well of zero radius in n-aquifers.

The limiting value of F, at very'large time could be eva-
luated using L'Hospital's rdle and equation (15), which is

n
lim F, = ¢ T. (26)
t »e T 321 9

Let 1lim Ai(t) = A_. With the help of (26), Ag 1s obtained as

t > o0

below,

[»}

lim  A;(t) = A = (27)

t e

4
J

When pumping is continued for a very long period such that
steady state has reached, (25) with the help of (27) becomes

i
1 v

g

%%Tm [si(rw,t)-si(r,t)] = g ln(ﬁi) (28)
2% % :
g=1 Y

.‘fOI“ i = 1,2,4 e« o9 n,

which is Thiem's equation for a well in n-aquifers (Shakya,
et al. 1986). It predicts the same drawdown in all the aquifers.

Validity of the solution

The system of equations (3) is an approximate solution to
the system of parabolic partial differential equations (1). In
order to ensure that (3) is a good approximator to the exact
solution, it is necessary to know the time for which the differ-
ential equations (1) and the initial and boundary conditions
(2a,b,c,d) are satisfied.

Satisfying Auxiliary Conditions

Dividing the numerator and denominator of (3) by W(ui) and
substituting the expression for Ai(t), one gets
Q

W(uiw) n Tﬁe'ujw
ey I E e

V—176

(29)

si(r,t) =



Lim si(r,t) could be evaluated using L'Hospital's rule on the
t =0
quantities inside the square brackets. Thus for r > Ty
lim si(r,t)'z 0, for i = 1,25 » «p Iy
t-0
which is (2a), as it should be. Checking the satisfaction of
the boundary condition (2b) by (3) is straight forward as

lim w(ui) = 0 results in lim si(r,t)=0 for i=1,2,. « ., N,
r - o I'= oo

Substitution of (8), (12), and (13) in the left hand side of
the boundary condition (2c) yields

n bsi n -Usy
%imr 2nr 151 Ti _— = -4n i£1 TiAi(t)e =-Q, (30)
N = .

which is the same as the right hand side of (2¢). Checking the
boundary condition (2d) against (3) gives

Al(t)w(ulw) = Ag(t) W(uzw) = . 4 e = An(t) w(unw)

or
Q w(uy ) Q w(u,,,)
T -u - n T -Us
n
je Jw e JW
, y 40 W(u,. ) I
Q w(unw) (
= e e e = —11 . 31)
n T. 2 uJW
4 W(u 3
( nw) 429 w(ujw)

Eqn.(31) is an identity. Thus all the auxiliary conditions are
satisfied.

Satisfying Differential Equations
Substituting (3) in (1), one gets

7S, 1 0s; By -u.
— Tt T e < TEAt) e T e
or i

§ i e 't | 33
T-i- —b-T = (-,I,—:l-:%-)['t -5? W(ui)]+(T—i—t')Ai(t)e ( )




If (3) were the exact solution, the differential equations (1)
would have been exactly satisfied, but it is not so, as the
right hand side of (32) is equal only to the second term in the
rignt hand side of (33). It implies that s,(r,t) = Ai(t) W(ui)
would be an approximator to the true solution if

T;% s w(ui)+Ai e ] is closer to [?EE Ai(t) e ]
. OA.
Subtracting (33) from (32), one gets [~ Ti —5% W(ui)]
i

as a measure of error in the solution, The magnitude of this
error at large times is evaluated below.

From (3), (9) and (10) one obtain

2 -u,
OAi 4z Ai(t) Ce 1V
—é? .'J(ui) == g TR W(Lli)[ 4n Ai(‘t) W(in_y
-u. -2u
n Tj e J¥ ij n T. e Jw
+w(u, ) ¥ R A S— (34)
iw® 521 w(u, ) j=1
Jw 3 Wz(uJ )
JW
Using L Hospital's rule one evaluates
: S, O0A,
lim oot | k _
e T, ot Wl = 0 38

Thus at large times error tends to zero and the solution

Si(ryt) = Ai(t) W(ui) approaches exact solution. The magnitude
of time after which Egn.(3) closely approximates the exact
solution is estimated by comparing the results from (17) with
those of Mishra et al. (1985) and Khader and Veerankutty (1975).
Though the solution of Mishra et al. is semianalytical, it has
been considered here as an exact one. Egn. (17) is a dimension-
less relationship giving the ratio of ground water withdrawal
from the ith aquifer to the total discharge of the well. Using
this equation values of C,(t)/Q were computed for a well ins-

talled in two confined aquifers to study the accuracy of the
proposed solution (3). The aquifers parameters chosen were
81/82 = 100 for Ti/T? = 0.1, 1.0, and 10.0 which resulted into

Dl/DQ = 10‘3, 107 and 10‘1, respectively. The values of
Ql(t)/Q against u, ~are plotted by the dotted lines in Fig,2.

The solid lines in the figure depict the solution of Mishra
et al. (1985). It is evident from the figure that the results
derived from the proposed solution are identical to those of
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o1 Mishra et al. for all values of Y., € 0.05 with increasing
differences for larger values of U o The two solutions meet
again at u, = 8. Since in all the ¥hree cases Dy < D,,
therefore uy > U at all times. The wide deviation of the

proposed solution (3) from the solution of Mishra et al. for
0.05 < U < 8 is due to the large differences between

dAl

3 -u
. [¢ =t W(ulw) + Al(t) e 1W]

Tlt
S -u
and [Tl§ Al(t) e lw] in this range.
1

At early times after the start ~f pumping the function
A;(t) changes rapidly as shown in Fig.3. This phenomenon is

Studied by nondimensionalising Ai(t) by dividing it by As ziven
by (27). Thus

n
z T./T
At s T (36)
i .
= n (T4/Ty) ¢ gw
W(uiw uil W(u, )
. ”

The dimensionless rate of change in (Ai(t)/A ) is obtained by

differentiating (36) with respect to time anﬁ multiplying it
again by time,

n
Hence T./T

_zl ( J/ i)

t 35 (A (0)/A]) = - i

-1
(Tj/Ti) e J¥ )




001 =% /ts ¢ |.g=8) /Y
RKBIINVVG MANOY H03 3WIL HUM NOLNIOS 3HL 30 SWH3L IN3N3490 NI NOLVINVA € o

l
a o oL s ™ oL 0LxzZ
L 0 |- Z- B
rrrr ™7 T T TTrTr 111 T T Fq-dﬂ.ﬁq T T ———X 1 3 D Ohmw.l
sy v 1
o€ 102
09 109
X — ] p 7osgs-
g os 1%z | -
2 ] W < mw._Q
m 09t o8 e = 5
m 0Lt {00t Hoz- > _
o L =
o8




Let E. be an error indicating deviation in the satisfaction
of the di?ferential equations by the solutions {(3). It is

X S dA; /A
obtained by dividing the error [_(Tt%) + __%é_s w(ui) ] by

8 A.(t) -u
[(Tii) i e i] which gives the deviation from unity in the
s

right hand side of (33), The per cent error for the ith differen-
tial equaticn, Edj, outside the well screen is defined by

d
Edi = =100 t EE[Ai(t)/As]W(uiw) (38)
Ai(t) e—uiw
Ag

Computations of equations (36), (37) and (38) were made for a
well screening two confined aquifers, The aquifer parameters
were the same as in Fig., 2, i.e. 51/82 = 100 for Tl/T2=O.1,

d
1.0, and 10. Plots of [Al(t)/As], t 3% [Al(t)/As] » and E

for T./T, = 0.1, 1.0 and 10.0 are shown it figures 3,4, and 5,
respeétigely. All the three figures depict similar trends.
Fig.3 shows a change in [Al(t)ﬁAS] from 1214.9487 at u, =5.0

W
to 3.0577 at u1w=0.05. The corresponding values of té%%Al(t)/As]

are - 6360.7321 and -0.6663, respectively. The minus sign is
due to a decrease in the rate of change fAl(t)/As]. In this

range of Uy the error Ed, decreased from 85,47 per cent to
56.54 per cent, Similarly [Al(t)/As] in Fig.4 varied from
279.2563 at W, = 5.0 to 1.5357 at u 0.05 and in Fig.5 from
160.4158 at Uy, = 5.0 to 1.0965 at ug 0.05. The trends in

tO[Al(t)/AS]/Ot and E;, in figures 4 and 5 are also similar
to those in Fig.3, but with different magnitudes,

i

]

The values of E.., at u = 0,05 for T /T2 = 0.10, 1.0, and

d
10 were computed to %e 56.%2, 26,51 and 1%.72 per cents, res-
pectively, Since at Uy = 0.05, the proposed solution coincides

with the solution of Mishra et al. (1985), therefore, it is
concluded that the proposed solution is not sensitive to Edi,

and Ed. does not provide a cut off value about the accuracy of
the soiution.

Q
The magnitude of t Ef[Al(t)/As] has decreased continuously
with decrease in Upye A perusal of figures 2,3,4 and 5 reveals

. Qr
that for ¢ EELAl(t)/AS] less than 1.0, the proposed solution

does not deviate ?gpreciabl from the exact one, In fact, at
up,, = 0.05 for T 2 =0.1, 1.0 and 10,0 the magnitude of the
parameter was computed to be 0.6663, 0,1569, an. C.022, respec-
tively. '
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The function A_ given by (27) is the steady state value of
A,(t). The curves for A (t)/A_ in figures 3,4, and 5 real that
the function Al(t) approaches” to AS faster when the aquifer

diffusivities Dl and D2 are closer to each other,

Computations of Ql(t)/Q employing equation (17) for two
aquifers were also made for S,/S, = 20 and Tl/T2 = Quly 1.0,
and 10.0 Fig.6 shows a plot of Ql(t)/Q against

108[(Tl+T2)t/«31+32)r3)] from the present analysis as well as
those of Mishra et al. (1985) and Khader and Veerankutty (1975),
The value of u,  corresponding to log [(T1+T2)t/(sl+S2)r3] for

the three curves are also shown on separate abscissae in the
figure., It is evident from the figure that the results of the
present analysis match well with those of Mishra et al. (1985)

for all values of up < 0.02. At 1og[(T1+T2)t/((Sl+82)r§)]=1.1171

for Tl/T2 = 0.1 the present result is different from that of
Mishra et al. (1985) because it corresponds to U, = 0.2,

The curves of the present and Mishra et al. analyses deviate
from those of Khader and Veerankutty (1975) at short times i,e,

for log[(T1+T2)t/((51+82)r3)] < 5 which corresponds to uy,, of

the order of 10"6. This difference might result due to limita-
tions associated with the Schapery approximation used by Khader
and Veerankutty (1975) to invert the Laplace transform. Since
the solutions of Khader.and Veerankutty and the present author
are valid for u ., < 0.000001 and Ug < 0.05 respectively,

therefore, the proposed solution is superior to the former one,

It may be noted here that in all the six cases of dimension-
less computations shown in figures 2 and 6, Uy 2 Uoye Thus it .
is concluded that equations (3) are valid analytic solution to
the system of parabelic partial differential equations (1) so
long all u < 0,05. Consequently, (24) could be substituted

for exponential integrals in (3), (9), (10), and (17) while
doing computations.

EXAMPLE COMPUTATION

Using the proposed analytic solution it is easy to compute
drawdown in each aquifer with the help of the tabulated values
of W(u,)(Hantush 1964, p. 322) and a pocket calculator. Such a

computation has been reported in Table 1 (example of Mishga
et al. 1985) for a well drawing water at a rate of 1000 m°/day
from two aquifers. The other data were r_ = O.lm, 51/52=100,

$,=0.01, T,/T,=0.5, T,=350 m°/day. The table also shows the
computed drawdown by Mishra et al, as sim(r,t). It may be
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remembered that the drawdown at the well face in both the aqui-
fers is the same., In addition to the drawdown the magnitude of

d -u
the error Edi=[' : - 3% Ai(t) w(uiw)]/[Ai(t)e iw] were also
computed., The maximum values of Edl and Ed2 were found to be

15.01 and 13.55 per cents, respectively at 1 day. At this time
the dimensionless parameters were ulw=7.1428 x 10~8 and

u,,=3.5714 x 10-10, A perusal of the table indicates that even

for such hiéh value of E and Ed2’ the error in drawdown compu-
ted from the proposed so?&tion is negligible.

SUMMARY AND CONCLUSION

Analytic sclution for unsteady ground water flow to a fully
penetrating well installed in n-confined aquifers (n is an
integer) separated by aquicludes has been developed. The solu-~
tion is approximate as it fails to satisfy the differential
equation at short time, However for rwsi/4Tit < 0,05 it is

found to be valid as the results of the proposed solution are
in close agreement with those of Mishra et al. (1985). When the
diffusivities of the aquifers are equal the solution reduces

to Theis equation. The analysis reveals that at any time the
drawdown difference between two radial distances in an aquifer
follows a Thiem)type equation in which the transmissivity of
the Thiem's equation is replaced by an effective transient
transmissivity of the aquifer., However, when the flow reaches
steady state the Thiem like equation reduces to Thiem's equa-
tion.

An explicit relationship for the ratio of discharge from
the ith aquifer to the total discharge of the well has been
developed. It reveals that (i) the contribution of an aquifer
to the well discharge during trarsient state is a function of
the aquifer diffusivity, (ii) at the start of pumping almost
total well discharge is drawn from the aquifer having the least
aquifer diffusivity , and (iii) at steady state the ratio is
equal to the composite transmissivities of the aquifers. A
consequence of (iii) is that the ratio of the discharges from
the aquifers is the same as the ratio of their transmissivities,
The latter result also holds good at all times, for a well
installed in agquifers of equal diffusivities.
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