National Symposium on Hydrology
Dec.16-18,1987, N.I.H., Roorkee
CONSTRAINED DIFFERENTIAL DYNAMIC PROGRAMMING
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J.N, NANDA*

ABSTRACT

Eversince Bellman's (1957) book on Dynamic Programming (DP),
new avenues have opened up for the reservoir operation or control
problems, The comgutational effort required to solve a multireser-
voir control problem by the D.P. is immense when the dimensions
of the problem increases, so much so that it is beyond the capa-
city of the present day computers. This aspect has been qualified
as "the curse of dimensionality" . Many computational efforts
have undergone in the literatures in the past two decades, Most
of them either are not out of the problem of "curse of dimen-
tionality"™ or do not assure convergence to a stationary global
optimum. The Constrained Differential Dynamic Programming (Cons-
trained DDP) due to Murray and Yakowitz (1979) and Yokavitz(1986)
successfully overcomes this "curse' by successive approximations
starting from an initial values of policy and state variables,
The convergence to a stationary global optimum has been proved
when both the loss function and the constraints are convex.

1.INTRODUCTION

- The problems connected with reservoir operation have been
a major application ground for Dynamic Programming (DP). But the
greatest single hinderance to dynamic programming solution to a
large scale optimal control problem (0.C.P.) is the " curse of
dimensionality" set in by increase in the dimensions in the ele-
ments of the problem, e.g., when more than one reservoirs are
considered, and also by multiplicity of state and control vector
elements. All these have resulted in an exponential growth in
computer space and time required for computation. To illustrate
the " curse®, let us suppose that each coordinate of the state -
variable must be discretised into 10 levels to achieve satisfac-
tory approximation accuracy. This implies that if there are 12
stages (i.e, if B,= 12), then the number of discretised state
nodes will be 1012, an impossibly large number to deal with on
present or foreseable computers. Many workers have attacked this
problem by way of simplification without assuring convergence to
a stationary global optimum. Some other methods suggested are
also not out of the problem of "curse of dimensionality' . The .
constrained Differential Dynamic Programming (constrained DDP)
not only overcomes the ' curse of dimensionality" but also
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assures convergence to a stationary global optimum. In spite of
the seamingly superiority in computational aspects of DDP over
others, it appears inexplicable why this method has not been
widely known to hydrologist and others involved in reservoir
control problems. The reason may be two folds, One, because of
lack of any clearcut computational device having been developed
the research on developing a conceptual framework for construc-
ting an OCP to suit a reservoir control problem has not made any
big headway. Two, c~nstruction of an effective OCP to tackle the
real time aspect of the reservoir control problem is yet to come
off. The set up of this paper is as given gelow.

In the section 2 the Optimal Control Problem (OCP) hes been
defined and the D.P. solution has been introduced along with
further developments in the computational aspects of D.P. problem.
The comparative merits and demerits of each of the developments
have been discussed. The section 4 introduces in brief the con-
cepts and methodology behind constrained Differential Dynamic
Programming and indicates the specific advantages of this proce-
dure. In section 4, a problem of operation of four reservoir
configuration has been sol wd using constrained Differential
Dynamic Programming. The section 5 is for the conclusion,

2,0ptimal Control Problem and Development in Computational Efforts

A deterministic multistage devision process, or (discrete
time) 'optimal control problem (0.C.P.)' is characterised by an
'initial state' x, and functions Tt and Ly as follows:

The functions T, determine relations between 'controls'(ut)
and states (xt) acco?ding to

xt+1 = Tt(xt'ut) ls t <N (2-1)

where x,'s are real n-tupples and u,'s are m-tupples, The set
of decigion stages are N positive iﬁtegers or the set of all

gositive integers for an infinite horizon process. The function
t(xt’ut) or T are referred to as 'dynamics' or 'continuity’

and Lt(xt"ut) or L, as 'single stzge loss function.

With any sequence u = (u;) of controls, which is known as a
policy associates a real valugd objective function defined by

N
J(u) = tﬁl Lt(xt"ut) (2.2)

The goal in OCP is to construct a policy u* which minimises
the objective function J(u). Typically, the 'Feasible' controls
are those which satisfy a vector valued state stage dependent
constraint of the form

ft(xy,ut) € 0,31 £t LN (2.3)
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This is derived from equation (2.1)

The D.P.procedure for the finite horizon OCP's begins by
recursively solving what Bellman (1957) calls ' functional
equation®, namely, successively determining the ' optimal return
functions™ Vy(x), VN_l(x)......Vl(x) by the recursive equation

Vt(x)'am%p(Lt (x,u)+Vt+l(ft(x,u))) (2.4)
£=N,N-l....0,1
where VN+l(x)=O.

The minimisation is with respect to controls satisfying
(2.3). It is proven in (2.4) that the policy u* determined by

global minimiser of J(u), i.e. u* is a solution of the 0.C.P.

The three most highly regarded methods advanced in control
theory literature to lessen the computational burden are

(1) ?tate)lncremental Dynamic Programming (SIDP) due to Larson
1968

(2) Discrete Differential Dynamic Programming (DDDP) due to
Heidari et.al. (1971).

(3) Differential Dynamic Programming (DDP)-Constrainéd and
Unconstrained cases.

In the State Incremental Dynamic Programming (SIDP) method,
it is emphasised that there must exist a function hy such that
for every pair of Xy and Xe1?

hy(Xgy Xy, 9 )=y (2.5)

where u, is the control such that xt+1 = T(xt,ut).

For purpose of description of this method let x(1i) denote the
ith ordinate of the state vector x. With this notation, one can
describe SIDP method as being an application of discrete dynamic
programming to the OCP, with the added constraint that for some
specified coordinate i,

x (3= X¢(3) (2.6)

For all i # j and all t=2,....,N+1l. That is, in a given SIDP
approximation, in passing from u to u', the only state coordinate
that is allowed to change is the ith coordinate. The important

' aspect of equation (2.6) is to reduce the dimensionality of the

state space of the OCP problem from n to 1. This is therefore an
essentially a D,P. solution of OCP with a univariate state space.,
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In the Discrete Differential Dynamic Programming (DDDP) the
state space is the unit n cube (i.e., each coordinates has to lie
between 0 and 1 and the dimension of state vector is n). Suppose
further that the state coordinates are discretised by a uniform
mesn of size 0,01 for each t for some &30

Ix; - x%l(g (2.8)

Assume £=0.015 and supposing the dynamics as a function of
u,T4(x,u) is one to one, then for each devision at step t and
state x, under DDDP there will be 3B control values that must be
searched over to minimise V (x(i)) in (2.5) whereas the discrete
dynamic programming will req&ire (100)R control nodal points to
be searched. Allhough the computational effort has reduced while
comparing with the discrete dynamic programming, the fact remains
that DDDP effect grows exponentially with state dimension n.
Hence it still suffers from the " curse of dimensionality?®,
Besides, Turgeon (1982) has proved that such a dynamic progra-
mming may yield non-optimal solution. _

The Differential Dynamic Programming (DDP) for unconstrained
case was first given by Jacobson and Magne (1970). This is a
successive approximation technique. Given some nonoptimal initial
policy u, which is termed as a nominal policy, this procedure
determines a successor policy u' which results in a lower loss
than J(u). The nominal policy determines a nominal trajectory x
through the recursive formula (2,1).

To begin the backward recurssion of the DDP, define the
quadratic and linear Taylor series expansion of Q(x,u) as

af(x,u)zQP L(x,u,t)+vt+1(T(x,u,t))
=1/2 § xﬁAt 3xt+5xTBt Su+l/2 SuTCt du+
DE Su+ET 9x (2.9)

where superscript T denotes ''Transpose?, A, and C, are symmetric
positive definite matrices of order n and m respec%ively, Bt is
m x n matrix, Dt and Et are m and n-tupples, 0Xy=X,-X, and

oui=u;-u,. The constant terms are ignored,

For t=N,
(V, 8y (x,u) ) T=2C Buy+ B S xy +Dy=0 (2.10)
from this,

ou(x,N)= - %CN'l(DN+BNOxN)
= “N*BNst (2.11)
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where
1 = l.~-1
ay= - 3 Dy and By= - 30y By
6N(x,u) = SxTPN3x+R§5i {P:.12)
The vector matrix pair (an,ﬁN) and the c¢ ocefficients

PN and RN are stored in memory for use in subsequent stages,

at(x,u) = QP L(x,u,t) + Vt+1(T(x,u)) -
= SxTAth_+ SuTBt3x+3uTC Su + Di du + Etgx (2.13)
Analogously to (2.13), the minimiser ut(x) in;,
1l.-1 l.~1
5“}:(") = ug(x)-uy = 5C Dy - 3C; Bth
| = @y +f, 0X (2.14)
Also, the quadratic approximation of return function is given by
at(x,u) = Qt(xt,(utﬂ:td-ﬁt $x)) .
et b
= g4 (9x) = 8xTP, Ox + R; Ox (2.15)
The coefficient of Py, Ry, a4 and g, are stores for (t-1)th stage.

For the construction of the successor policy let € denote
a positive number then ut(e) is defined as

up(g) = ugreas+ Bedx, (2.16)
xt""l = T(xt!ut(g) »t)
Initially set £ = 1 and define

b N T -
0, =% (1 " ntct1 Dy (2.17)
T s(ue)-3@)< o, (2.18)

then u(£) is accepted as successor policy and replaces u in the™
next DDP iteration. Otherwise, put ¢ =1/2 # and proceed as
before.
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3. CONSTRAINED DIFFERENTIAL DYNAMIC PROGRAMMING

The procedure for numerical computation is based on the
work of Murray and Yakowitz (1979) and Yakowitz (1986). 1In this
case the quadratic and linear approximation of the objective
function at stage I and the constraints are as given below:

Qe (x,u) = QP[L(x,u,t)+V, +1(T(x,u,t)]

= % SxTAtox + 6xTBt Sh + % ShTCtgu
+ Di Su + Ez dx (3.1)
f(x’ust) = LP(f(x,u,t)) (302)

The notation and dimensions are same as indicated earlier. With
this the problem at stage -1 is

Minimise Q(x,u) (3.3)
Subject to f(xt,u,t)

Let S be the index set of active constraints, Then, represent
the linear system of equation

fi(x,u,t) = 0, 1 ES (3.4)
In the matrix formit is written as
Uy Su - W, - Xt 0% = 0 (3.5)

The rank of Uy and Xt will be equal to the number of indices
in S,

Then, if Su and X are solution vector and lagrange multiplier,
then solution is given by Kuha - Tucker necessary conditions as

- - 7 -
c, ul du D, |
; = 1 (3‘6)
Wt-_

U, o [

'f -
If Ai £ 0, then i ;is, Ut’ Wt, Xy are stored in memory.

After the first DDp iteration, at each stage t, constraints may
be dropped in active constraint index set S,

Strategy and Return function for stage t is computed,
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Consider variability in X,

T T r q
C, Uy Su ‘ -D, ~B,0x
=5 (3.7)
u, © A { Wy +thx
from this we get
- r
but(x) = ay + By bxt (3.8)

and - must be stored in memory for the forward run. The
quadratic approximation of the return function is given by

Ve(x) = Qu(x,ay + By %) (3.9)
Compute
T »

Here C* is the first m rows and columns of the inverse of the
coefficient matrix

(3.11)

All these will hawe to be computed in backward way from stage
+ =N to t = 1. After doing this the forward recursive computa-
tion is given by the following

Step 1 Compute recursively

uy(e) = Ty + say + By Oxg (3.12)
and

8"t+1 = T(xy, uy(€),t) = Xg (3.13)
Step 2 Test u(g) for sufficient improvement as,

J(u(=)) = J(u) & % 0% (3.14)
If (3.14) obtains go to step 3 otherwise set

sf=%¢

and go to step 1
Step 3 Check to see if for all stages t
f(xt(&)’ ut(E),t) L0 {3.15)
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If (3.14) is true u(<) is feasible and may be accepted as the
new policy otherwise perform a line search by putting £=0.9 &
and go to step 1.

The convergence criterion is satisfied by the nonsigularity
of system matrix given in eqn. (3.6) and (3.7). The validity of
KT condition in the forward run calculation has been proved by
Yakowitz (1986). Since J(u) has a positive definite Hession
matrix for all u and since the constraint function f is linear,
i,e. f(x,u,t) = LP(f(x,u,t)z Pﬂsre is existence of on accumula-
tion point of the sequence (ulk)) of policies after repeated
iteration. The general theory on convergence of D.D.P has been
proved by Ohno %1979).'

4,SOLUTION OF A FOUR RESERVOIR CONTROL PROBLEM
A four reservoir control problem used by Heidari et al,

(1971) has been utilised. The problem specifies a 4-reservoir
configuration as shown in fig,

,t Yo, ¢
Up,t 1Y, ¢
3
U,,t
Us, ¢

The inflows Y1 and Y2 are diverministic and are constants

(Yl =2, Y, = 3). The upper and lower bounds of X4 and ug
have been specified, A linear loss function has been specified

as

1
J(u) = = Lixg,ug,t) ) )

where L(xt,ut,t) o ‘;:l (%t'uj't) )
J..-..
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Assume the nominal policy as given below in Table 4.1

TABLE 4.1
T 1 2 3 & 5 6 7 8 9§ 10 1T 1
Uit 2 2 2 2 2 2 2 2 2 2 2 2
Ys % 3 3 3 3 3 3 3 3 3 3 3 3
i % F 3 3 .3 3 ¥.3.3 3 3 3 3
Yy, > 5 5 5 5 5 5 5 5 5 5 5

Cons istent with equation (4.2), the nominal values of X, as
given in Table 4.2

TABLE 4,2
3 T 2 3 & 5 6 7 8 9§ 168 I 12
.t 5 5 5 5 5 5 5 5 5 5 5 5
2t 5 5 5 5 5 5 5 5 5 5 5 5
g 7 5 5 5 5 5 5 5 5 5 5 § 5
X4, t T 7T-7T T T T T YT 7

Thesloss function due to nominal values of x and u is -367.5

The results after 3rd iteration are given in Table 4.3

TABLE 4,3
i —— g B B 5 g 85y
o O 2 4 4 3 2 1 0 0 0 0 ©
o4 © 3 6 6 6 5 4 3 2 1 0 0
%35t 2 2 2 1 0 0 0 0 o 1 0 ©
*4,t 10 10 6 5 5 5 5 5 4 2 0 5
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The coefficient C, matrix has been supplied in literatures
cited above. The transport function or the law of continuity
for the four reservoirs is given as

B 7] i B [~ . [ ]
xl,t+1 Fxl't Yl,t_‘ 1 0 0 O ul,-t
2,t4 *5.% Yot 0 1 0 0 Uy ¢ 1
x + + . (4.2)

3,t+l x3,t 0 0-1 1 0 u
3,t
X X
i 4:t+1_ [ 4,td | o 0 0-1 1 | uy, ¢

It will be seen that the loss function is linear i.e. |
l=cu where C is a contant. For the nominal trajectory u and x,
this linear function can be approximated to a quadratic function
at the points (x,u) as

L] G R €
Flu) = 3 (CS)uP ()
In the problem Yy = 20(assumed)

TABLE 4.3 contd,

t 1 2 3 4 5 6 7 8 9 10 11 12
u ¢ 0 0 2 3 3 3 3 2 2 2 2 2
11.2’t 0 0 3 3 4 - 4 & 4 4 3 3
u3't 0 0 4 4 4 4 4 4 3 3 3 3
u4’t 0 4 7 7 7 7 7 7 7 7 0 O

Note: The above values are given in whole numbers in order to
have a clear visual perception of the reservoir operation,

The loss function after 3rd iteration is -400.2
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5. CONCLUSION

The contribution of the present paper is to demonstrate the
practical merits of computation of an OCP by constrained diffe-
rential dynamic programming by reporting solution of a four
reservoir problem,

(a) DDP overcomes the " curse of dimensionality" in a
large scale OCP,

(b) The DDP is globally convergent.

(¢) It is not necessary to discretise the state and policy
spaces,

Considering the features as well as considering the compu-
ting experience in solving a test case in Section-4, it is clear
that the DDP is by far the best method currently available for
optimum control problem where the second derivatives of loss
and state-transition functions exist and readily evaluated.

The procedures, as already stated earlier, assumed convexity
of both loss function and constraints, Besides, it is also assumed
that the first and secondderivativesof these functions exist and
are continuous. The input to the problem being deterministic,
this will not be able to take care of the stockastic inputs.
Considering these the following areas of future researches are
recommended.

(1) Development of an effective algorithm to deal with
nonconvexity.

(2) Development in areas involving non-differentiable
objective function.

(3) Continuation of research in real time operation to
incorporate adaptive forecast in an interactive mode.

NOTATIONS

A, = nth order square coefficient matrix of
quadratic approximation at stage t

Bt = n x m coefficient matrix of quadratic
approximation at stage t

Ct = mth order square coefficjient matrix of
quadratic approximation at stage t

Dt = m-tupple coefficient vector in the
quadratic approximation at stage t

Et = n-tupple coefficient vector in the

quadratic approximation at stage t




ft(x,u) or f,

By(XgrXey)

J(u)
LP(.)

N

at(x,u)
QP(-{

t
Tl(x,u)or T, or T

cl
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