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WEIGHTED ORDINARY LEAST SQUARE ALGORITHM FOR BATCH PROCESSING

RAKESH KHOSA]

ABSTRACT

A deconvolution algorithm for a linear system
with finite memory is developed using exponential
weighting. The algorithm is developed with the idea of
using it in batch mode. The solution derived is similar
in nature to the ordinary least squares solution of the
deconvolution problem for linear systems. The limitation
of the existing procedures whereby analysis is based on a
policy of equal weighting for all measured data as the
process evolves is highlighted. It is suggested that this
algorithm may be more suitable in total response modelling
type of analysis than in a unit hydrograph type of study
where events are treated in isolation.

Introduction:

The ordinary least squares algorithm is based
on a policy of equal weighting for all measured datasas
the process evolves. The reason for using equal weighting
was that the parameters were essentially constant throughout
the period of estimation so that the most recent data
was as good as older data for providing information about
the unknown parameter values. However, when this algorithm
is applied to a situation where the parameters to be
estimated are time varying, the estimates can easily become
erratic and do not bear a close resemblence to the trur
time variation of the parameter values(1).
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Derived below is a least squares algorithm in which
an exponential weighting scheme is used to place heavier
emphasis on the more recent data. This algorithm is
designed to be used in situations where observed rainfall
and runéff data must be used in batch mode as distinct
from "on line" mode. In “on line" system identification
problems where the parameter values are estimated
recursively, an initial estimate of these parameter values
is required which in then progressively updated. It is
suggested, therefore, that the algorithm derived below may
be used in tandem with an "on line" identification
algorithm where the initial parameter estimates required
by the latter may be provided by the former.

WEIGHTED ORDINARY LEAST SQUARES ALGORITHM

Consider a linear time invariant system having a
finite memory m with concurrent input and output series of
length n and denoted by x; and y; ( i =1, 2,.... n),
respectively. It may also be assumed that in general X4
and ' ( i=1,2,... n) may not represent an independent and
isolated event. Representing the series X4 and Yy
schematically as shown below, it is understood that a
consequence of the system having a finite memory m will be
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Fig.1
the existence of a linear time invariant relationship
between y; (i =1,2, .... m-1) and those elements of the
input series X4 which correspond to measurement times i
prior to the commencement of measurement i.e. i ¢ 1. It
therefore becomes imperative for the purpose of analysis,
to neglect the first {(m-1) values of the output series
yi(i=1,2,... n) and seek a relationship between xi(i=1,2,
ees Nn) and yi(i=m,m+1,... nle

Let the estimate of the pulse response function b:
be denoted as
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b = L0y By By oeee. By 7 oo (4)

(Note b is the ttue pulse response function to be estimated

and ‘~" denotes that the variable is an array and not a
scalar)

An estimate of the output Y, is then given by

~ ~ : N ~ :&
Yo = ¥u hy + X _4 by + X 5 h3 toeees v+ X 9 by
=[x X X X 7 %]
n n-1 n=2 **°*°** “n-m+1 ~
By
'F
1
]
1
= hm_-

Denote the row vector abcove as

fn = (Xn Xn_] Xn_z es e Xn_m+1) e e e (2)

[in general £y 4 = ( X; 4 X3 Xy 4 «ov Xy p5) ]

The error in the estimation of ¥ is then given by
enz(yn-f,,nll)

In ordinary least squares with equal weighting, an
attempt is made to minimise the obJective function

A ™ A D
J b= < (v, - £, b )
i=m
; ).
Consider the error functio
v
3 _ ~ 2y n-i
g8 = (yy - £; B)N oee (3)
i=m
0< AL 1

From equation (3) the following points may be noted:

a) If A =1, equation (3) reduces to ordinary least squares
with equal weighting.

b) Smaller the value of A , the heavier are the weights
assigned to the more recent data.

Equation (3) may be rewritten as
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Considering the first term on the R.H.S of equation (4)
we have

= A ,n-i A n-m ~ o n-(m+1)
éyifig)‘ =ym":‘mg) T Yuet Imar 22

~
L‘-’. (o AN

+ e e 00 + yn f Akl}n-n

n-i
(Note ) and y;,  are scalars)
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o ~n ~ - =
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s n-m _ n-m /" o s -
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A n-my _ _n-m
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«Therefore

—gC Cm o m m
Similarly
~ T
n-(m+1) n-(m+1)
—&%i' Ot Tpar 22 g Yme1 Tma1

dh
Assembling these terms, the first term on the R.H.S of equation
(4) becomes
coon=ty _ n-m T  n-{(m+1) T
71%_<2§_y£2>~ )= =2 [ 37 Yu fa +2 Va1 dn+1

o~ 1l=m n

s f hnl-- T +....t)ﬁ-3n‘fn,-l
23; A7) Zéy £, o i _wmis £5)

i=m i=m

or "T

Similarly for the second term on the R.H.S of equation(4)
we may wrlte (
L it -(m+1)
2 (£;h = (me) )\ % (£ +1h) ,\“ PO
i=m
e (En Q) 5 B
It may be noted that f; h (i=m,m+1, ...n) is a scalar.

Therefore

~ . . s.2 . mem. 4 (2 y2pniml)
2. n- d (f h L 18
d_( Z({ib) AT = gg—(@~) AT TdR jH. ,
~ i . d (£ n)2 A
also = ek g A
W2 5 o- d (£ h) (£,h) "™
4, (£0)°2 %" - 4 o) (Zak) 2
assume Em = (%, - MY andlé = [i%1_7
2
S » A A (2
(£20)° = £ Oy xyq) <n1>J = (B, +%q-1 h3)
- 2 h + 2 xh 12
= xp hy o+ 2 Yphyxy qhpt Xa1 B3
end
Q (£ %)2 -2 X % + 2 h
2 (Emb Xp By Xn Xm-1 P2
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“Qg;(fma)z S 2 Xgq by 2 X hy
Ta fehf e x A A
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Similarly if

~ A
Fo= £ % Xy Xy Jands = [,
2
~ 2 ~ ~ ~ 2 h3
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_ h2 2 f\2 ~ A
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2 N2 = .
* Xp-o h,’) * 2 Xy b Xm-2 3
and
2 _ 27 s
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2 _ > A ;o
E.n—(?.mll) T2 g By 2% Xy qhy ¢ 2 X X by

2
X
A A - A
4Gt - e "é-z% *2Xy Xpoohq+2Xy 4%, oh,

"2 " B
or fah)= (h‘l ho-b3) [ X
kB X1
Xp-2
mT hT fT

Nm

0

™D n-m n-m P
= h
Lo (50)° A P7= 2007 £1RT £

‘ ~y2, n-{m+1)
d (f_ ..h) n-(m+1) T T T
B A+l A z2) Tner BT fpaq

By induction, therefore, for 5‘1 = (Xm Xpaq Xpop sees }£1)
T
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2. n=-n _ n-n ~T5T T
AT 2T

Therefore the second term on the R.H.S of equation (&)
becomes

-i T aq qt =1 s
(é(f 381 y =25 £7 0 7 A% (6)
“" i=m

Substituting (5) and (6) in equation(4), we have

dh (;Q)—-zzy fT n1+22ff'ﬁfT)\““'

h i e |
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Now

T T T
["r\m ‘gm-u“-- £"\-] = Xm XM"H Xmiz™ =~ Xn
ST T (P Xn-y
Xh-z m=1 Xﬁ e Xn-2
1 ! 1 | ]
1 ' 1 '
[} (] 1 1 ...(9)
X1 X2 X3 e Xn_m+1

order : / m x (n-m+1)_7

Denote the matrix in (9) above as Z_Xﬂ]7 and,xn"(m+i)
as Ai ~

The column vector in (8) may be written as

[\ n-m ~ Al
% : ?m 2 (hg (K Kyog Xyop eee Xy ) ‘1(31
n-(m+1 o =
A Tnal] =1 A (g X Xpoq eee X50) 25

4 "

1

' %2 (Xm+2 Xﬁ+1 Xﬁ s XB ) ?3
n=n %} ! '

L A AL~ J An-m(xn 1 Kpap wwe Xn-m+1{ J

Denote the matrix above as [_52_7i.e.,

”
Ay Xy Ay Xy 4 Ay X 5 eeee Ay X,
1 ot A Ky AL X 4 oeees A X, 2672

AZ Xm+2 Az Xm+1 hz Xm s e e e A2 X3

A

An-mxn An—mxn—‘l An—mxn-2°" An—mxn--m-t-‘l

order : / (n-m+1) x m_/




Equation(8) therefore, becomes

n n T -
S 82 gar - T [0 (o] (1)
i=m ~

Consider, now, the R,H.S. of equation (7)

14"

T n-i T . n-m T n-{m+1) T \n-n
éE;\Yi ik = Ym {p A * ym+1,§m+1A *eenoty Lo A
L=m
Since y; and./\i are scalars, we may write
- . T n-(m+2)
T n-i_,n-m T n-(m+1) f y +) T
o = £y + ) ~o+1 Jm+1
iéén ot ole g st 8 Em+2 Ym+2
* vens ® AT fg Yn
” T T T T X
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N N ~- (™
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T
1
1
1
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T i L T A
Note that /[ A, £ 08 fo,q A fu2 +oe Apg £n_7= [}Eaj

where /"X, 7 is as given by equation (10).

Denoting the vector A '\
1

e+
m+2| as [~3“7

.

= [ X, 7" [y7 ee. (12)

‘We may, therefore, write

n T, n-1i
s Yiii)
i=m o
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Substituting (11) and (12) in equation (7), we get
T
- - -A - )
(X7 X7 L] = %7 [17 vas (13)

Let us understand the nature of the matirx

T
[T [T

e T' - _ _\-s \
LT L% =X Xy Xgeo oo Xy ) ApXpAoXy_qe - -ApX,
e ~s .
X1 ¥y Xpe1 o0 Lnoq [P Fper®1 % -2 %5
fn-2 Xn-1 Ko oor Xpoo|AoXpeohoXysq,a %
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The matrix given in equation (14) is a square matrix of
order (mxm). It can be seen to be a symmetric matrix and
the general form of the elements »f this matrix is as
given below
. T _ n-m+1
i?,sz L §§—7li,j = ZE_ A1 Xmak-1)  L(m+k-3)
" k=1 +5s(15)
1 2pawe M
J=1,25e0e M
where i and j denote the row and column number respectively.

Equation (13) may alsc be written in the more familiar form

- as

A - i 7 I
L b7 =§£ N7 L% %7 [Y7... (16)
(v ~s at ~r
T
It can similarly be shown that the vector /"X, / [ Y/ has

o the following structure.

1'52_7“'" £y S Ay Xy,

J=m

2 A5m X517

]

éi Aj-m Xj-m+'| ?j

and is of order (m x 1)

The general form of the elements of this vector are as
given below

- T _ n-m+1
il 52-7 l E~7}i = 22 Ak—1 X(m+K-i) Y(m+k-1) eee (17)
k=1

i=1, 2, e e o1l




Procedure:

To implement the algorithm as given by equations
(15), (16) and (17), one may proceed as follows:

4) Choice of A . This will depend on the problem at hand
and may have to be chosen arbitrarily with the
refinement done by trial and error process or the
basis of its performance in the calibration period.

2) Using equation (15) the elements of the matrix
['X1_7T ["X,_] may be estimated from the data and the
matrix itself built up.

3) The vector [i§2_7T [iX_7 may be built up from the
clements estimated as per equation (17).

4) Use equation (16) to get the estimate [-B_7 of the
~
system pulse response function h.

gonclusion:

The algorithm developed above uses exponential
weighting with maximum weight given to more recently measured
input and output. These weights decrease exponentially for
data measured in the past. The assumption of a time invariant
system in the context of total response modelling may not
be justified for hydroloéic systems. This view is borne out
by the fact that the requirements and rigours of an ever
expanding population, various developmental activities and
a consequent degration of the environment manifests itself
ima varying system response. It is felt, therefore, that
the algorithm developed above may be expected, in general,
to give better and more representative results than the
ordinary least squares algorithm. It must be noted,
nowever, that where a unit hydrograph type of study is to
be carried out in which attention is focussed on individual
isolated events and considering the fact that duration of
such events is much smaller (of the order of Jjust a few
days), weighted least squares algorithm as developed
above may not be needed.
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