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PREFACE

An Artificial Neural Network (ANN) is a computational method inspired by the studies
of the brain and nervous system in biological organisms. ANN represent highly idealised
mathematical models of our present understanding of such complex systems. One of the
characteristics of the neural networks is their ability to learn. A neural network is not
programmed like a conventional computer program, but is i)resented with examples of
the patterns, observations and concepts, or any type of data which it is supposed to learn.
Through the process of learning (also called training) the neural network organises itself
to develop an internal set of features, that it uses to classify information or data. Due to
its massively parallel processing architecture the ANN is capable of efficiently handling
complex computations, thus making it the most preferred technique today for high speed
processing of huge data. These characteristics render ANNs to be very suitable tools for
handling various hydrological modelling problems. In surface water hydrology the
possible usages of ANNs have only recently begun to be investigated.

This status report reviews some of the important applications of ANNs in surface water
hydrology, highlighting their advantages and limitations. The review also covers the
basic aspects of ANNs, i.e., various ANN architectures and various ANN learning

algorithms.

This status report has been prepared by Smt. Archana Sarkar, Scientist ‘B’ under the
guidance of Shri R.D. Singh, Scientist 'F’ and Shri R. Mehrotra, Scientist ‘E’.

(K.S.

Director
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1.0 INTRODUCTION

The rapid growth of computing power in the last few decennia, has enabled us to develop
effective modelling tools. They can perform difficult tasks within a fraction of the original
required calculation time. As a result, old solution techniques were enhanced and new,

computer based, theories developed, using the power of simple on/ofY circuits.

One of the most exciting ideas emerging from this vast pool of computer based research, is the
thought of emulating the low-level mechanisms of the brain. This biological unit still
outperforms any man made tool in terms of recognition, analysis, prediction and especially
learning, thus providing puzzled researchers with enough motivation to conduct extensive

research into this area of artificial intelligence.

The first research attempts to model the brain capability itself, were made in the 1950's by early
cognitive pioneers. Based on the highly interconnected structure of the brain cells, they created
the first primitive, so-called, artificial neural networks. However, due to the predominance of
serial processing, rule based reasoning and programmed computing, few research efforts into
artificial neural networks were made in the following decennia. It was only in the early 1980's,
that a new breakthrough in neural network research occurred; stimulating more (theoretical)

research into its capabilities world-wide.

Today, Artificial Neural Networks (ANNSs) have proven to be very powerful in solving complex
mathematical problems, such as speech recognition, successfully establishing themselves among
the more traditional approaches (Goppert and Rosenstiel, 1990). ANNs characteristically
demonstrate that they are fast, robust in noisy environments and very flexible in the range of
problems they can solve. This has led to numerous real-world applications, such as image
processing, robotics and stock market prediction, and encourages further research into their

possible implementation in other related scientific fields.
1.1 WHAT ARE ARTIFICIAL NEURAL NETWORKS

Before giving a detailed description on the elements and characteristics of ANNs in the

subsequent chapters, a general introduction on ANNs follows.



Generally speaking, artificial neural networks are computing systems that relate an input vector
to an output vector, They are made up of a number of simple, but highly interconnected, signal

processing units.

These units or artificial neurons, are the basic elements of any ANN and can be seen as simple
/O devices. Many different neuron types exist, alliattcmpting to represent a certain part of the
suspected functions of nerve cells in the brain.

In order to make complicated data processing possible, these neurons are linked together by
several connections, so that each neuron will receive {output) signals from a multitude of other
neurons. This composed input signal will be processed and the corresponding output will be sent

to other neurons; which in their tum will react, continuing the process of action and reaction,

The data passing through the connections from one neuron to another, can be manipulated by
weights, These weights indicate the strength or importance of a passing signal. Consequently,
when these weights are modified, the data transfers through the network will change and the

overall network performance will alter.

These manipulating parameters can all be adjusted and optimised in order to get a specific
response from an ANN. This process of adjustment and optimisation is called learning and is
defined by the learning algorithm of an ANN. The learning algorithm is a set of optimisation
functions which adjust the weights in such a manner, that an input signal is correctly associated
with a (desired) output signal. Several learning examples can be presented to the network, each
one attributing to the optimisation of the weight distribution. Finally, when an ANN has leamed

enough examples, it is considered trained.

After the leaming cycles, the learning algorithm of a trained network is often deactivated and
the weights are frozen. Then, test data is presented to the ANN, which it has never encountered
before, enabling a validation of its performance. This is referred to as testing of the ANN.

Depending on the outcome, either the ANN has to relearn the examples (with some

modifications) or it can be implemented for its designed use.



Summarising, different types and numbers of neurons with different interconnection
infrastructures will create different ANN structures, Together with a learning rule and data
examples, this will result in different network performances and thus different application
possibilities.

However, every Artificial Neural Network will

» process data in parallel through the network (Parallel processing instead of traditional central

processing);

» distribute system information throughout the entire network (Distributed memory instead of

centralised information storage).
Furthermore, some additional characteristic ANN features can be identified:
» ANNSs are made up of interconnected neurons,

» Each neuron will process information based on the signals it received and the local

processing function it uses.

> The output signal of one neuron will affect large numbers of other neurons, due to  high

neuron interconnectivity.

» Learning rules can be applied, to change the characterising parameters of a network, such

as the connection weights.

» Through cyclic adaptation of these characterising parameters, the ANN can be manipulated

and so learn to produce a certain result.



1.2 POTENTIAL OF ARTIFICIAL NEURAL NETWORKS IN SURFACE WATER
HYDROLOGY

Various approaches to the study of hydrologic problems can be grouped under two categories:
(i) physical science approach - also referred to as a basic, pure, causal, dynamic or theoretical
approach, and (ii) systems approach - also known as an operational, applied, empirical, black box
or parametric approach. Hydrologic models are mathematical formulations to simulate natural

hydrologic phenomena which are considered as processes or as systems.

Conceptual models are designed to approximate within their structures (in some physically
realistic manner) the general internal subprocesses and physical mechanisms which govemn the
hydrologic cycle. Conceptual models usually incorporate simplified forms of physical laws and
are generally non-linear, time invariant, and deterministic, with parameters that are
representative of watershed characteristics. Until recently, for practical reasons (data availability
, calibration problems, etc.) most conceptual watershed models assumed lumped representations
of the parameters. Among the more widely used and reported lumped parameter watershed
models are the Sacramento soil moisture accounting (SAC-SMA) model of the U.S. National
Weather Service (Burnash et al., 1973; Brazil and Hudlow, 1980), HEC-1 Army Corps of
Engineers, 1990), and the Stanford watershed model (SWM) (Crawford and Linsley, 1966) .
While such models ignore the spatially distributed, time varying, and stochastic properties of
the Rainfall-Runoff process, they attempt to incorporate realistic representations of the major
nonlinearities inherent in the Rainfali-runoff relationships. Conceptual watershed models are
generally reported to be reliable in forecasting the most important features of the hydrograph,
such as the beginning of the rising limb, the time and the height of the peak, and volume of flow
{Kitanidis and Bras, 1980, Sorooshian, 1983). However, the implementation and calibration of
such 2 model can typically present various difficulties (Duan et al, 1992), requiring
sophisticated mathematical tools (Duan et al., [993; Sorcoshian et al,1993) , significant
amounts of calibration data (Yapo et al., 1995), and some degree of expertise and experience
with the model.

While conceptual models are of importance in the understanding of hydrolegic processes, there
are many practical situations such as streamflow forecasting where the main concemn is with

making accurate predictions at specific watershed locations. In such a situation, a hydrologist



may prefer not to expend the time and effort required to develop and implement a conceptual
model and instead implement a simpler system theoretic model. In the system theoretic
approach, difference equation or differential equation models are used to identify a direct
mapping between the inputs and outputs without detailed consideration of the internal structure
of the physical processes. The linear time series models such as ARMAX (auto regressive
moving average with exogenous inputs) models developed by Box and Jenkins (1976) have been
most commonly used in such situations because they are relatively easy to develop and
implement; they have been found to provide satisfactory predictions in many applications (Bras
and Rodrigeuz Iturbe, 1985). However, such models do not attempt to represent the nonlinear
dynamics inherent in the transformation of rainfall to runoff and therefore may not always

perform well.

Owing to the difficulties associated with non-linear model structure identification and parameter
estimation, very few truly non-linear system theoretic watershed models have been reported
(Tkeda et al., 1976). In most cases, linearity or piecewise linearity has been assumed (Natale and
Todini, 1976). The model structural errors that arise from such assumptions can, to some extent,
be compensated for by allowing the model parameters to vary with time (Young and Wallis,
1985). For exampie, real-time identification techniques, such as recursive least squares and state
space Kalman filtering, have been applied for adaptive estimation of model parameters

(Kitanidis and Bras, 1980) with generally acceptable results.

Besides the above limitations, the following areas are inadequately covered in existing models:

» Unknown processes: When the underlying physical laws are unknown, it is impossible to

make a physically based model of the phenomenon using conventionally applied techniques.

» Incomplete/contradictory data: In all common techniques, pre-processing of data is
absolutely necessary: lack of data creates large uncertainties in the model results, as
approximations and guesses have to be carried out on the data beforehand.  Contradictory

data can even prohibit the design of a model or make it useless during validation.

» Simulating human decision paths: Another difficult problem arises when a decision moH

has to be designed. Usually, one predefines clear rules in a program (if, then ¢lse rules) or



tries to implement so-called expert knowledge (creating expert systems). But these models
all need some kind of predefinition and often become useless when ~ exposed to an

unforeseen and undefined situation.

» Data intensive tasks: Detailed models often require many different parémeters, especially
when they model dynamic systems. This necessitates data &ansfer and can lead to excessive
processing time. For on-line operation, these slow but detailed models are unacceptable,
since the state of the monitored system often changes faster than the simulation frequency
of the model.

» Changing environment: To decrease processing time, the number of adjustable parameters
is often reduced and in order to retain the authenticity of the model the results are calibrated.
This calibration procedure can take a lot of time, fault tolerances decrease and the resulting
model will become useless when the simulated process changes. Furthermore, in rapidly

changing environments long calibration times are unacceptable.

For the areas mentioned above, conventionally applied modelling techniques can be refined or
complemented to achieve improved performance by implementing new or different methods.
To this end, several promising modelling techniques can be applied; for instance: machine
leaming, fuzzy logic, artificial neural networks, or process engineering (based on Fourier series

and flow diagrams).

The underlying reason for the Artificial neural Networks to be more appropriate than the other
non-physically based modelling techniques, is that the ANN addresses precisely those classic
modelling problems encountered in Surface Water Hydrology; namely processing speed
(Goppert and Rosentiel, 1990), fault tolerance {Tresp, Aghmad and Neuneier, 1994), adaptability
and learning capabilities (Dawn, 1994).
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2.0 ASPECTS OF ANNS AND THEIR CHARACTERISTICS

2.1 THE NEURON

Looking at a biological nerve cell, we can roughly distinguish five important features: The
dendrites, the soma, the hillock, the axon and the synapse (Fig.1).

The dendrites are hair like extensions of the soma and form input channels. The soma is the body
of the cell, where the input signals are added up over time. The soma decides when and how to
respond to inputs. The hillock is located at the base of the axon and generates impulses. These
impulses go through the axon to the synapse, a region between the axon of one cell and the

dendrites of one or more other cells.
The abstract equivalent of the nerve cell, the artificial neuron, is based on these features (Fig.2):

First, there are the weighted input connections to the neuron (dendrites). Then, these input
signals are added up and fed into an activation function which determines whether the neuron
will react at all (soma); if this is the case, then the signal will pass through a transfer function
which determines the strength of the output signal (hillock). Finally the output signal will be sent
through all the output connections (synapse) to the other neurons.

Different types of activation functions and transfer functions exist, which combined, generate
different types of artificial neurons. These artificial neurons (some times referred to as nodes)

can be classified into three group (Fogelman, 1991).

(1) Dot product neurons: Here the neuron consists of an activation function which is a dot
product of inputs and weights, combined with a non linear transfer function (Fig.3), i.e.
05 = flA)

h
where, Aj = Z WiOig-n

i=l

Transfer function f{) is often sigmoidal but can also be a threshold function or a

saturation limited. This type of neuron is often used for associative memory,
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classification and prediction.

(2) Diatancé neurons: The output is the result of a distance function between its weights and
input vectors (Fig.4):

0= [005-Ws [ = FJou-n- Wy

Where W), is the weight vector of neuron . Distance neurons are also referred to as Radial
Basis Function Neurons and are used for clustering, vector quantization, code book

design.

(3)  Probabilistic neurons: Here, the activation function or level is dependent on some

random determined gain (Fig.5). Sometimes even the weights can alter by chance.
22 TOPOLOGY

The topology of a network describes the connection infrastructure of an ANN, Connections link
the neurons together and transport the data through the network. Different types of connections

produce different performance characteristics.

Connections between neurons can be classified as being either inhibitory or excitatory. Inhibitory
connections tend to prevent a neuron from reacting (negative term in a sum); while excitatory
connections cause firing of the neuron (positive sum). At times, ANNs involve inhibitory

connections from one neuron to all the others and this is referred to as lateral inhibition.

Other types of connections are delay connections (Fig.6). They introduce a time lag into the data
flow, which can be useful for time related phenomena (Day and Davenport, 1993) like the

prediction of the flood routing through a sewer system or the contro! of an overflow weir.

The definition of so called layers and clusters is another frequently applied representation of the
topology of an ANN. A layer can be seen as a group of neurons, which share the same input and
output connections, but do not interconnect with themselves; Connections occur only between

layers and not within a layer (Fig.7). Layers are often classified as being input, output or hidden:
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whereby an input layer receives data from the outside world, an output layer retumns data to the
outside world; and hidden layers perform unknown operations between the input and output

layers.

As socn 23 connections exist within a layer, then reference is made to a cluster of neurons. If
within a cluster, lateral inhibition is executed for each individual neuron competition is created
(Fig.8). Competition occurs, when all the neurons in a cluster are connected to each other
through inhibitory connections (Rumelhart and Zipser, 1986). Consequently, neurons in each
cluster compete with each other for the right to recognize some feature in the input. The neuron
that resembles the input vector the most, wins and yields an output vector, while the other
neurons in the cluster are denied any response at all. Eventually, each type of vector presented
to the cluster, will cause the response of a different neuron in the cluster. Hence, cach cluster in

an ANN could classify a certain feature in the input data.

Another important type of connection, which has a large influence on the general behaviour of
an ANN, is the feedback connection. A feedback connection directs some or all the data back
into the system, thus creating signal loops and cyclic behaviour of the corresponding ANN.

According to the literature (Oppenheim et al, 1983) a connection is defined as being a feedback
connection when the output of a system is used to control or modify the input. Since ANNs
consist of numerous /O neurons, the term feedback will be further clarified in order to avoid

confusion.

An external feedback connection directs the current output vector to the current input vector of
the ANN; whereby the new vector is re-routed through the neurons (Fig.9). This process is
repeated until the output vector shows no significant variations anymore. An internal feedback
connection directs the cutput signal of one neuron to the input of another neuron (F ig.10). Often
multiple feedback loops are used between neurons in the same cluster or between different

layers.

In general, Feedback networks (also referred to as recurrent networks) are defined as being
systems that settle or relax into an output vector. The data will pass through some or all of the
neurons more than once. Because the actual state of a network is dependent on its previous

states, the same input vector can produce different output vectors. Stability and convergence

11



Jth neuton 035
Inputs from Outputs to
other neufon other neurons

F16.6. DELAY CONNECTIONS

..........

H
* .
. :
. 5
.
.. :
- M
H
4 ] N H
.......... -

“Input Hidden  Output
layer layer layer

F16.7. NEURON LAYERS

.........

Cluster
F16.8. NEURON C LUSTERS

12



ANN structure

Q”-:*.:Q_
INPUT RN 0 —T-OUTPUT
VECTOR >3RS O |-YECTOR
Pt & s 1
w2

F16.9. EXTERNAL FEEDBACK CONNECTIONS

ANN structure
!

INPUT ——Ocs ;1-

S0 —OUTPUT
VECTOR -Ot;, =250 |—YECTOR
— o= |

F16.10. INTERNAL FEEDBACK CONNECTIONS

13



characterise the performance of a feedback network. Feedback networks are also referred to as

dynamic non-linear systems.

When there is a total lack of feedback connections, one generally speaks of feedforward
networks. This means that a given input vector, will always produce one output vector. Once
trained (fixed weights), this input vector will always produce the same output vector. Often

feedforward networks are referred to as instantaneous static non-linear mapping systems.
- 23 LEARNING ALGORITHMS

The weight distribution in every ANN is unique and will determine the specific response of the
network to any given input vector. In order to perform a required process task, these weights
must be determined in advance through a learning process. The leaming process for ANNs
encompasses the adjustment of weights and this process makes use of a learning algorithm and

a training set of examples.

The learning process in an ANN can be seen as teaching the network to yield a particular
response o a specific input. This often consists of an iterative process; whereby the network trics
to maich output vectors to desired ones and uses any deviations to adjust some or all of its

weights. The rules that determine the magnitude of these adjustments are contained in the

learning algorithm.

There are three modes through which the learning process can be carried out: supervised,

unsupervised or batch,

In the supervised learning mode, a teacher provides the desired response to the network as soon
as an input is applied, thus giving the network an indication how it performs (Fig.11). A child

learning the alphabet at school is an example for this type of learning.

In the unsupervised lcaming mode, the desired response is unknowr (Fig.12). Weight
adjustments are based on observations of responses to inputs on which there is marginal or no
knowledge. Often, this results in self-organisation of neurons, trying to recognise patterns,

regularities or separating properties in the given input data. For example, a child leamning to ride

14



a bicycle will do so with minimal help from outside. The child must figure out independently
how to find a balance.

In batch leaming mode, weights are determined in one go, by using a complete set of 'O vectors
(Fig.13). All knowledge must be known a priori and is then implemented instantly in the
network. There are no normal incremental learning steps. This method of storing input vectors

can be seen as putting data records in a database.

Leaming algorithms themselves are often based on error minimisation. Examples are the least
mean square {LMS) learning rule or error gradient descent; but numerous other, more refined
routines exist, all of which try to optimise some kind of learning signal (leaming rate, maximum
likelihood value, cross entropy) and so improve network performance. The resulting
modifications made to the weights, are then either based on an award/punishment rule (dot

product neuron) or chance (probabilistic neurons).

Afler numerous training cycles, once the ANN has learned the cxamples with considerable
accuracy, test data is presented to the ANN, which it has never encountered before. The resulting
outputs ar¢ validated and the network performance is tested using multiple criteria such as
generalisation ability, robustness, stability, convergence and plasticity. It is only after these
results are proven satisfactory, that the ANN is implemented. If test results or performances are
unsatisfactory, the network is often retrained using other learning examples, set in a different
order, or using more training cycles, etc. Often, for instance, the number of nodes is changed to

improve learning; however certain drawbacks to this practice exist.
» When enough nodes are available, the ANN can reproduce any desired response because it
stores the information instead of learning the mechanics of the cause/effect relationship of

the data. This is called overlifting of the data and as a consequence the ANN will have a

poor generalisation ability.

» Too few nodes, insufficient data or incorrect data can lead to underfitting of data, again

resulting in bad generalisation abilities.

Special algorithms exist which not only change the weights during learning, but also change the

15
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topology and architecture of the ANN, as done on various levels of interaction. Such an
algorithm could, for example, determine weights, network structure and even decide on which
training and test examples to use; for instance, a situation could be thought of, where the ANN

is confronted with hundreds of rainfall events and the next rain must be predicted.

Finally, some algorithms are not restricted to training use only. On line leaming is a powerful
characteristic that enables an ANN to adapt temporarily or permanently to changing conditions.
Self organising maps, for example, can continue learning with each new input vecior they
receive. An ANN could be created, for example, which simulates flow through a sewer pipe and
adapts its parameters when the resistance of a sewer pipe becomes higher; independent of any

intervention from an external source.
2.4 STRUCTURE

In order for an ANN to leam a certain response, it must be provided with numerous examples.
The data contained in these examples is crucial for the performance to the network. Incorrect
input data will certainly result in slow learning, unstable or unreliable networks. Therefore, the

training and test examples should be chosen with care and (pre-) processed accordingly.

The term input vector will be used to refer to the input data needed for one training, test or on-
line example (Figl4). Consecutively output vector refers to the final calculated result of the
ANN. Each input/output vector has a certain dimension R, representing different features of the
data, e.g. 1(1) represents the catchment size, 1(4) is the type of vegetation, etc. When Q different
vectors are presented to the ANN randomly or in ordered fashion, we can define a matrix P,
which defines a set of Q O vectors of dimension R (P =Q x R). In the training of an ANN,
which should, for example, determine the runoff coefficient of an urban catchment area, the
input matrix P could consist of 100 catchments (Q=100), each representing specified catchment
characteristics. The output vectors would then consist of single values, representing the runoff

coefficients.

17



The most important pre-processing actions performed on input data or learning examples, is

normalisation, filtering and scaling,

Data is normalised, when outliers are present in the data-series. It reduces the influence of these
outliers and assumes that while the overall magnitude of each signal may vary, the relation

between each feature may not.

Data is filtered, when unwanted high or low frequency signals perturb the main signal (¢.g., high
frequent waterlevel fluctuations due to wind-waves). However, ANNs are known to act as filters

themselves, making pre-filtering of data only necessary in extreme cases.

Scaling of data is performed to increase training speed only. It is common practice to scale
different data series to a uniform range [0 1]. For example, when the degree of pollution for a
surface water sample is determined by using the concentrations of nitrate and benzene; the
smaller amounts of benzene will give a better indication of the degree of pollution than the larger
nitrate concentrations. If data is not scaled, the learning procedure will initially be dominated by

the (in absolute terms) larger nitrate values instead of the smaller benzene values.

Vertical processing (Fig.15) is carried out to remove the influence of differences between the
varying dynamic ranges for each feature in the input series. This ensures that features will not
dominate due to their range. It is performed on one feature in an O vector and covers the whole

series (i.e. 1xQ} matrix},

Horizontal processing (Fig.15) is commonly applied when the influence between varying I/O
vectors should be avoided. Each IO vector (i.e. Rx1 matrix) can be represented in a R-
dimensional vector space. By doing this, the direction of the I/O vector is maintained, while its
magnitude is scaled to a uniform value (eg. One). For example, in determining the runoff

coefficient, each catchment (input vector) is treated with equal importance.
With regard to both normalisation and scaling, it should be taken into account, that it is possible

that two initially independent vectors are no longer distinguishable afterwards. For instance two
vectors, such as (3,3) and (6,6) both become a (1,1) vector.

18



-Dimesion R

Runotf
_ toetficiert |
A% vegtotion athment No.l
R Features Catchment No.!

Catchment No. 2

B udisuIuIg

Single 170 vector Multipie 1/0 veciors

F1G.14. INPUT VECTORS AND THEIR DIMENSIONS

) One feature
Horizontal data (i.e.runoff)
170 vector in
R-dimen-
- sional

' 2 | space
Arranged Normalize
170 vectorst- magnitude

Vertical data

+1 -

v LA
Normalize/scale data-gerigs

F16.15. VECTICAL AND HORIZONTAL DATA PROCESSING

19



2.5 ARCHITECTURE

The architecture of an ANN describes the layout of its structure. It defines the number and size
of the implemented clusters and layers, as well as the topology used to connect these groups of
neurons with each other. The ANN architecture itself is often changed when leamning algorithms
and 1/O data modifications fail to improve the ANN performance. Simple modification can be
made by reducing or increasing the number of nodes or delsting neuron interconnections,
Different techniques exist for determining an optimal ANN architecture for a given IO data
problem (Refenes and Vithiani, 1991) . In addition to implementation of improved neuron
functions, learning algorithms or determination of the optimal number of nodes, modularisation
can be applied (Fig.16). Modularisation is implemented when one specific type of ANNs for
different tasks within a system makes best use of the specialised capabilities of each of the
independent ANN modules (Madi, 1991). For exaraple, the vast amount of real time flow data
in a complex sewer system, could be compressed to several abstract parameters first (using a self
organising ANN), before it is fed into another ANN which simulates the actual outfiow of the

sewer system.

Considered at a more strategic level, the boundaries of ANN research can be surpassed. Though
the combination of classical methods with ANNs, hybrid models are created (Fig.17). A
problem can be decomposed inte several modules where initialisation, training and calibration
are done separately; afier this, a global optimisation routine could link the modules and produce
an even more optimatl result. It is known, for example, that adaptive PID controllers are very
effective for local control purposes (gate control); ANNs could simulate their performance, but
they would never improve on it. Consequently, it is far more efficient to develop an ANN for a

data processing task and then combine it with the PID controllers.

2.6 PERFORMANCE INDICATORS

During learning or network optimisation, it is often necessary to monitor the effects of a certain
intervention or system alteration. Numerous performance indicators exist to quantify progression

or drawbacks of certain methods:

» Generalisation is the ability of the ANN to formulate an answer to a problem it has never
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seen before (predict a future flow rate using on-line data).

Fault tolerance is the ability to keep processing, albeit with reduced accuracy and/or speed,
even though data is missing or neurons have been disabled/destroyed (A waterlevel meter
fails).

Dynamic stability is the ability of a network to remain within its functional boundaries and

reach a stable state (Find the best control strategy out of 10 predetermined cases).

Convergence speed is the rate at which the network state changes as it moves to a stable
state.

The states of an ANN can be mathematically expressed in a function, representing a 3
dimensional surface of the ~omputational energy of the ANN (Energy surface, Fig.18).

Computational energy describes the stable states or solutions of an ANN and the paths
leading to them. These stable states are represented as valleys (energy minima) in the 3
dimensional surface, also called basins of attraction. By changing the weights, this energy
surface is changed and the valleys get larger and deeper, increasing the convergence speed
of an' ANN.

Adaptability is the ability of an ANN to modify its response to changing conditions. Four

characteristics govern this ability: learning, self organisation, generalisation and training.

Plasticity is the ability of a group of neurons to adapt their functions to different needs over

time (Simulate treatment plant inflow during day, night, dry or wet periods).
Reliability is the ability to produce the same result, when the same input vector is repeatedly
presented to a network. Reliability is mostly used to describe the performance of feedback

networks, since feedforward networks always produce the same result.

Robustness is the ability to produce the same result, even though input data is noisy, contains
data gaps and contradictory data.
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» Sensitivity is closely related to robusiness, it shows the extent to which a network response

will change, due to variations in the features of the input vector (Fu and Chen, 1993).
Three other less obvious indicators that can also be used are:

» Memory requirements; Some ANNs need less (hardware) memory to perform their task, than
others. This can be decisive for data base related problems that use pattern storage for

instance (Hopfield network).

»  Amount of training data needed: for some problems, lack of data poses a constant hindrance
to efficient modelling. Thus an ANN requiring less training data to learn a specific response,

is better suited for these kinds of problems .

» Leaming speed: The speed at which new data is learned, can be crucial for on-line
applications in fast changing environments. This performance indicator is often used to

evaluate new learning algorithms.

With these performance indicators, it is possible to make an evaluation table, showing the

different ANN types and their relative performances.
2,7 LEVELS OF INTERACTION

The highly interconnected architecture of an ANN causes data to flow back and forth through
the network. Numerous data interaction mechanisms modify this information continuously,
enabling complex data processing functions. In order to gain better insight into this process of
change and alteration and thus to be able to intervene and optimise network performance, these
mechanisms are classified into levels of interaction. The different types of data interactions are

shown below, starting from the smallest element and ending at global problem optimisation.
1st level: the basic neuron element (Fig. 19)

Here the activation and transfer function can be chosen. The main neuron types are the

probabilistic, distance, and the dot product neuron. Numerous transfer functions exist, with the
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sigmoid and threshold function being the most common.

2nd level: the local topelogy of each neuron (Fig.20)

How is the neuron locally connected (inter-layer, cluster) ? What is the number and type of the
I/0 connections (inhibitory, excitatory or delayed)?

3rd level. feedback loops (Fig.21)

The ANN can become feedback (i.e. recurrent} by using data flows which go back into the
system. Feedback links can be internal (between neurons) or external (between complete I/Q
vectors).

dth level: learning (Fig.22)

Learning can be supervised, unsupervised or batch processed. Which training examples are used,
what features are considered important? Which learning algorithms are used and what are the
learning rate indicators? Afler the training examples are learned, the network is considered

trained.

Sth level: testing (Fig.23)

After learning the weights are frozen and the ANN is exposed to new test data. Which test

examples are used and what are the performance indicators?

6th level: Network optimisation (Fig.24)

With the test results, the specific ANN type can be optimised further. Which rules or algorithms

are used to optimise topology and architecture?

7th level: Global optimisation (Fig.25)

Apart from optimising a single ANN type, the problemn can be sub-divided into different
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modules, implementing modularisation or hybridisation. What are the global optimisation rules.
Special level: Adaptability

A special case of interaction is formed by adaptive processes. Adaptability is a very confusing
term as it can be applied to every level of the previous list of interactions. A normal definition
of adaptability is given earlier : Adaptability is the ability to modify a response to changing
conditions. However, all ANNs are equivalent to this description and a better definition is

necessary (especially for the term conditions).

It should be noted that adaptation could be applied before and after network implementation (i.e.
adaptation during training or adaptation during operation). '

In this report, the term adaptable ANNs is only used to refer to already trained networks, which
modify their weights, topology or architecture during on-line operation. Thus, adaptability is the
ability of an ANN to modify itself after it has been implemented (i.e. under operational

conditions).
2.8  CLASSIFICATION OF ANNS

The diversity of the characterising elements of ANNs already indicates that there are numerous
ways to classify artificial neural networks. For instance, classification is possible in terms of the
neuron-types used; or in terms of topology, architecture or learning algorithms implemented. The

classification presented here will only focus on the used leaming and recall mode of the ANN.

The recall mode specifies how an ANN responds to new inputs. Either it uses feedback links or
not, i.e., input data is modified by output responses. When feedback loops are absent, the
network is classified as being feedforward. A feedforward network is transparent, fast and reacts
only to its present input; thus, it is independent of previous network states that and can be seen
as having no memory. If feedback loops exist, then the network is classified as being a feedback
network (Also known as a recurrent network). A feedback network uses some time to converge
into a stable solution. This dynamic system is dependent on its previous network states and

therefore can be said to have memory.
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The learning mode specifies whether an ANN uses supervised, unsupervised or batch learning.

During supervised leaming, the desired responses to the network are taught via an external
source. Unsupervised learning is used when the desired responses are not known; hence the
network must determine independently how to use the input data. Batch learning is a special
process, whereby all the information is known a priori and the weights are fixed in advance.

Many ANN memories use this last procedure (Associative memories).

All important ANNs can be categorised using the above criteria in a classification tree (see
Fig.26). This same classification can be visualised in quadrants (Kosko, 1990b; Fig.27), where
the upper left corner area depicts the most transparent but care intensive networks; and where
the lower right comer area depicts uncleér networks which determine independently how to

classify or associate received data.

The same classification tree can also be applied solely to adaptable ANNG; since each normal
ANN type could theoretically be modified for adaptive operation. As stated earlier, this report
refers only to adaptability after the learning phase, i.e. during operation. Real Time Recurrent

Learning (RTRL) is an example of an adaptive feeback, supervised back propagation network.
2.9 VARIOUS ANN NETWORKS

Some of the most important networks are explained below:

2.9.1 Back Propagation Network (BP)

Back Propagation network (BP) are the most widely used ANNs. The name comes from the fact
that an error term is back propagated through the network during learning and used to change
the weights (Fig.28). However, no feedback links are actually incorporated and there are many
other ANNs which also back propagate error terms; so this (historical) name can be confusing,
Normal BP networks have simple supervised feedforward structures and oflen consist of an input

and an output layer with one or more hidden layers in between. They are fast, relatively simple

to train and the most easy to understand. Theoretically any recurrent ANN can be simulated by
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a back propagation algorithm (Such as a Fourier series approximation). As BP networks suffer
from learning deficiencies, like slow learning and convergence to local minima, numerous
enhancements have been proposed {Haario and Jokinen, 1991, Sato, 1991, Yu et al., 1993).
Nevertheless, BP networks are used in 80% of today's applications and excellent in the areas of

prediction and simulation.
2.9.2 Adaline Network

Adaline networks were one of the earliest ANNs. They consist of single neuron elements
employing only linear functions and a simple Least Mean Square (LMS) learning rule (Fig.29).

This makes them suited for simple classifications and restricted non-linear system simulation.

2.9.3 Kohonen Network

The Kohonen network (Kohonen, 1988) was one of the earliest unsupervised feedfoward
networks; being able to self organise its neuron weights (Fig.30). The network maps input data
into a 2 dimensional grid of neurons with a special distance learning algorithm. The result is a
surface area that shows peaks at different areas for different input vectors. This network was

originally designed for speech mapping and recognition.

2.9.4 Hopfield Network

The Hopfield network is an example of a batch learning feedback network. A given set of known
vectors can be stored in the network by using a special formula to determine the weights. After
that, any input vector will slowly converge to the nearest stored pattern (Fig.31). These types of
networks are referred to as associative memories; and relate an input to some stored patter,
numerous variations have been invented (BAM, CAM). Hopfield networks are used for database

managing, image restoration and other addressable memory problems.
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2.9.5 Adaptive Resonance Theory Network (ART)

ART or adaptive resonance theory network is an unsupervised feedback network, which has a
complicated, changing structure (Rusell, 1 991). Tt uses competitive neurons in self organising
_and self stabilising clusters, which classify input vectors to self defined groups (Fig.32). When
an input vector is discriminating enough, the network is able to define a new classification group

and thus store a new pattern.

2.9.6 Linear Vector Quantization Network (LVQ)

Linear Vector Quantization (LVQ) network is a supervised feedback network. Itis a method
whereby supervision and competitive layers are combined. The competitive layer finds
subclasses among then input data; and these are then classified into user defined target classes
(Fig.33). In contrast to back propagation classification networks, LVQ can also classify non-

linearly separable sets of vectors.

2.9.7 Eiman Network

Elman are two hidden layer back propagation networks, with the addition of a feedback
connection from the output of the first hidden layer to its input (Fig, 34). This feedback path
allows Elman networks to learn to recognise and generate temporal patterns as well as spatial
patterns { Eiman, 1990).

An evaluation table can be made for consecutively different ANN types and their relative
performances. The indicators used are described earlier and give here an indication of the
expected behaviour of the ANNs. This table offers a fast reference in the process of determining
a suitable ANN.
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Table 1; Evaluation of different types of ANNs

BP | Adaline | Kohonen | ART | Hopfield | LVQ Elman
Generaiisation ++ |+ () (+) () H+ ot
Fault tolerance + - (+) ++ () G )
Dynamic stability NI + + - i+ ++
Convergence speed +++ | - - — - +
Adaptability —_— ] - + +++ - + -
Plasticity —_ | - ++ +++ — 4 —
Reliability +++ | - - ) - + —
Robustness + - ++ (+++) | +++ A ++
Required memory | A+ . - — . +
Required data (-alot) | -— |-- --- + + - -
Learning speed (- slow) | -- - + + ++ + -

(+ means good performance; brackets indicate uncertainty)

2.10 PRACTICAL ISSUES OF USING ANN FOR ENGINEERING APPLICATIONS

Where processes to be modelled are complex enough to be described mathematically, neural
networks are considered to outperform the conventional, deterministic models most of the time.
However, one should be aware of the applicability of neural networks to a specific problem and
the basic conditions for geiting the best performance out of it. In many cases neura networks for
research are used ‘blindly’ by choosing all the possible input variables and without considering

much of the possibilitics to maximize the performance.

This section provides some practical information of taking the maximum advantage of the

artificial neural network models. Mainly the section is based on Swingler (1996).
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2.10.1 Analysing the problem

In general, neural networks are suitable for problems where the underlying process is not known
in detail and the solution can be leamed form the input-output data set. Nevertheless, the

following points have to be stressed:

1} It has to be made sure that the problem is difficult to be solved by conventional method and

neural network can be used as a good alternative.

2) If there are logical non-chaotic relationships or structural properties that similar initial
configurations indicate mapping to the similar solutions, one can expect a generalization by

neural network. It simply means, the same input should always result in the same output.

3) If the data set to train the network is impossible to be represented or coded numerically, the
problem cannot be solved by a neural network approach.

4) Non-linearity and the change of variables in time are possible to be dealt with neural

networks.
2.10.2 Data preparation and analysis

This is one of the most important stages of neural network application because the accuracy of
solution for most of the networks depend on the quality and quantity of training data set.
Although neural networks can accept a wide range of inputs, they work with data of certain

format encoded numerically. There are two main issues in data preparation:
» The number of variables to be used, which determines the dimensionality

> Explicitness or data resolution and in what extent and amount the data has to be presented
to the network

To avoid of analysis of large amount of data, a sample data set may be used by choosing it

randomly from the complete database. For input and as well for output variables the data must
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be analysed and prepared with the following sequence, which is sometimes called as data pre-

processing:

Y

2)

3)

4)

3)

6)

7

Determining the data type (discrete or continuous)

Data generation: The data to train the network can be generated by measurement, by
simulation of relevant models or by derivation of virtual examples by introducing noise into
the existing data set. Also it is good if the data set evenly covers the input data subspace. In
other words the data has to be normally distributed.

Calculations of simple statistics such as mean, standard deviation for continuous data and

the number of different events for discrete data.

Removal of outliers: Outliers mean the data points lay outside of two standard deviations
from the mean. Two standard deviations cover 95% of normally distributed data. If such data
example exist, those are preferably to be removed, unless those are significantly important
for the given problem. For some of the dynamic systems (chaotic) those outliers are

important.

Quality and quantity check: What amount of data has 10 be collected is mainly decided by
the network size (number of variables), required data resolution etc. Conceming the network
size it is advisable to collect training data sei of equal number to (1/target error) x number
of weights. Also as a quality check statistical tests can be carried out in order to make sure

the corresponding data set contains a required information.

Dimensionality reduction: Large number of input variables increases the training time
considerably. It is advisable to reduce the number of input variables, which are the most
important and best representing the output variable while maintaining the correct level of
network complexity. The covariance or correlation between the variables can help to decide

which variable is the most useful.

Data scaling has to be done when data set has too different order of magnitudes. It is also

advisable to have all the input data within the same range of scaling,
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8) Data encoding has to be done in the end of data preprocessing in case of necessity.

Categorical data must always be encoded.

2.10.3 Model! selection and building

Because of its accuracy and fault tolerance capability error backpropagation network is the
mostly used type of neural network. However, there are different types of learning algorithms
that are quite suitable for specific problems. By using the classification tree and the
characteristics of the problem a specific ANN type can be chosen. For example, the simulation
should be fast for on line operation (feedforward), there is enough data available on the process
(supervised) and much of the data is time related; thus a Time Delay Neural Network (TDNN)

network could be used.

In case of too many input and output variables, the training of the network become
computationally demanding. Therefore, one way to solve this sort of problem is to divide the
problem into several small sub-problems that can be solved separately by the network. There is
no specific rule for building a network, however, some practical hints on this aspect is listed
below.

2.10.3.1 Network structure approximation

Multi-layer Perceptron

» The training examples should be at least equal to 1/¢ , where e is a target value for error

» The maximum number of hidden units should be guided by the formula A£ 2/+1, where A and

i are number of hidden and input units respectively

» Number of weights can be related to the number of training patterns w=ilog,p, where p and

w are number of training patterns (exemplars) and number of weights respectively

» For feature extraction, number of hidden nodes should be less than the number of input
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variables

» For classification, the number of hidden units is increased with the number of expected

classes

» Number of hidden layers should be as less as possible and usually one or two layers are used
in most of the published applications. It was shown that any function could be approximated
by at most 4 hidden layers (Swingler, 1996).

» It is suggested that the activation function in the specific neuron has to be chosen as non-
linear for non-linear process model. In case of more than one hidden layers, the activation
function for one of the layers has to be linear, in order to discard the linear components that

may be existing in hon-liner models.
Self Organising Feature Maps

SOFM consists of the input layer and the output map. Concerning the size of the network

following rule is mainly suggested:

2N

clqu << N

units paiiern

N.mss - the number of expected class or cluster (user must have some primary expectation)
N, - Number of processing units in the output layer

N

paers - NUmMber of input pattern

2.10.4 Training and testing the network

Training is the leaming process of neural networks. Training stage can be started when the -
network is designed, data sets are collected and encoded. After the training is fulfilled, the

testing phase starts. Various phases are:
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Defining the topology: Training the network has to be started by defining the topology of the
neural network. The best topology is found by adjusting the parameters by trial and error,
therefore it is better to start with a small network which learns fast and is easy to change the
parameters. Initial weights are also defined by trial and error method. When the appropriate
network topology is defined, it is possible to speed up or slow down the process by changing

the learning rate and make fine-tuning.

Stopping criterion: There is no specific rule signifying when to stop the training and the
stopping criteria are different for different type of the network. In general, the stopping
criterion can be the minimum value for a learning rate or if applicable, it is also advisable
to use target value of training error and also an option of cross validation, which allows you

to know whether the error in verification phase starts fo increase.

Testing: Once the network is considered to be sufficiently trained, the network needs to be
tested under realistic circumstances. However testing is not necessarily applicable for every
type of neural networks. The final integration or implementation of the neural network has
to be delayed till sufficient confidence is achieved, so that the network can work by all

means and without damaging the system in case of its failure.

2.10.5 Qutput and Error Analysis

Errors do not always mean the network parameters are chosen wrong. If the network is built and
organised systematically then the reascn for large error can be found by changing few parameters
by small amount between the two configurations. But if the problem cannot be found, the reason
is not in the initial configurations. Sometimes errors or unsuccessful results can not be simply

termed as errors as they might be caused by uncertainty.

Error criteria can be a maximum net output error, which is the difference between the net output
and the target output. Average error and moreover, the total distribution of error are good
performance criteria. If network makes error in some cases and not in others, it means the data

balance is proper. In order to prevent the accumulation of rounding error, training the network
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with too large or too small numbers should be avoided.

For noisy and overlapping classification problems it is impossible to get zero error level.
Function mapping is more difficult than the classification problem and the different parts of the
input space can give a different degree of error, Certain parts of a data set can represent non-
linearity function that can be learned easily. Also there can be more variance in training data set
than in the other parts. In short, the inadequate generalization usually is caused by too complex

non-linearity of the function, too high variance in data set.

There are different ways to evaluate and analyse the network output error. One easy way to
analyze the output error is to calculate simple statistics of the network output such as the
correlation coefficient between the net output and the target output. One more advanced method
to evaluate and minimize the error is finding the structure of error, which could determine the
areas with different level of predictability. Even the structure can be the function describing the
distribution of error in the input space. This goal can be achieved by training the second neural
network to leacn and predict the error of the original model after its being trained at certain level
{for details see Swingler, 1996).

2.10.6 Implementation of a neural network based project

This is the step to build the real product from the neural network prototype. Implementing the
neural network is the part of the software we need. It includes special requirements such as time
or space restrictions, porting the neural network solution to an application environment and
interface development etc. Most of the time the neural network project can be easier than to the
rule-based approach as the domain specific knowledge is not much required for neural networks.
In terms of risk involved in neural network project, the main risk would be the non-presence of

the information necessary for the problem in the data set available.

There are three general steps in implementing a neural network based project, each of which
consists of small substeps:

> Project planning stage ( task definition, feasibility study, input/output specification, defining
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data requirement, data coding)

» Network development stage (data collection and validation, data encoding/recoding, network

design and training, network testing and error analysis, implementation)

» Documentation stage (defining data source and conditions, defining the coding method,
architecture, parameter setting, the number of training epochs, defining the conditions,

reporting the final results).
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3.0 EXISTING NEURAL NETWORKS IN SURFACE WATER
HYDROLOGY

3.1 Rainfall Runoff Modelling

French et al. (1992) have developed a neural network to forecast rainfall intensity fields
in space and time; it is a three layer learning network with input, hidden, and output
layers. Training is conducted using back propagation where the input and output rainfall
fields are presented to the neural network as a series of learning sets. Afler training is
complete, the neural network is used to forecast rainfall intensity fields with a lead time
of 1 hour using only the current field as input. Rainfall fields are generated using a space
time mathematical rainfall simulation model, and forecasted fields are compared with the
perfectly known model produced fields. Results indicate that a neural network is capable
of learning the complex relationship describing the space-time evolution of rainfall such
as that inherent in a complex rainfall simulation model. One hour ahead forecasts is
produced, and comparisons with true mean areal intensities and percent area coverage
indicate that in most cases the method performs well when applied to the events used in
training. The neural network is used to forecast a series of events not included in the
training data and is shown to perform well when a relatively large number of hidden
nodes are utilised. performance of the neural network is compared with two other

methods of short-term forecasting and persistence,

Hsu et al (1995) have presented a new procedure (entitled linear least square simplex, or
LLSSIM) for identifying the structure and parameters of three layer feed forward ANN
models and demonstrates the potential of such models for simulating the non-linear
hydrologic behaviour of watersheds. The non-linear ANN model approach is shown to
provide a better representation of the rainfall-runoff relationship of the medium size Leaf
River basin near Colins, Mississippi, than the linear ARMAX (autoregressive moving
average with exogenous inputs) time series approach or the conceptual SAC-AMA
(Sacramento soil moisture accounting) model. Because the ANN approach presented here
does not brovide models that have physically realistic components and parameters, it is
by no means a substitute for conceptual watershed modelling. However, the ANN
approach does provide a viable and effective alternative to the ARMAX time series

43



approach for developing input output simulation and forecasting models in situations that
do not require modelling of the internal structure of the watershed.

To obtain riverflow data, a neural network is developed and applied to rainfall-runoff
transformation by Lorrai and Sechi (1995). The NN has been built considering a hidden
two layer net and the sigmoidal has been used as a response function.  Training is
conducted using a back-propagation learning rule. In the input layer, both areal and point
data values may be considered. The capability to provide a suitable forecast of river
runoff has been examined for the Araxist watershed in Sardinia. Experiments have been
made dividing the total extension of observed data into three ten-year periods, assuming
each as a training set, learning the NN and simulating the other two decades over the
same period. The obtained model efficiency confirms the capability of this approach to be

a useful tool in the evaluation of rainfall-runoff transformations.

Spatially distributed rainfall patterns can be detected using a variety of remote-sensing
techniques ranging from weather radar to various satellite-based sensors. Conversion of
the remote-sensed signal into rainfall rates, and hence into runoff for a given river basin,
is a complex and difficult process using traditional approaches. Neural-network models
hold the possibility of circumventing these difficulties by training the network to map
rainfall patterns into various measures of runoff that may be of interest. To investigate the
potential of this approach, Smith and Eli (1995) have used a very simple 5 x 5 grid cell
synthetic watershed used to generate runoff from stochastically generated rainfall
patterns. A back propagation neural network is trained to predict the peak discharge and
the time of peak resulting from a single rainfall pattern. Additionally, the neural network
is trained to map a time, series of three rainfall patterns into a continuum of discharges
over future time by using a discrete Fourier series fit to the runoff hydrograph.

A critical problem in the estimation of rainfall rate (RR) from satellite infrared (IR)
imagery is that the non-linear relationship between the IR brightness temperature (T) and
RR varies regionally. To provide accurate estimation of RR, a model must be able to
detect such variations and adjust its behaviour accordingly Hsu et al (1996) have used a
kind of artificial neural network (ANN), called a Modified Counter Propagation Network
(MCPN) to model the complex non-linear IR-RR relationship. The ability of this model

to adapt to regional variations is illustrated using data from Japan and Florida.
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A series of numerical experiments by Minns & Hall (1996) in which flow data were generated
from synthetic storm sequences routed through a conceptual hydrological medel consisting of
a single non-linear reservoir, have demonstrated the closeness of fit that can be achieved to such
data sets using Artificial Neural Networks (ANNs), The application of different standardisation
factors to both training and verification sequences has underlined the importance of such factors
to network performance. Trials with both one and two hidden layers in the ANN have shown
that, although improved performances are achieved with the extra hidden layer, the additional
computational effort does not appear justified for data sets exhibiting the degree of non-linear

behaviour typical of rainfall and flow sequences from many catchment areas.

The lumped datily rainfall runoff process for the Leaf River Basin in Mississippi was modelled
by Hsu et al (1 997 a,b) using two different Artificial Neural Network (ANN) model structures.
Their results indicate that both structures, the popular Three Layer Feedforward neural Network
{TLFNN) and the Recurrent Neural Network (RNN), perform well. However, the TLFNN
requires trial and error testing to identify the appropriate number of time delayed input variables
to the model. Further, it is not suitable for distributed watershed modelling, i.e., when
distributed precipitation information (multiple gages or radar images) is available. The RNN
structure provides a representation of the dynamic internal feedbacks loops in the system,
thereby eliminating the need for lagged inputs and resulting in a reduction in the number of
network weights (and hence training time). The RNN models are far more suitable for distributed

watershed modelling,

Jain and Chalisgaokar (1997) have applied an ANN model to rainfall runoff simulation of an
Indian catchment, Hourly rainfall, discharge and potential evaporation data were used. The

results show acceptable match between the observed and computed discharges.

Dawson and Wilby (1998) have applied Artificial Neural Networks to flow forecasting in two
flood prone UK catchments using realtime hydrometric data. The results have shown that given
relatively brief calibration data sets it was possible to construct robust models of 15 min flows
with six hour lead times for the Rivers Amber and Mole. Comparisons were made between the
performance of the ANN and those of conventional flood forecasting systems. The results

obtained for validation forecasts were of comparable quality to those obtained from operational
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systems for the River Amber. The ability of the ANN to cope with missing data and to learn
from the event currently being forecast in real time makes it an appealing alternative to
conventional lumped or semi distributed flood forecasting models. However, further research
is required to determine the optimum ANN training period for a given catchment, season and

hydrological contexts.

3.2 FORECASTING

The various techniques currently used to retrieve snow parameters from microwave
measurements are usually not robust enough to give consistent results from very different snow
conditions. A new technique has been developed by Chang and Tsang (1992) where the
inversion of snow water equivalent (SWE) from passive microwave remote sensing
measurements is accomplished by using a neural network trained with a dense media multiple
scattering models. Brightness temperatures from 19 GHz vertical and horizontal polarisation, 22
GHz vertical polarisation and 37 GHz vertical and horizontal polarisation which are available
from the Special Sensor Microwave Imager sensors, are used as input to the neural network.

Different combinations of three input parameters are used: the mean grain size of ice crystals in
the snowpack assuming a Rayleigh size distribution, snow density, and snow depth. A model
atmosphere is then superimposed onto the calculated emerging microwave radiations from the
snow surface. Backpropagation multiple layered neural networks were used to estimate the SWE
of a snowpack using simulated data and the technique of explicit inversion. When using the
entire simulated data set (720 cases), results from using neural networks seemed to reproduce
the simulated data set better than when using the multiple regression method. By reducing the
size of the training set, the accuracy of the SWE retrievals using the neural networks decreased
rapidly. However, reducing the size of the training data set did not affect the results of the
regression method. The percentage error for estimated SWE varied from 9% to 57% for

different snow conditions.

Alberotanza and Pavanati (1992) have reported the use of an adaptive resonance neural
networks scheme to analyse multispectral remotely sensed images on a lagoon environment and
coastal waters. An attempt was made to develop a substantially unsupervised classifier, obtaining
an algorithm capable of independently organising the learning stage on the basis of the same data

under analysis. Information is requested from the external operator o limit the number of classes
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to be recognised. It is not necessary to use models for samples of spectral signature. The
experience acquired can be transferred to successive recognitions. The method makes use of the
separation of colour information from that of the intensity of the analysed radiation and derives

from radiometric corrections and calibrations.

The surface water hydrographs of rivers exhibit large variation due to many natural phenomena.

One of the most commonly used approaches for interpolating and extending streamflow records
is to fit observed data with an analytic power model. However, such analytic models may not
adequately represent the flow process, because they are based on many simplifying assumptions
about the natural phenomena that influence the river flow. Kerunanithi et al (1994) have
demonstrated how a neural network can be used as an adaptive model synthesiser as well as a
predictor. Issues such as selecting an appropriate neural network architecture and a correct
training algorithm as well as presenting data to neural networks are addressed using a
constructure algorithm called the cascade correlation algorithm. The neural network approach
is applied to the flow prediction of the Huron River at the Dexter sampling station, near Ann
Arbor, Mich. Empirical comparisons are performed between the predictive capability of the
neural network models and the most commonly used analytic non-linear power model in terms
of accuracy and convenience of use, The preliminary results are quite encouraging. An analysis
performed on the structure of the networks developed by the cascade correlation algorithm
shows that the neural networks are capable of adapting their complexity to match changes in the
flow history and that the models developed by the neural network approach are more complex
than the power model.

Navone and Ceccatto (1994) have applied the neural network approach in predicting the Indian
monsoon rainfall. These computational structures are used as a non-linear method to correlate
preseason predictors to rainfall data, and as an algorithm for reconstruction of the rainfall time-
sertes intrinsic dynamics. A bomined approach is developed which captures the information
built into both the stochastic approach based on suitable predictors and the deterministic
dynamical model of the time series. The hierarchical network so obtained has forecasting

capabilities remarkably improved with respect to conventional methods.

Using Advanced Very High Resolution Radiometer data, Bankert (1994) has classified 16 pixel

x 16 pixel sample area into one of ten output classes using a Probabilistic Neural Network



(PNN). The ten classes are cirrus, cirrocumulus, cimrestratus, altostratus, nimbostratus,
stratocumulus, stratus, cumulus, cumulonimbus and clear. Over 200 features drawn from
spectral, textural and input physical measures are computed from the pixel data for each sample
area. The input parameters presented to the neural network are a subset of these features selected
by a routine that indicates the discriminatory potential of each feature. The training and testing
input data used by the PNN are obtained from 95 expertly labelled images taken from seven
maritime regions; these images provide 1633 sample areas. Theoretical accuracy of the PNN
classifier is determined using two methods. In the hold-one-cut method, the network is trained
on all data samples minus one and is tested on the remaining sample. Using this technique,
79.8% of the samples are classified correctly. A bootstrap method of 100 randomly determined
sample sets produce an average overall accuracy of 77.1%, with a standard deviation of 1.4%.
In a more general classification using five classes (low clouds, altostratus, high clouds,
precipitating clouds and clear), 91.2% of the samples are accurately classified. A two-layer, four-
network system that determines the general classification of a sample followed by a specific
classification in another network is proposed. Testing of this system produces mixed results
compared 10 the single ten-class PNN.

Zhang and Scofield (1994) have presented an Artificial Neural Network (ANN) technique for
heavy convective rainfall estimation and cloud merger recognition from satellite data. An
Artificial Neural network expert system for Satellite-derived Estimation of Rainfall (ANSER)
has been developed in the NOAA/NESDIS Satellite Applications Laboratory. Using artificial
neural network group techniques, the following can be achieved: automatic recognition of cloud
mergers, computation of rainfall amounts that will be ten times faster and average errors of the

rainfall estimates for the total precipitation event that will be reduced to less than 10 per ceat.

Allen and Marshall (1994) have applied neural networks and discriminant analysis to forecasting
24 hour rainfall for the city of Melbourne. Several different approaches were tested with each
of these techniques, using a training data set of 1997 cases and an independent test data set of
665 cases. Performance comparisons indicated that both neural network and discriminant
analysis methods offered improvements over the operational model output statistics (MOS)
method and operational forecasts. As a result of these tests a discriminant analysis method has
been incorporated into an expert system to assist forecasters making rainfall forecasts. This

system is undergoing an operational trial in the Victorian Regional Forecast Centre.
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Diaz and Alfonso (1995} have compared two methods for fog forecasting in Cuba. Use of the
classical Fisher discriminant function, and the LVQ algorithm developed by the Laboratory of
Computer and Information Sciences, Helsinki University of Technology. The relative number
of correct forecasts is over 70% for both, which can be considered a good performance. When
the learning sample is large enough and nearby equi-probabalistic, the LVQ algonithm provides
a greater number of correct forecasts than those obtained via the Fisher discriminant function.
However, the results attained via the LVQ algorithm are not steady when the learning sample
is far from being equi-probabalistic, because the number of fog cases is much reduced. Until
larger samples are available for some regions, it will be necessary to use both methods for fog
forecasting in Cuba.

Methods to continuously forecast water levels at a site along a river are generally model based.
Physical processes influencing occurrence of a river stage are, however, highly complex and
uncertain, which makes it difficult to capture them in some form of deterministic or statistical
model. Neural networks provide model free solutions and hence can be expected to be
appropriate in these conditions. Built in dynamism in forecasting, data error tolerance, and lack
of requirements of any exogenous input are additional attractive features of neural networks.
Thirumalaiah and Deo (1998) have used ANN approach in real time forecasting of water levels
at a given site continuously throughout the year based on the same levels at some upstream
gauging station and/or using the stage time history recorded at the same site. The network is
trained by using three algorithms, namely, error back propagation, cascade correlation, and
conjugate gradient. The training resulis are compared with each other. The network is verified
with untrained data.

3.3  HYDRAULICS

Dartus et al (1993) have used a neural net to study the propagation of a flood wave in an open
channel. The aim is to show that this kind of tool is accurate enough to be used in real time
management of sewers systems. Ability of such a neural network to answer correctly is

highlightened with an extensive learning base and with a reduced one.

Mase et al (1995) have examined the applicability of a neural network to analyse model test data
of the stability of rubble-mound breakwaters, Seven parameters concerning the stability of rock
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slopes are used: the stability number, the damage level, the number of attacking waves, the surf-/
similarity parameter, the permeability parameter, the dimensionless water depth in front of the
structure, and the spectral shape parameter. The damage levels predicted by the neural network,
calibrated by using a part of Van der Meer's 1988 experimental data, agree satisfactorily well
with the measured damage levels of another part of the data source by Van der Meer 1988 and
by Smith et al, 1992 data,

A feed forward back propagation type neural network was used by Gruberr (1995} to predict the
flow conditions when interfacial mixing in stratified estuaries commences. This was achieved
by training the network to extrapolate data from laboratory experiments performed over many
years by several researchers. Before this training could be carried out, however, many decisions
concerning the size of the network required and its training parameters had to be made. These
decisions were made on the basis of successfully training a similar stratified flow condition, that
of thermal wedges downstream of a power plant's outlet, where the theoretical solution is known.
Finally, these results were compared with an approximate stability equation utilizating results
from inviscid flow theory, rough turbulent flow theory, and laboratory experiments on inter-
facial friction. Although the agreement was not exact it was close enough to predict what the
stability conditions in real estuaries should be. This prediction was verified with the only
prototype data available, that from three fjords, which agreed with both the neural network and
theoretical results.

34  WATER RESOURCES

The design, analysis and management of the water resources systems, involves modelling and
prediction of the behaviour of complex systems, The Artificial Neural Networks {ANN) can'be
used in a large variety of problems. e. 8. mapping, dynamic process modelling, optimisation,
image processing, data analysis, forecasting, simulation, function approximation etc. Due 1o the
distributed nature of ANN, destruction of a few nodes or presence of some inconsistent data
does not adversely affect the performance of ANNG.

The artificial neural network approach described by Raman and Kumar (1995) for the synthesis

of reservoir inflow series differs from the traditional approaches in synthetic hydrology in the
sense that it belongs to a class of data-driven approaches as opposed to traditional model driven
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approaches. Most of the time series modelling procedures fall within the framework of
multivariate autoregressive moving average (ARMA) models, modelling procedures suggest a
four-stage iterative process, namely, model selection, model order identification, parameter
estimation and diagnostic checks. Although a number of statistical tools are already available
to follow such a modelling process, it is not an easy task, especially if higher order vector
ARMA models are used. This paper investigates the use of artificial neural networks in the field
of synthetic inflow generation, The various steps involved in the development of a neural
network and a multivariate autoregressive model for synthesis is presented. The application of
both types of modet for synthesising monthly inflow records for two reservoir sites is explained.
The performance of the neural network is compared with the statistical method of synthetic

inflow generation.

Reservoir operating policies are derived to improve the operation and efficiént management of
available water for the Aliyar Dam in Tamil Nadu, India, using a dynamic programming (DP)
model, a stochastic dynamic programming (SDP) model, and a standard operating policy (SOP).
Raman & Chandramouli (1996) have derived a general dperating policy for reservoirs using
neural networks. The objective function for this case study was to minimise the squared deficit
of the release from the irrigation demand. From the DP algorithm, general operating policies
were derived using a neural network procedure (DPN model), and using a multiple linear
regression procedure (DPR model). The DP functional equation is solved for 20 years of
fortnightly historic data. The field irrigation demand was computed for this study by the study
by the modified Penman method with daily meteorological data. The performance of the DPR,
DPN, SDP and SOP models were compared for three years of historic data using the proposed.
objective function. The neural network procedure based on the dynamic programming algorithm

provided better performance than the other models.

Crespo and Mora (1993) have proposed an artificial neural network model to derive streamflow
from precipitation data. It is tested with actual data coming from a nearby river, referred to a
basin area of 356 km super (2) and a time period of 11 years. A feedforward multilayer
perception with linear output has been built to deal with this problem. The dynamics are caught
by the filter structure of the input layer. A special study on crossing properties, based on training
sample selection, is made to measure the performance of the network for drought analysis.

Sample selection leads to increased accuracy within the sample range and degraded performance
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for points that are clearly out. Predicted number of droughts, average drought length and deficit
are compared with the actual data. The results show that very simple neural network models can

give fine results,

Three layer back-propagation networks have been used by Bischof (1992) for the classification
of Landsat TM data of the surroundings of Vienna on a pixel by pixel basis. The aim of the
classification with the neural network was to distinguish between four categories: built-up land,
agricultural land, forest, and water. The resulting thematic map was compared to the Gaussian
classification. In order to achieve approximate Gaussian distributions, the categories had to be
further subdivided into 12 subcategories. Two thematic maps were prepared by visual
classification of the Landsat image, using additional data from aerial photographs, maps and
field work. These maps were considered to represent the true classification. A small set of
samples was selected, training of the meural network and half were used for testing and
classification of the result. After 50 epochs of learning the neural network made fewer errors
than maximum likelihood classification. A special neural network was used for post-

classification smoothing.
3.5 ENVIRONMENTAL

Ruck et al (1993) have presented a method of predicting benthic community structure from
environmental variables that uses artificial neural networks. The input variables represent
geophysical, limnological and sedimentological characteristics of sites in Canadian waters of the
Laurentian Great lakes. A single output from the network predicts the number of individuals of
a given taxon to be found in a 5.5 cm by 10 cm deep core sample of lake sediment taken at the
site in question, Networks have been trained for four texa: Oligochaeta, Porifera, Chironomidae
and Pelecypoda. Three input vector sets were compared: the 28 dimension raw data set, a subset
of 9 variabies and a 7 dimension eigen vector set. Performance tests were carried out usinga 1-
fold cross validation technique, which maximises data utility while maintaining independence
between the training and test sites. It was concluded that artificial neural networks have potential

for use in biological monitoring systems.

Models for the prediction of conductance in nonbrine water samples through the measurement

of ionic concentrations and other parameters are compared by Hughes et al (1994). Such
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predictions are often used for quality assurance purposes by comparing them with actual
measurements to deterrine whether gross analysis errors have been made. A currently
recommended method for making such predictions is a semiempirical relation that adapts the
Debye-Hueckel-Onsagar equation to mixed electrolyte systems by incorporating modified
definitions of ionic charge and concentration. The limitations of this model are examined, and
extensions to it are considered. Other predictive methods, including muiltiple linear regression
(MLP), principal components regression (PCR), partial least-squares (PLS) regression,
continuum regression (CR), and neural networks (NN), are aiso considered. Modeis employ the
concentrations of 1-0 ions as well as, in some cases, additional water quality measurements, Best
results were obtained with an extended form of the Debye-Hueckel-Onsagar equation and an

optimised MLR model. POCR, PLS, CR, and NN did not offer significant advantages.

French and Recknagal (1994) have developed a neural network model for predicting algal
blooms. The neural netowrk consists of a 3 layer structure with input, hidden, and output layers.
Training is conducted using back-propagation where the data are presented as a series of
learning sets such that the inputs are observable water quality parameters and outputs are the
biomass quantities of specific algal groups. Training is conducted using three years of daily
values of water quality parameters and validation is performed using two years of independent
daily values to predict the magnitude and timing of blooms of 7 different algae groups with a
lead time of 1 day using only the current day water quality parameters. The water quality data
represent physical and limnological characteristics of a drinking water reservoir in Germany.
Results indicate that the neural network model is capable of learning the complex relationships

describing the seasonal succession of phytoplankton in freshwaters.

The economic developient activities of an increasing world population threaten the assimilative
capacity of our environment and have stimulated interest in the concept of environmental
carrying capacity. While the pace of land transformations has encouraged the refinement of
information technologies such as satellite remote sensing to provide a synoptic view of earth-
system processes, the volume of information these systems generate and the high level of
expertise required to translate these data retard effective and timely land management decision
making. Lein (1995} has introduced a methodology that employs an artificial neural network
trained to recognise categories of population support capacity from satellite data acquired from
the NOAA-AVHRR. The network, functioning as an 'intelligent’ mapping tool, achieved a
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classification accuracy of 77.5 per cent for the study site and points to the potential role a model
of this type may play in land degradation monitoring.

Maier and Dandy (1996) have presented the use of artificial neural networks { ANNs) as a viable
means of forecasting water quality parameters. A case study is presented in which ANN methods
are used to forecast salinity in the River Murray at Murray Bridge (South Australia) 14 days in
advance. It is estimated that high salinity levels in the Murray cause $US 22 million damage per
year to water users in Adelaide. Previous studies have shown that the average salinity of the
water supplied to Adelaide could be reduced by about 10% if pumping from the Murray were
to be scheduled in an optimal manner. This requires forecasts of salinity several weeks in
advance. The results obtained were most promising. The average absolute percentage errors of
the independent 14-day forecasts for four different years of data varied from 5.3% to 7%. The
average absolute percentage error obtained as part of a real time forecasting simulation for 1991
was 6.5%.
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4.0 CONCLUSIONS

The research work reported so far indicates that ANNSs are ideal for providing timely and cost
effective solutions to a variety of field scale problems. Due to the ease of application and simple
formulation, this technique has already become a prospective research area with great potential.
The applications of ANNS in the field of surface water hydrology have been to several diverse

nature of problems and the results in each case have been very encouraging.

There are certain issues that need to be resolved before employing neural networks. The main
issue is the choice of the network. As mentioned earlier, a wide variety of network architecture
and paradigms exist. In all these cases it is very important to specify the form in which data is
presented to the network and the network size. Besides this, network training times may be long
which precludes trying a number of configurations and several presentation strategies. Careful
preprocessing of the input data can dramatically reduce the number of input nodes, and so reduce
the network size and training times. Conversely, poor preprocessing can remove information
required by the network to converge and so increase the training overhead. Increasing the
number of input nodes may make the network learning easier, but would also increase the

number of interconnecting weights which would take their own time to set.

An optimum training pattern or data is thought to be the one containing many more examples
than the number of network weights, therefore coding strategies must be such that the number
of weights is optimum and the resulits effective. In addition to defining the input and output
layers, the number and size of the hidden layers must also be specified. Too few hidden nodes
would inhibit learning, while too many may result in overtraining. In the latter condition, the
network's accuracy performance improves but the network's capability to predict patterns it has
not seen, actually declines. The number of hidden layer nodes most suited to a problem may be

obtained using a number of algorithms.

Besides the suitable choice and optimal design of the neural network, there are issues to their
application which should not be ignored. First, ANNs can only generate meaningful
results/predictions over the problem dimensions defined by the training patterns. If the scope of
the problem changes, then the training patterns must be recreated or at least augmented with new

examples. Secondly, if ANNs are not trained to high levels of predictive accuracy, as measured
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by their performance on test examples, errors may occur in predictions and during sensitivity

analysis.

The possible applications of ANNG in the field of surface water hydrology are numerous. For
example, they can be used for rainfail runoff modelling; calibration of rainfall runoff models;
precipitation estimation from remotely sensed information; estimation of rainfall rate from
satellite infrared imagery; retrieval of snow parameters from microwave measurements; flood
forecasting; drought estimation; multivariate modelling of water resources time series; modelling
of water retention curves; deriving general operating policy for reservoirs; prediction of water

quality parameters.

The ANN technique is still under rigorous research and there is a good scope in the yet-to-be
discovered potential of ANNs trying to simulate the power of the human brain. Despite the
limitations, the noted advantages of ANNs are significant and promising for field scale

applications in surface water hydrology.
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