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PREFACE 

Water is a precious gift by the environment to the 
mankind. Preservation of waters and conservation of their -quality 
thus become the responSibly of the users. The planning and 
management of preserve waterS are not merely a question of 
ensuring the availability in the right quantity at the right time 
for diverse purposes, but also ensuring the right quality for 
different uses. 

Streams which are in many areas serving the basic needs of 
water., have traditionally been used as a convenient disposal sites 
for various industrial and municipal wastes. Disposal of Liquid 
effluents from sewage treatment plants and incidental releases of 
wastes from thermal and nuclear power stations are common in many 
rivers stretches in the country. Hardly, we think before the 
disposal about their environmental hazards to be caused to the 
downstream users of water. Consequences of such disposal may Lead 
to the serious health hazards, problem to the aquatic biota, etc,. 
Many instances in the country e,g. river Yamuna at Delhi, river 
Ganga at Kanpur, varanasi etc. ,to mention few, are evidences of 
such hazards. These instances eventually tell us to control water 
pollution and conserve the water quality even if necessary, at the 
source of pollution, if needed, paying higher cost. 

Effluent discharges into a river or any other waterbodtes 
get mixed and diluted with the receiving waterbodies mainl.s,  due to 
the longitudinal, transverse and vertical mixing and radioactive 
decay. All these properties again depend .on river hydraulic 
characteristics and varies from river to river. The study of 
mixing phenomenon of pollutants a rivers and variation- of 
concentration of pollutants at different time and space ,are very 
much necessary to take preventative measures for safeguarding the 
downstream users from incoming•po/lution. The main parameter which 
characterizes the mixing and dispersion of pollutants along the 
cross section is dispersion co-efficient. Determination of 
dispersion coefficient is important for accurate estimation of 
pollution level. 

Realizing the need of the study, as a first step in this 
direction, the Environmental Hydrology Division of the Institute 
has taken up the study to compile all possible information about 
the studies carried out on dispersion of pollutants in streams. The 
report titled "Dispersion of pollutants in Stream", prepared by 
Shri N. C. Ghosh, Scientist C. Environmental Hydrology Dtuzetan 
contains a review of studies and the basic mechanism of 
dispersion, and methodology for predicting dispersion, Ls a 
contribution of work assigned to him for year 1993-'94. 



The report has been prepared under the euidance of Dr. 

G.C.Hishra, Scientist F and Dr. K.K.S.Bhatia, Scientist F & Head 

Environmental Hydrology Division. 
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LIST OF NOTATIONS 

Notation wherever it is first appeared, has been clarified. 
However, the most commonly used notations have further been 
explained below: 

A  :cross sectional area 

a *radius of the pipe 
0 

*concentration of tracer mass or organic matters 

*Avg. concentration of tracer mass or across the 
stream 

C' *deviation of tracer or organic matter from stream 
avg. concentration. 

 :molecular diffusion co-efficient. 

 :depth of flow. 

 :acceleration due to gravity. 

 :longitudinal dispersion co-efficient. 

 :organic decay co-efficient. 

 :mixing length 
ifs 

1  :characteristic length, the distance from the point 

of maximum thread of velocity to the most furthest 
bank. 

:mass of tracer or pollutants. 

*rate of flow or discharge. 

q  :solute mass. 

°hydraulic radius. 

 :slope of the energy gradient line. 

 :Eulerian time scale 

Lagrangian time scale. 

 :time 

*maximum velocity. 

 :velocity along the direction of flow. 

 :average velocity across the flow direction. 



u'  :deviation of velocity from the mean flow velocity. 

 :shear flow velocity. 

 width of the channel or stream. 

X I y, :cartesian co-ordinate. 

 conastant of proportionality 

eddy co-efficient. 

:transverse mixing co-efficient. 

:vertical mixing co-efficient. 

:von Karman constant. 

 transformed co-ordinate of distance along direction 
of flow. 

:transformed co-ordinate of time. 

:variance of tracer particles. 

:variance of ensemble particles. 

:shear stress. 

 density of fluid. 



ABSTRACT 

A traditional concern is stream disposal of liquid wastes 

from municipal, industrial and sewage treatment plants. Beside 

these ,another common tendency of disposing blow down discharges 

from fossil or nuclear power stations to the nearest perennial 

open channel. For environmentalists the real concern of the 

problem is, how pollutants transport with the river water and when 

the river regenerates its assimilative capacity . The most 

important aspect of river transport phenomenon is; how quickly 

pollutants mix with river water and how concentration distribution 

varies in the river water. From environmental considerations, the 

quality and quantity of effluents need to be so regulated that at 

every section between the point of release and till pollutants 

reached a safer limit, a reasonable wide zone of uncontaminated 

water to be made available available for movement of aquatic 

biota, if necessary after allowing the dilution of effluents. 

An important parameter which characterize the ability of 

streams in disbursing the pollutants across the depth, width and 

towards the direction of flow is "longitudinal dispersion 

co-efficient" or simply "dispersion co-efficient". It seems that 

dispersion is relative unimportant for steady-state, 

one-dimensional flows, and usually considered to be important for 

unsteady flows and loads which are very common in rivers. Study 

of dispersion of pollutants in stream has many application 

starting from monitoring and ending with modelling of water 

quality parameters for both conservative and non-conservative 

materials. Determination of dispersion co-efficient is not a task 

but requires lot of data and due care of analysis. The algorithm 

which describes the dispersion process is analogous to the Fickian 
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diffusion equation. However, there were numbers of opinion, some 

investigators have depicted that the Fickian diffusion equation 

can not be applied in the convective period ( convective period 

has been described as the time required for pollutants to reach 

from point of release to the point where it is completely 

mixed).while others opined that Fickian equation is not the 

correct description for mixing pattern mainly in natural streams 

where stream irregularities exist. Moreover, lot many opinions are 

also observed for mixing pattern and about the determination of 

dispersion co-efficient. It is clear from the studies that 

dispersion co-efficient is an empirical parameter derived from 

eddy-diffusivity assumption. 

It is attempted in the report to describe the dispersion 

processes in stream in detail. Efforts have been made to elaborate 

the algorithm which describes the dispersion process, and how it 

can be used and had been used to determine the dispersion 

co-efficient has been highlighted. Studies related to dispersion 

of pollutants in stream have also critically been reviewed in this 

report. 
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1.0 INTRODUCTION 

Traditionally, streams have been treated as convenient 

disposal sites for various industrial and municipal wastes. 

Besides these, one of the most common means for the disposal of 

liquid effluents from sewage treatment plants and blow down 

discharges from fossil or nuclear power stations is to discharge 

them to the nearest perennial open channel. In recent years, more 

and more concern has been about the potential environmental 

hazards of such disposal. This is obvious because excessive 

disposal beyond the cleansing capacity of the river may cause 

serious environmental hazards to the downstream users and aquatic 

biota. Thus, for effective control of pollution in streams, it is 

necessary to understand quantitatively the mixing and transport 

phenomenon of pollutants receive by the streams and how and when 

the river regenerates its purifying capacity. 

Miscible effluents advected through a perennial stream get 

mixed and diluted with the receiving water mainly due to 

longitudinal, transverse and vertical mixing, and radioactive 

decay with time. More precisely, when an organic waste is 

discharged into a stream, it is assumed that the natural processes 

of purification will further reduce objectionable material to a 

more stable form through the action of biological oxidation, 

dilution, and natural decay. It is obvious that the natural 

processes can be efficiently utilized only if the dilution process 

is aided by adequate natural mixing and dispersion of the 

wastewater after they have been introduced into the stream takes 

place. Generally, dilution is associated with a mixing length that 

is defined as the longitudinal distance required for the effluent 

to get completely mixed with the river flow. For large perennial 

streams, concentration of the contaminants beyond the mixing 

length is not a major environmental concern . However, potential 
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contamination may exist between the points of discharge and 

complete mixing of effluents which may create serious 

environmental hazards to the aquatic biota . It needs to be seen 

that the quality and quantity of effluents are so regulated that 

at every section between the point of release and complete mixing, 

a reasonable wide zone of uncontaminated water is available for 

the movement of aquatic biota after allowing for the dilution of 

effluents. For this, a general guideline is necessary to limit the 

mixing zone to 25% of the cross sectional area or volume of flow 

or to 50% of the width of the stream (Prakash, 1977). 

To understand the transport processes of pollutants and 

their mixing phenomena, it is necessary to study the behavior of 

pollutants when they mix with the receiving waters. Advection and 

dispersion are the main factors govern the transport of pollutants 

in the river. In case of advection, materials move with the fluid, 

hence their response in the downstream depend upon flow 

characteristics only and easy to estimate. While in case of 

dispersion, materials move within the fluid, as a result, 

concentration gradient of pollutants need to exist for their 

movement. Thus, the study of dispersion phenomena is important to 

ascertain the concentration of pollutants before the complete 

mixing takes place. The study of dispersion processes find 

application in regulating pollution sources and evaluating risks 

from accidental releases of pollutants. The other applications of 

studying dispersion are pollution forecasting, prediction of water 

temperature variation downstream of the source of thermal 

discharges, in predicting salt water intrusion into tidal 

estuaries, and for predicting the variation of the reaeration 

rates of rivers. 

The report highlights the phenomena of mixing processes 

supported by the theory govern the process and when and how 
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complete mixing takes place and their estimation procedure. A 

brief review of the works carried out on dispersion has also been 

highlighted. 

2.0 DISPERSION ? 

The scattering of particles or cloud of contaminants by the 

combined effects of shear and transverse diffusion, is called 

dispersion. More elaborately, when sdiuble or fine suspended 

matter is introduced into a flowing stream , it will be 

transported downstream, but at the same time the original contours 

of the zone containing the substance spreads out in every 

direction. The resulting pattern of the average cross-sectional 

concentration resembles a probability distribution along the flow 

axis. It is highly skewed at first, characterized by high 

concentration values within a short zone and tapering tail in the 

upstream direction . With increasing flow times the patterns and 

trends approach to a normal distribution as the substance spreads 

in both the upstream and downstream directions, as shown in Fig. 

1. This process is called longitudinal dispersion. 

Fig. 1 : The Normal Distribution of Cloud 
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of lethal chemical or radioactive materials 

the cause of accident, it is 

information to downstream water 

important 

users about 

time concentration in the river at various 

3.0 NECESSITY OF STUDYING DISPERSION IN STREAMS 

Understanding ability of streams to disperse pollutants is 

essential for effective abatement of pollution in streams. Unless 

the mixing phenomena of pollutants and their concentration 

distribution across the cross-section over the distance and time 

is known, it would not be possible to predict reliably the 

occurrence of pollution to the downstream users. The important 

parameter which characterize this ability of stream is the 

co-efficient of longitudinal dispersion or simply the dispersion 

co-efficient. This co-efficient combines the effect of diffusion ( 

mixing produced by turbulence) and makes it possible to spread the 

pollutants over a long distance along streams. 

There are many applications of dispersion co-efficient. An 

application is pollution forecasting for an accidental  discharge 

Whatever 

immediate 

pollutant 

into river. 

to provide 

the expected 

and locations, which 

can be possible through computer analysis provided dispersion 

co-efficient is known. 

Another application of dispersion co-efficient is the 

prediction of water temperature variation downstream of the source 

of thermal discharges, such as, from a steam or from a nuclear 

power plant uses river water for cooling. 

The third major area in which dispersion co-efficient is 

needed is, in predicting salt water intrusion for tidal estuaries. 

Other applications include predicting the variation of the 

reaeration rates in rivers, point source pollution etc.. 

in short, it can be said that study of dispersion 

co-efficient for river is absolutely important to derive the time 

rate of change of variation of pollutants in the river. 
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4.0 • 'CRITICAL REVIEW 

The details review of studies carried out by different 

researchers have been discussed in section 9.0. A summary of the 

studies is included in this section. 

The first study on dispersion was reported by Taylor (1953) 

who had described the dispersion process by one dimensional 

Fickian diffusion equation. Subsequently in year 1954,Taylor 

related longitudinal dispersion co-efficient in pipes to the shear 

velocity and hydraulic radius (area/wetted perimeter). Using the 

same reasoning, Elder (1959) extended his analysis to infinitely 

wide channels using the logarithmic vertical velocity profile and 

ignored the effect of lateral velocity gradients for one 

dimensional dispersion. Taylor (1954) and Elder (1959) formula for 

dispersion co-efficient can by no means be applied to open uniform 

channels and natural streams since they had been derived for 

different flow conditions. 

After Taylor and Elder, it was actually Fischer 

(1966,1967,1968,1973, 1975) who greatly contributed theoretically 

and practically on phenomena of dispersion process and made it 

clear that effect of the lateral velocity gradient is very 

important and seems to be more important than the vertical 

velocity gradieat. Fischer had first indicated that Fickian 

diffusion equation is the correct description for dispersion 

prediction only after the complete mixing of pollutants. He 

clearly defined the convective period and mixing length. Applying 

the Taylor's and Elder's concept, Fischer derived the algorithm 

for dispersion co-efficient and verified with e*perimental and 

practical data. Differences of dispersion co-efficient in natural 

streams had also been explained by him. 

A number of laboratory studies and field studies had been 

attempted by different researchers namely, Krenkel (1960),Glover 
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(1964), Patterson & Gloyna (1965), Thackston (1966), Hays (1966), 

Crunch (1967), Edward & Krenkel (1967), Sooky (1969), Bansal 

(1970), Gofrey and Frederick (1970), Chatwin (1970,1971), 

McQuivery and Keefer (1974), Day (1974,1975), Jain (1976), Liu 

(1977), Beltaos (1980), and Dorbran (1982) came out with different 

degree of success in predicting dispersion co-efficient. The 

reported values of dimensionless dispersion co-efficient (K/du ) 

observed by different researchers were ranged between 1.75 to 

7500. Most of their analysis were either based on the Taylor's 

concept or on the derivation given by Fischer. But very little 

effort had been done to advance the understanding the dispersion 

process. The studies of McQuivery and Keefer (1974), and Liu 

(1977) were some thing different and they had tried to co-relate 

the other channel parameters with the dispersion co-efficient. 

It was clearly noted by several investigators that the 

assumption regarding the Fickian diffusion definition of the 

dispersion coefficient may not be universally valid and offered 

supplemental corrections for other effects that are neglected or 

poorly represented. Fischer (1966,1967,1968) noted that Fickian 

dispersion is not valid description for initial mixing period. 

Hays et al. (1966) and other investigators had attempted to 

include the corrections for dead zone. Jayawardana and Lui (1983, 

1984) developed a time dependent dispersion model based on the 

lagragian correlation. In addition, a number of different 

conceptual approaches have been proposed to explain the non-Fician 

behavior observed in the study. 

Despite the impressive efforts to discover appropriate 

phenomelogical descriptions to cover a wide range of stream 

conditions or to cover narrow and important classes of conditions, 

there are little real guidance presently available. A number of 

investigators seem to imply that well-defined guidance cannot be 
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reasonably derived by suggesting that the best approach is to 

measure dispersion coefficients in the field. 

This eventually indicate that the dispersion co-efficient 

would be an empirical parameter which could be derived from stream 

hydraulic and geometric characteristics. 

ar .0 THEORY OF DISPERSION 

The phenomenon of dispersion is strongly analogous to the 

process of molecular diffusion. Though, molecular diffusion by 

itself is not of direct consequence in environmental problems, 

except on the microscopic scale of, chemical and biological 

reactions. However, it is necessary to understand the process of 

molecular diffusion and thereafter, it can be seen how it is 

related with the dispersion phenomena of rivers. 

5.1 Diffusion Prc.n.ce 

The diffusion process was, first described by German 

physiologist, Adolph Fick, which is known as Fick's law. Fick's 

law says that the flux of solute mass, i.e., mass of a solute 

crossing a unit area per unit time in a given direction, is 

proportional to the gradient of solute concentration in that 

direction. 

For one dimensional diffusion process, Fick's law can be 

represented mathematically as; 

q = - D 0C/ax   (1) 

where, q = solute mass 

D = co-efficient of proportionality (length2  time) 
or, molecular diffusion. 

aC/ex = solute concentration gradient in the 
direction of flow. 

Considering, a one dimensional transport process in which 
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perpendicular 
to x -axis. 

Unit area 

Oq , 
q 4- 7,7-  4,7( 

mass is being transferred in the x direction as illustrated in 

Fig. 2. 

Fig. 2 : Control Volume 

Using mass balance theory for the control volume, one can 

have, i.e.,( Molecules in - Molecules out) of the volume defined 

by the boundary source = time rate of change of mass in the 

volume, i.e., 

dc Oq 

ot aX 
(2) 

For molecular diffusion processes we also have Fick's law 

Equ. (1) which can be substituted in equation (2) to give, 

OC 0
2
C 

D ---2 
Ot dx 

Equation (3) is known as diffusion equation and describe 

how mass is transferred by Fickian diffusion processes. In full 

cartesian coordinate system, the equation can be written as; 

2 2 , 2 
dC dC ac d 
dt 

= D ( 
d
--2 + d--2 + 
  (4) 

.x y ."  

For the most fundamental solution to equation (3), consider 

an initial slug of mass M introduced at time zero at x origin, and 

the slug spreading by diffusion only. Since the process is linear, 

C is proportional to the mass introduced and can be a function of 

M,x,t and D. Applying the dimensional analysis with appropriate 

(3) 
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dimensions of the dependent variables, we have, 

C - 1:2 f(  12 
(4 D t) 

)  (5) (41 D t) 

Transforming equation (3) into an ordinary differential 

equation by defining ri x/(4 D t) and substituting equation 

(5) into equation (3) to obtain; 

df 
 + 2 f = 0, which has the solution, f = Qe ...(6) 

an 

The total mass contained in the system can be found by 

integrating the concentration along the whole x- axis, i.e, 

C dx - M  (7) 

Substituting, equation (5) and (6) in equation (7),and 

performing the integration with C = 1 for all times; 

2 

C (x,t) 
[(411 D n1;2 ] ex')  ( 4 D t)    (9) 

Equation (9) is the required fundamental solution of the 

diffusion equation (3). 

5.2 combine"?' e"ffe”..t. of "AvPrtirm and Diffusion 

Equation (3) and (4) represent the diffusion equation for 

the fluid in stationary condition and that the mass transport is 

by diffusion only. Suppose the fluid itself is moving with a mean 

velocity u. Then transport of material will also take place by the 

motion of the fluid, which is called advection, besides the 

diffusion processes. To represent and analyze the process of 

advection and diffusion of materials transported by the fluid, one 

must define the variables affecting the concentration and 

transportation. Let us assume, a mass of pollutant (QC) is 

transported through an area (A) in the yz plane with a mean 
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veloeity u. From the principle of conservation of mass, the amount 

of material passing any point will equal the amount flowing past 

by normal displacement Q.C, minus the amount of material exchanged 

as a result of diffusion of the material which is D.A (C/dx), 

(dC/dx) is the change in concentration with distance. The total 

mass transfer across the section considered is (Q.0 - D.A.dC/ax). 

The increase in material contained in an element of volume A.dx 

during time dt must equal the quantity of material entering less 

that leaving, and is equal to A.dx.dt.dc/dt. The amount of 

material flowing into the element will be Q.C. dt - D.A.dC/dx . 

The amount of material flowing out of the element is 

Q.C.dt + Q.(dC/ex) dt.dx 
a 
Ox 

(C + 
do 

dx) dt 
dx 

2 
dc d c 

= Q.C.dt + Q.—
(2s 

.dt.dx - D. A.dt ( + 2. dx) 
dx dx dx 

The amount of material passing any point; 

dc dc 
at 

A dx.dt = Q.C.dt - D A. 
tls 

dt - IQ.C.dt + Q.  dt.dx A -x a -x 

2 
C dc d  

ll - D. A.dt 
dx A 4-  

dx 

from which, 

2 
dc dc d c 

+ u - D. 
dt Ox 

1 

Advective Disffusive 
term term 

Equation (10) is the fundamental one dimensional advection 

diffusion (A-D) equation for the fluid transporting solute. For 

full cartesian coordinates, the equation (10) can 

2 

be written as; 

2 
dc dc OC de -  D [ 

C
2 

C d 
+v + w 

at u ax ay 0z 
---2 + 

LOX dy
2 + 

dx 

12 
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5.3 Basic Process of Dispersion 

Referring definition of dispersion which indicates that 

dispersion takes place by the combined effects of shear and 

transverse diffusion. It is, therefore,necessary to understand the 

shear effect on the molecular diffusion. Taylor in his work 

published in 1953 for dispersion in laminar shear flow described 

that if two molecules are carried in the flow one at the center 

and one near the wall, the rate of separation caused by the 

difference in advective velocity will exceed that caused by 

molecular motion. The difference in rate of separation beyond the 

advective velocity had been found to be because of their thermal 

molecular motion which is called molecular diffusion. 

It was also described that the velocity of any single 

molecule is equal that of the stream line on which it is located; 

a function of the cross sectional position. Because of the 

molecular diffusion each molecule moves at random back and forth 

across the, cross section and after some long time "forgetting 

time" its location is independent of the location at which it 

started. Therefore, its velocity is independent of its initial 

velocity. Thus, the motion of a single molecule rely on the sum of 

the series of independent steps of random length. If we consider 

the transformed co-ordinate system moving at the mean velocity the 

random steps are, with respect to the moving co-ordinate system, 

equally likely to be backward as forward, since tLe mean motion is 

zero. Since, the step length and time increment are different from 

those of molecular diffusion, it is better to find a different 

value Of diffusion co-efficient which is also known as dispersion 

co-efficient for shear flow description rather than step length 

and time increment. 

To understand the dispersion process in the shear flow, let 

us begin with its behavior in laminar flow and then see how it 

changes in the turbulent flow and finally in streams. 

13 



5.3.1 Dispersion in Laminar Shear Flow 

Let us consider, the two dimensional flow guided between 

parallel walls by a distance d, so that all flow lines are 

parallel to the walls. The velocity variation between the walls is 

given by u(y) ( as illustrated in Fig. 3), and the mean velocity 

is u. 

Fig. 3 : Velocity Variation 

The mean velocity can be found out by integration; 

(10) 

and the deviation of the velocity from the cross-sectional mean is 

defined as; u'(y) = u(y) -u- . 

Similarly, the mean concentration at any cross section of 

flow for the solute concentration C (x,y) would be; 

1 
-6 

, 
= C dy 

0 

deviation frox,  the mean is C'(y) = C(y) - C. 
Since the flow in the x direction , the diffusion equation 

(10) can be written as,; 
3 - d

2 

JT  (c + c') + (u - + u') (
-6 

+ c') D (6 + C')+ -44 
OX dx dy 

(12) 
Equation (12) can be simplified by transformation to a coordinate 
system whose origin moves at the mean flow velocity (as 
illustrated in Fig. 4). 

Let, = x - u.- t , T = t 
u'(y) 

Fig. 4 : Velocity Variation in 
transformed coordinate. 
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by 'chain rule' of calculus, 

 

a aT a 
. 7  + . -- 74 
 ox Or dZf 

 

- 
dt 

OT 

  

    

 

et aT 

Replacing the above value in Eq. (12) to give 

0 - (c +c') + u'- 
2 a2  

C') = D ,2 -6 + C') + =dy
1...(13) 

The transformation to the 2, r system allows to view the 

flow as an observer moving at the mean velocity. In the moving 

co-ordinate system one will have only observeable velocity u'. 

If we consider the Taylor's observation that the rate of 

spreading along the flow direction caused by the difference in 

advective velocity should greatly exceed that due to molecular 

diffusion the longitudinal diffusion term can be neglected in 

that case , the equation (13) then reduces to : 

- a dc 
C + W+ u' 

Or Or 
dc'  

u a,  ( 14 ) 

Solution of Eq.(14) in general is very diificult to find, 

however, Taylor obtained the solution of the equation by 

discarding first two and fourth terms . This is only possible if 

the cross sectional deviation C' is everywhere on the cross-

section much less than the mean value C , the term aCiar and u' 

dc'/Ir are much smaller than u'0-6/&.:  and may be neglected. For 

steady state condition, the variation of concentration is also 

very small, therefore, dC'/.07 is possible to ignore. After 

discarding all these terms, the terms left with only advective and 

diffusion term ( as given below) and appeared that they are 

balanced. This is what Taylor derived and find out the following 

differential equation; 
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with 
aJC 
 - 0 , at y - 0, h  (15) y 

 

The Eq. (15) has the solution ; 

1  
C'(y) = I u' dy dy + C'(0)  (16) D 

0 0 
For the mass transport in the stream wise direction relative 

to the moving coordinate axis is given by; 

d y y 
1  ao  

H = fu'C'dy - D I u' dy dy dy  (17) ax 0 0 0 0 

The extra term I u'[C'(0)} dy = 0, because ru'dy = 0 
0 0 

[as there is no deviation of velocity from mean cross sectional 
velocity ) 

The equation (17) indicates that the total mass transport 

in the stream wise direction is proportional to the concentration 

gradient in the stream wise direction. Same concept is also 

applicable for molecular diffusion. The Eq. (17) reflects the 

integrated sense for diffusion in the flow direction due to the 

whole field of flow. 

The bulk transport coefficient, Or "dispersion" 

coefficient, in analogy to the molecular diffusion coefficient 

could be described as; 

= - K d 
aC  
A 

 

(18) 

 

The dispersion coefficient K expresses the diffusivity 

property of the velocity distribution and is generally known as 

the "longitudinal dispersion coefficient". Equation (17) and (18) 

give the relation of dispersion coefficient as follows; 

- 1 d 
y y 

dD fu' 
S u' dy dy dy  (19) 

0 0 0 

K plays the same role for the whole cross section as does 
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D, the molecular diffusion coefficient, on a microscopic scale. 

Thus the diffusion equation for cross sectional averages with 

moving coordinate system could be written as; 

a2-a 
- K 

(.1,?
2 

which in fixed co-ordinate system indicate; 

2— 
— C 

+ u - K —2 
t dx wx 

Equation (21) is known as the "one dimensional dispersion 

equation" and it is used widely in the analysis of dispersion in 

environmental problems, like rivers and estuaries. Which for an 

instantaneous source extending throughout the cross section at 

x=0, has the solution, 

— 2 
-  exp 

(x  - u t)  
( 4 5 A K t) 4 K t j  (22)  

Equation (22) is the expression for Gaussian Distribution. 

If the mass is unity, it is known as the normal distribution , as 

shown in Fig. 1. 

5.3.2 DiSnerSiOn in Turbulent Shear Flow 

Because of the difference of velocity profile in the 

turbulent flow than the laminar flow in the same cross section 

the cross sectional turbulent mixing co-efficient will play the 

role of molecular diffusion as in the laminar flow i.e, :e(y), 

cross sectional mixing coefficient or "eddy co-efficient", will be 

in the place of D, molecular diffusion coefficient. The only 

significant difference in mathematics is that the cross sectional 

mixing coefficient Z(y) which is a function of cross sectional 

position y. Therefore, the diffusion equation as described in 

equation (15) can be written for unidirectional turbulent flow 

Or 
 

 

17 



(b) (c) 

41/
e-Advected 

line source 
Line 
source 

between parallel plates as given below; 

Oc' 
u  =€(Y)  4 tiy ay 

and, the corresponding dispersion coefficient; 

d y Y 
- 1 1 

K d fu' f f u' dy dy dy (24) 
0 0 - 0 

5.3.3 Physical Meaning of Balancing Arivc.ctinn arid Dispersion 

(as obtained in equation (15)) 

Equation (15) indicates that the advective and diffusion 

term balance at one place, when this actually occur. Let us 

consider that at some initial time t=0 a line source of tracer is 

depicted in the flow as shown in Fig. 5 (a) 

(23) 

-0"7-7.7 /ft'snell" 
(a) 

Fig. 5 : Longitudinal Distribution by Advection of Line Source. 

The actual initial distribution of the tracer could easily 

visualize as a line source. The initial line source is advected 

and distorted by the velocity profile and the distorted line 

source begins to diffuse across the cross section, as shown in 

Fig. 5 (b). During this period advection and diffusion, are by no 

means in balance. The cross sectional average concentration 

distribution is highly skewed during this period (Fig. 5 (c)). 

If we wait a much longer time than it could be observed 

that cross sectional average concentration (-6) varies slowly along 

the channel, and LIE/ex is approximately constant over a long 

period of time. C' becomes small because cross sectional diffusion 

evens out cross sectional concentration gradients. This is the 
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position where advective and diffusion balance and described by 

the Taylor as shown in equation (15). Once the balance is 

established further spreading follows by the longitudinal 

dispersion as described by the equation (22), whose solution after 

sufficient long time is normally distributed cloud moving at the 
1 2. 

mean speed u and continuing to spread according to —(42 /dt) = K. 2 

6.0 Phenomena of Mixing of Pollutants in River 

Consider a stream of effluent discharged (as shown in Fig.6 

(a)). The mixing and dispersion processes what happens in the 

river can be divided into three zones. In the first stage near 

the discharge - as indicated by mark A ), the mixing is 

accomplished by the action of buoyant jets, a phenomenon governed 

by the momentum and buoyancy of the discharge rate of dilution. As 

the waste is diluted, the effects of the initial momentum and 

buoyancy are also diluted, leading to the second stage in which 

the waste is mixed across the receiving channel primarily by 

turbulence in the receiving stream. (point A). Finally, when the 

effluent is fully mixed (point C) across the stream the process of 

longitudinal shear flow dispersion will tend to erase any 

longitudinal concentration variations. This last stage is, like 

the zone where Taylor's analysis of longitudinal dispersion in 

pipes is applicable, and one can find that there is an equivalent 

analysis for longitudinal dispersion in rives. Sometimes, the 

first stage may extend over the entire channel, effectively 

eliminating the second stage. 

*IL 

Fig 6 : Three Stages in the mixing of an Effluent into a River. 
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Lateral and vertical mixing are also predominant in the 

turbulent mixing. For one dimensional stream water quality 

modelling the calibration errors in the longitudinal dispersion 

co-efficients arise because lateral and vertical mixing effects 

lumped together with longitudinal mixing. This can be illustrated 

by the Figure 7 (a) and (b). 
po-st.saltRAt. MixtNISZOle 
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Fig. 7 (a) : Aerial View of the River 
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Fig. 7 (b) : Side View of the River 

Fig 7 : Zone of lateral and Vertical mixing for discharges into 
a Stream. 

6.1 Ye:tie-al Mixing 

Vertical mixing is mainly because of the variation of 

vertical velocity profile and turbulent causes by bottom shear 

stress. The length requires to develop the complete vertical 

mixing depends on the width ,depth of flow and the density of 
3 

flowing water. In a study it has been shown that if B/W u* (B = 

(Ap/p)g.Q), where, .•::‘• = density of the receiving water, .1p= 

difference of density between receiving water and effluent waters, 

g = acceleration due to gravity, Q = effluent discharge, W = width 

.", • % • • , . 

• 
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of the flow in the channel, u*
= shear velocity) is less than one, 

vertical mixing will be independent of density effects. Or in 
3 

otherward, one can say if B/W u*  is very large, an effluent will 

spread rapidly across the channel in the form of a density driven 

current and will likely be to form a layer at the surface. Also, 

if B/W u*  is large, the vertical mixing of the surface or bottom 

layer will be slow. The coefficient of vertical mixing can be 

derived from the log-arithmetic law velocity profile as derived by 

Elder (1959) as given below; 

4 = X d u*( y/d) - (yid)]  (25) 
V 

[X = von Karman constant, y = vertical co-ordinate of the flow] 

Jobson and Sayre (1970) observed from their experimental 

study of the vertical mixing of dye in a flume that S can be 

represented as; 

a = 0.067 d u*  , for X = 0.4  (26) 

6.2 Transverse Mixing or Lateral Mixing 

Transverse mixing is caused by the bottom generated by the 

turbulence and it is the most dominated factor in dispersion . As 

there is no transverse velocity profile in an infinitely wide 

channel it is not possible to establish a transverse analogy to 

determine the transverse mixing coefficient. As a result, lot of 

experimental studies were conducted to co-relate the transverse 

coefficient with the channel hydraulic properties. Okoye (1970) 

gave a plot of ,/du*  versus width to depth ratio (W/d) and found 

the most scattered values. In an another study ( Lau and 

Krishnappan, (1977)) it was possible to minimize the scatter of 

large data points by plotting f./Wu*  versus W/d. However, for 

practical purposes these parameters are difficult to determine. 

Fischer (1977) developed the transverse mixing coefficient for a 

straight rectangular channel. In almost all cases the 
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nondimensional transverse mixing coefficient, /du has been in 

the range of 0.1 - 0.2. For practical purposes in straight 

rectangular channels the following expression had been suggested 

which can be applied within an error bound of approximately 50%. 

I.= 0.15 d u  
 (27) 

6.3 Longitudinal Mixinc: 

Turbulence causes longitudinal mixing at about the same 

rate as transverse mixing because there is an equal lack of 

boundaries to inhibit motion. However, in any case, longitudinal 

mixing by turbulent eddies is unimportant because the shear flow 

dispersion coefficient caused by the velocity gradient is much 

higher than the mixing coefficients caused by the turbulence one. 

Downstream of the mixing zone, the longitudinal mixing is dominant 

because nonuniform lateral and vertical velocity profiles cause 

water in the center of the stream away from the bottom to move 

faster and overtake slower moving water downstream. The same 

process occurs in the mixing zone but, in addition, mixing due to 

vertical and lateral gradients are also superimposed. After a 

tracer has become adequately mixed across the cross section, the 

final stage in the mixing process is the reduction of longitudinal 

gradients by longitudinal dispersion. 

5.4 Turbulent Mixing in Rivers 

To understand the turbulent mixing, let us consider, mixing 

in the idealized case of an infinitely wide channel of constant 

depth, and then see how the results can be applied to compute 

rates of mixing across the real stream. 

Turbulent mixing can be described by the diffusion equation 

with a turbulent mixing coefficient in place of the molecular 

diffusion coefficient and such a coefficient in turbulent 

diffusion can be applied only after the diffusion particles have 
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been spread and covered a distance larger than the Lagrangian 

time scale a measure of how far a particle travels before it 

forgets its initial velocity). The turbulent mixing coefficient is 

given by ; 

=111 [ <LT
2
> ]

1/2 
 (28) 

where, T= Lagrangian time scale 

<0> = intensity of turbulence 

It has been shown (Laufer ,1950) that turbulence intensity 

in any wall shear flow is proportional to the shear stress on the 

wall. The flow of water in a straight channel of constant depth 

and larger width meets all of the requirements for the use of 

turbulent mixing co-efficient. If the side walls are very far 

apart, the width of the flow plays no role, and, in such cases, 

depth is the important length scale. A cloud of tracer deposited 

in such a flow will grow until it fills the depth, and then will 

continue to grow in the directions of the length and breadth. The 

Lagrangian length scale will be some multiple or fraction of the 

depth. Experiments showed that it is approximately equal to the 

depth. Therefore, once the cloud extends over several depths, the 

requirements for the use of a constant turbulent mixing 

coefficient will be fulfilled. Thus, for the idealized flow, 

turbulent mixing co-efficient must be proportional to the product 

of depth and shear velocity. This indicates that there will be one 

coefficient for vertical mixing and another for transverse and 

longitudinal mixing. The presence of horizontal boundaries at 

surface and bottom means that the turbulence will not be 

isotropic. 

Natural channels differ from uniform rectangular ones 

basically for three important aspects: i) the depth may vary 

irregularly, ii) the channel is likely to curve, and iii) large 
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side wall irregularities. None of these factors have much 

influence on the rate of vertical mixing, since the vertical 

motion is limited by the local depth. On the other hand, the rate 

of transverse mixing is strongly affected by the channel 

irregularities because they are capable of generating a wide 

variety of transverse motions. Bends and side wall irregularities 

are common to many channels and have major effect on transverse 

mixing. The bigger the irregularity the faster the transverse 

mixing. 

The channel curvature has also effect on transverse mixing. 

Higher value of Z./du*  had been observed in sharply curveying 

channels. When a flow rounds a bend the centrifugal forces induce 

a flow towards the outside bank at the surface, and compensates 

reverse flow near the bottom. To predict the transverse dispersion 

coefficient based on the shear flow, Fischer (1969) described that 

the result can be written as 

 Li 1 EA 1  
du* u* H.R.) 
R = the radius of the'curve. 
In case of straight, uniform channel the values of  

were reported in the range of 0.1 - 0.2 with an average of 0.15 ( 

for practical purposes). Curves and sidewalls irregularities 

increase the coefficient in natural streams to 0.4. If the stream 

is slowly meandering and sidewall irregularities are moderate, 

Sidu* 
values varies between 0.4- 0.8. For practical purposes, one 

can use the following formula for all cases; 

St/du*  = 0.6 t 50 % 
(30) 

6.5 Mixing Time and Mixing Length 

Mixing time and mixing length are the two important factors 

related to the dispersion phenomenon in natural stream. The 

diffusion equation has the limit to apply in places where tracer 

follow the Gaussain distribution. 

(29) 
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As mentioned in the foregoing discussion, the spreading of 

marked fluid particles occur by the combined action of a 

nonuniform velocity distribution and diffusion. Downstream of the 

injection point, the cross sectional distribution of particle 

concentration will eventually become nearly uniform and 

independent of the geometrical configuration of the source. The 

time required from injection to become pollutants fully mixed 

the point where cross sectional distribution become uniform, 

is called MiXing tiMe. Or in otherwords, the measure of the length 

of the convective period that is initial period in which 

longitudinal dispersion is not properly described by the 

one-dimensional diffusion equation. The distance corresponding to 

the this time scale from the source is called mixing length. 

Determination of Mixing Time 

The time scale can be derived by two ways; a) by expressing 

the time required for cross sectional mixing which is called 

Eulerian Time Scale, and b) by evaluating the Lagrangian integral 

time scale. 

For the cross sectional mixing i.e Eulerian time scale, the 

time scale is proportional to the square of the length divided by 

the mixing coefficient. Mathematically, 

T = 1
2

/t7 

To describe the dispersion by diffusion equation, it is 

necessary for the motion of each tracer particle not to correlate 

with its initial velocity. The time requires for this to occur is 

measured by Lagrangian time scale,(a measure of how far a particle 

travels before it forgets its initial velocity) defined as; 

Dre 
T = I y(7) cit   (32) 

0 

(31) 
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<U(t).U(t+T)>  
in which, y(T) _ 

2 
<U> 

Y(7) = lagrangian auto correlation function. 

The ensemble average <U(t).U(t-Er)> means the average over a 

large number of trials of the product of the velocity of a single 

particle, - is any value of time which is different than t. If a 

statistically large number of tracer particles are distributed 

uniformly over a cross section at !: = 0 and at t = 0 . Taylor has 

shown that at any later time the statistical distribution of 

particles is given by; 

<X (t)> = 2 <U
2
> P (t-T) w(T) dT  (33) 
0 

in which <X> is equivalent of the variance of the tracer 

particle cloud, c? <X>, defined by; 
PG 

2 
 

I C <X > dX 

Ors f 
C .dx - 

If the one dimensional dispersion equation is a correct 

description of the dispersion process, the co-efficient may be 

evaluated as; 

K = — d z 2 
 '  

dt 
<X >  (35) 2 •  

Differentiating equation (33), the dispersion coefficient yields, 

K = <U
2
> tJ (t) d7 
0 

For open channel flow, the mean turbulence level is 

sufficiently small compared to the deviations within the cross 

section of time averaged velocity so that 
2 -2 

<U > = U 

Assuming, t OC , equation (36) yields 

K = 
; 2

.T   (37) 

From the above derivation, the time scale for both the 

(36) 
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condition can easily be determined for any flow condition. 

6.5.1.1 Two Dimensional Flow 

i)F”lerin Tim... Scale : For the Eulerian scale the 

characteristics length is the depth of flow (d). The average value 

of the mixing co-efficient is vertical mixing co-efficient which 

is calculated from the distribution of shear and Reynolds analogy. 

For the two dimensional flow with logarithmic velocity profile as 

used by the Elder, the vertical mixing co-efficient is given by; 

=-j- . du, (38) 

= von Kalman constant. 

Putting the value in equation (31), the time scale for 

cross sectional mixing or Eulerian time scale is given by; 
6 

T =   (39) 
u* 

ii) Lagrangian Time Scale : Average velocity distribution 

in case of logarithmic law is 

13' 2 = ( * 

Lagrangian time scale from equation (37) 

T1 2 
  (40) 

Elder (1959) described the dispersion co-efficient using 

the von Karman constant as; 
0.404 

du,   (41) 

Using the value of K in equation (40), Lagrangian time scale is 

given by ; 
0.404 

T - .du 
k 

 

(42) 

  

Comparing the Eulerian and Lagrangian time scales , i.e., 

equation (39) and (42), one can have; 

T = 14.8 T   (43) 

which indicates that Eulerian time scale is 14.8 times more 

than the Lagrangian time scale. 
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6.5.1. Frtr. Natural ctre.,.vc 

For natural streams, transverse mixing is predominant, thus 

transverse mixing co-efficient governs the Eulerian time scale. 

The important length, in that case, is the distance over which 

mixing takes place to establish a uniform distribution ; for 

symmetric channels length scale is half width. Since most channels 

are not symmetric, the characteristic length, l, which is defined 

as the distance between the thread of maximum velocity and the 

furthest distant point within the cross section, would be 

approximately the distance from the point of maximum surface 

velocity to the most distant bank. The characteristic mixing 

co-efficient will,therefore, be the transverse mixing 

co-efficient. The local depth could be replaced by the hydraulic 

radius (r). 

The Eulerian time scale in that case would be, 

,7. 2 
1
1 

1 
T - - f   (44) 

E .: 0.23 r u 
t * 

where, l = w/2 M w = width of the channel) t,  

:f
t
= 0.23 ru ( turbulent mixing 

* 
obtained by Elder 

of 1 cm deep down 

The corresponding Lagrangian time scale from equation (43) 

T = T / 14.8 = 0.30 
L E u*  

The dispersion co-efficient corresponding to this time 

scale is given by ( putting the value in equation (37)). 

2 
1 

K = 0.30 
; z 

u*  

Dorban (1982) postulated that in natural streams large and 

small errors can occur in calculation of characteristic length due 
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co-efficient as 

(1959) for a flow 

a water table.) 

2 
1
f   (45) 
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to the deviation of maximum surface velocity, mainly for the 

nonuniform and wandering channel. In order to obtain more faithful 

value of the characteristic length for a reach of a turbulent 

stream, he suggested that the value of deviation from the axis of 

the stream be bound taking into account the sign which can either 

be plus (+) or minus (-). 

The average deviation of the mainstream from the axis of 

the stream allows one to obtain the new characteristics length for 

the given reach as follows : 

1
a 
=1

d 
+ 1

avg. 
 (47) 

where, 1
a 
= new characteristics length. 

1
d 
= avg. deviation of the mainstream from the 

axis of the stream ( the point of maximum 
surface velocity) 

1 = avg. value of the distance of the stream 
avg 

axis from the bank ( i.e.,half width of the 

stream). 

6.5.3 Determination of Mixing Length 

The mixing length is the channel length required for the 

tracer to completely mix through out the cross section. The 

reasonable criterion for the distance require for complete mixing 

is given by; 
- 2 

L = a u 1
f 
/i

t 
 (48) 

where, a = dimensionless time scale = t/T 

Fischer (1968) suggested that for reasonably practical 

criterion for the end of the convective period, a = 0.4 , while 

chatwin (1972) suggested that e.1: 2 1.0 is required for the 

concentration distribution to approach Gaussain. 

The characteristics lengths (1,) an suggested are: 

For center line discharge: 

1
f 
= 0.5 W ( both by Fischer & Chatwin) 

29 



For side injection of tracer : 

1. = twice the center line discharge = W ( by Fischer) 

= 1.5 times of the center line discharge = 0.75 W 

(by Chatwin). 

W = width of the channel 

The mixing length for both the conditions are; 
2 

L = 0.4 u l /e. ( Fischer, 1968 )  (49) 

— 2 
L
m 
 = 1.0 u 1

f
/

t 
( Chatwin, 1970 )  (50) 

where, e,= 0.23 d u*. 

7.0 Longitudinal Dispersion in Rivers 

After a tracer has adequately been mixed across the cross 

section, i.e., the stage of complete mixing, the final stage in 

the mixing process is the reduction of longitudinal gradients by 

longitudinal dispersion. If an effluent is discharged at a 

constant rate into a river whose discharge is also constant, there 

is no need to be concerned about longitudinal dispersion. 

There are, however, practical cases where longitudinal 

dispersion is important. For the accidental spill of a quantity of 

pollutant, for example, release of radioactive material from a 

river side nuclear power station, daily cyclic variation of output 

from a sewage treatment plant; determination of longitudinal 

dispersion in such cases are important. The governing equation 

that allows to determine the longitudinal dispersion co-efficient 

(8) in a natural stream is analogous to the diffusion equation as 

derived in section 3, equation (21). 

a2—  c 
 +u---K 

Ox 
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The dispersion co-efficient for unidirectional turbulent 

flow between parallel plates is given in equation (24). The 

general form for the longitudinal dispersion co-efficient can be 

derived by introducing the dimensionless quantities ; y'= y/d, 

= u'/(u' ) and z'= z/E , where,y = position variable of depth, E 
-  

= the cross sectional average of S. (
2

u' )
12 

 = the intensity of the 

velocity deviation ( it is not the turbulent intensity but la 

measure of how much the turbulent averaged velocity deviates 

throughout the cross section from its cross sectional mean). 

Substituting these dimensionless term in equation (23), we have; 

d y'd y'd 
1 - 

K = - -- I.  u" (u,21/2 1 --
1 

1 d3u" (-11 12)
1 
 dy'.dy'sdy' 

d Z'E 
0 0 0 
2 -,2 1 YI 1 

E 
d u  

f u" f " dy'.dy'.dY'   (51) 

0 0 0 

d
271

.'
2 

 (52) 

I y'
I .

5?-' 

where, I = - u" -7, f u" dy'.dy'.dy' 
0 0 0 

The longitudinal dispersion co-efficient described in 

equation (24) and its general form as given in eq. (51,52) for 

unidirectional turbulent flow, would show wide variation in 

results in natural stream because of the transverse variation of 

velocity across the stream. The above mentioned equations were 

derived from the vertical velocity variation along the cross 

section. However,in natural stream transverse mixing co-efficient 

is more important in producing longitudinal dispersion than 

vertical mixing co-efficient. The transverse mixing co-efficient 

is ten times higher than vertical mixing co-efficient [comparing 

eq. (26) and eq. (27)]. This indicates that transverse mixing time 

is 90 times the vertical mixing time [comparing the Eulerian time 

scale,T = 1
2
/z 3. Thus, for computation of dispersion 

co-efficient , transverse mixing co-efficient (st) is predominant. 
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0 
f u (y,z) dz 

d(y) 
- d(y) 

-  
u  z  (y) = 

1 (53) 

The effect of vertical mixing can be taken in terms of velocity 

variation along the depth. 

As such, there is no transverse velocity profile, as a 

result, it is not possible to establish a transverse analogy. 

However, Fischer (1967) has derived a transverse profile by 

plotting the cross stream variation of the depth averaged 

velocity, and described mathematically as given below; 

-s 
where, u (y) = shear flow velocity profile 

the width of the stream W. 

extending over 

u(z) = logarithmic_ velocity profile as used by 
Elder [ u = u 1-(u/x) 1 + ln (z+d)/d11 

along the depth of flow d. 

In real stream, transverse velocity profile is more 

important than the vertical velocity profile in determination of 

longitudinal dispersion. This can be made more clear, if we look 

into the eq. (52), where dispersion co-efficient is proportional 

to square of the distance over which the shear flow profile 

extends. For natural stream, characteristic length is the function 

of width of stream. Therefore, more the ratio of width to depth, 

the more dominance of transverse velocity profile would be 

observed. For example, for width to depth ratio in the range of 

ten or greater, which is usually found in the case of river, the 

transverse profile of velocity would be 100 or more times 

important in producing longitudinal dispersion than the vertical 

profile. 

Thus, a quantitative estimate of the dispersion 

co-efficient in real stream can be obtained neglecting the 

vertical profile entirely and applying Taylor's analysis to the 
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transverse velocity profile. Let us consider, a slice of thickness 

dx moving at the mean flow velocity is, as illustrated in Fig. 8. 

Let, transverse velocity variation u'(y) = rAy) - u. 

Fig. 13 : Illustration of the balance of Advection and Diffusion 

Taylor observed that the longitudinal dispersion starts 

from the point where the balance of advect ion and diffusion occur, 

in this case, a balance of transverse diffusive mass transport 

through the vertical face in the xz plane at left edge of the 

slice versus the net advective mass transport through the vertical 

faces in the yz plane is occurred. Using the Taylor's findings as 

derived in eq. (15) and subsequently derived in eq. (23) for 

turbulent shear flow, the equivalent of the first integral of eq. 

(23) is given by; 

f u'(y) d(y) 
aZ

dy -   (54) 
w X -Y 

0 

Implicit in this formulation is C'(y) and u'(y) and assumed 

to vary only across the stream. Vertical variations are neglected 

because of their small effect. 

Integrating eq. (54) to find C'(y); 

Cs(y) = 
(r.. 1 

dx .d(y) 
0 

u'(y) d(y) dy. dy. +C'(0)..(55) 

0 

For the mass transport in the stream wise direction, 
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M = I U'(y). d(y). C'(y) dy 
0 

W 1 = fu'(y) d(y) f   f u'(y) d(y) dy.dy.dy  (56) 
ax  0 0 .e7 t d(Y)  0 

The extra constant term, C'(0) = 0 

As the bulk transport co-efficient or dispersion co-

efficient, is analogous to the molecular diffusion co-efficient as 

defined in eq. (18) , i.e., 

M = - A K (d-e/dx) , where, A = cross sectional area of the 
slice. 

K = - 
1 1 
fu' d t   I u' d dy.dy.dy  (57) A 
0 0 -d t 0 

Equation (57) is the expression for determination of 

dispersion co-efficient in natural stream developed by the Fischer 

(1967). It is similar to the equation (24) and differs only in the 

inclusion of variable depth across the stream width. The lateral 

turbulent mixing co-efficient need to be determined by 

experiment. However, Fischer observed that Elder's (1959) 

experimental result for L = 0.23 d u in a flow Of 1 cm deep down 

a water table could be a well match for using in eq. (57). 

The eq. (57) can be used in a channel of larger width to 

depth ratio (preferably 6 or greater) and in which there are 

significant lateral variations in downstream velocity. 

7.1 Variability of Dispersion Co-efficient in Real Streams 

Equation (57) describes the dispersion co-efficient for 

uniform flows. However, real streams may have bends, sandbars, 

side pockets, pools, bridge piers etc.. Every irregularity_ 

contributes to dispersion which may be trailing or additive. To 

apply the Taylor's analysis, the limitation is , it can only be 
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applied when advective term and diffusive term is balanced, which 

is called the point of complete mixing. 

The irregularities in real streams increase the length of 

the initial period and usually lead to the production of a long 

"tail" on the observed concentration distributions. One way to 

treat this tail is to ignore it because this may not contain much 

dye. If tail is not ignored the variance increases unreasonably. 

There were number of experiments to compute the effect of long 

tail on longitudinal dispersion co-efficient. However, no specific 

conclusions were arrived. It has been postulated by several 

researchers [ Valentine and Wood, (1975), Valentine, (1978), Day 

(1975)1 that "dead zones" which create by the side pockets , 

increase the length of initial period and the magnitude of 

longitudinal dispersion co-efficient. 

Bends have also effect on dispersion co-efficient. Bends 

increase rate of transverse mixing, and thereby to some extent 

reduce the dispersion co-efficient. This is because of the 

tendency to induce transverse velocity profile. At any natural 

bend the high velocities will be concentrated toward the outside 

bank and low velocities toward inside one. Thus in a meandering 

stream the velocity differences across the stream are accentuated 

and the dispersion co-efficient is likely to be much greater than 

in a stream which is straightened. 

Fischer (1969) quantified that for bends of sufficiently 

long, the steady- state concentration profile will establish 

depending on the ratio of the cross sectional diffusion time to 

the time required for flow to round the bend, i.e., the ratio, 

) = (W2/,it )/ (u/L), where, L = length of the curve. 

These eventually tell upon that it is very difficult to 

predict the dispersion co-efficient with high accuracy in real 

streams. 
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8.0 Dispersion of Non-conservative SubstanLes 

Mixing theory is equally applicable for non-conservative 

substances such as Bio-chemical Oxygen Demand in a sewage effluent 

or in a power station effluents. Since many of the non-

conservative substances undergo first-order decay, it is 

worthwhile to see the effluent on the decay term in analysis of 

dispersion. Let us consider, substances whose rate of decay in a 

water body is given by; 

dt - 
kC [k = first order decay rate] 

and suppose that M units of mass per unit time of this 

substances are discharged into a river whose discharge is Q. 

Downstream of the initial mixing zone, i.e., the point where the 

advective and diffusion term balance, the diffusion equation 

becomes; 
;I dc d C 

A 
K kC (58) —2§;-

1
2 

wx 

with boundary condition; C 0 as x . The 

solution of the above equation is; 

C = C exp - (kx/u) [(2/Ix) (4+ 1)
i

- 1)]} 
le 2 

= C exp (- (ux/2K) + 1) - 1)] 

dC 

(59) 

where, ex = 
4K k 

 

constant of integration. 
—2'  

If = 0 , the dispersion co-efficient is eliminated. If 

tends to zero the quantity in the square bracket in equation (59) 

tends to one and the solution is simple first order decay, i.e., C 

=C 
0 

The constant of integration can be determined from the 

condition at which mass entering the stream must equal the rate at 

which it is being removed by decay. If the source is located at x 

= 0 and the initial mixing distance has length Ien,
, we can write 

for the reach where the one dimensional equation applies,as given 

below; 
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fkCAdx =M(L ) 
0 

M(L ) is the mass transported through cross section at x = 

L . Substitution of C from eq. (59) into eq. (60) permits 
fli 

computation of C for given M(L ). However, M(L ) undergoes some 
0 Tn In 

decay occurs during the initial mixing process. How much is that 

quantity, that can only be computed from detailed investigation of 

concentration in the initial zone. So an analytical expression for 

C based one dimensional theory is not possible. For practical 
0 
purposes, the problem is solved by neglecting the existence of-

initial zone, i.e. ,putting L = 0. The integration of equation (60) 
TA 

for L = 0 gives, 
TA 

M 12 1 
Co= Q  [Ts  (0I + 1)

1/2 
- id (61) 

where, M = rate of addition of mass at source. 

In equation (49) it has been shown that for steady state 

flow in a river, the distance required for complete mixing is; 
— 2 

L = 0.4 u lf  / it 
 [ lf  = W for side injection ] 

The distance requires for decay of the substance to a 

factor e is L = u /k [ for first order decay t = f(C)/k ]. 

Comparing the equations for L and L , we have; 
2 

L
d
/ L

m 
= 2,5 t,/ k W  (62) 

The quantity C may be written approximately as ; 
-  

a = 0.024 W
2 
k /i [ using i 

2 
/du = 0.6 and K = 0.011 u W

2 
 /du ] * 

If L,›L i.e., decay distance is higher than the cross 
/I Ill 

sectional mixing distance ,Ct must be less than approximately 0.06. 

The corresponding value of [ (2/450 (6t. + 1)12_  1)] is 0.985, which 

indicates that the solution is exactly that for the first order 

decay neglecting the dispersion co-efficient. There may be two 

(60) 
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possibilities for such conditions, either a)the material decays 

before it mixes across the cross section , Or, b) the longitudinal 

dispersion has negligible effect on the decay of non-conservative 

substances and hence can be dropped. If L < L , the concentration 
d m 

distribution need to be computed numerically. If L >L , and if 
d in 

the river and effluent discharges are steady, the downstream 

concentration can reasonably be computed by the first order decay 

solution, i.e., C = (M/Q) exp (-kx/U). However, effluent 

discharges are hardly ever steady. The typical daily fluctuation 

in output from sewage treatment plant leads to the gradients of 

concentration of discharged material into river, and these 

gradients are subsequently leveled out by the longitudinal 

dispersion. Therefore, daily fluctuattion cloud only be handled 

easily by the numerical models. 

These eventually tell upon that dispersion of non-

conservative substances do not much depends on longitudinal 

dispersion co-efficient but on the first order decay of the 

substances irrespective of the position of decay distance and 

mixing length. 

9. Pctim'atinq nisrrcinn rfl-Pifici.:.nt in FZ4.1 7.74,r4.c.rne 

The foregoing discussions reflect that it would not make 

any sense if one try for too high accurate prediction of 

dispersion co-efficients in real streams. Because it would not 

possible to include exact effect of irregularities of the stream. 

Fischer (1975) gave a formula which was derived from the 

general expression of dispersion co-efficient as given in eq. 
—  

(52). Using I = 0.07, d= 0.7W, 121
2 
 /u
-2 
 = 0.2, and E = C= 0.6d 

u , the dispersion co-efficient is given by; 

—2 2 
0.011 u W 

K - d u 
(63) 
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It was reported that prediction of dispersion co-efficient 

by equation (63) has been found to agree with observations within 

a factor of four or so. Moreover, it was also observed that 

calculation of observed values from field data usually accurate 

within a factor of two or so, thus the prediction by the above eq. 

(63) could be accepted for real streams. The advantage in using 

the above formula is; it requires only width, depth, and velocity 

data of a stream. 

Dispersion co-efficient from observed values is usually 

computed by one of the two methods; i) change of moment method, 

ii) routing procedure. 

9.1 Change of Moment Method : in which the rate of growth of 

variance of the tracer cloud is computed, mathematically, 

1 d 2 
K = 0" 

2 dt 2 
0-= the variance of the concentration distribution w.r.t 

distance along the stream 

9.2 Routing Method : in which input C-t curve is routed 

anlog the flow direction to obtain the downstream C-t curve. 

The difficulty in using the change of moment method is that 

the long "tails" on observed distribution make it difficult to 

compute meaningful value of variance. However, the routing 

procedure avoids this problem by matching a downstream observation 

of passage of a tracer cloud predicted based on upstream 

observation. 

In this procedure, the upstream observed curve is used as 

the initial tracer distribution, and a concentration -time curve 

for the down stream station is predicted by the one-dimensional 

dispersion model as given in eq. (21). The predicted and observed 
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downstream station curves are compared. If the comparison is not 

adequate, a new dispersion co-efficient is selected, and the 

calculation is repeated until the best possible comparison is 

obtained. The compared approximation of dispersion co-efficient 

should be equal to the value of K as in eq. (63). 

Mathematically, the procedure is as follows: if at some 

time t =to 
and initial distribution of tracer C (,t0

) is 

observed, then according to the bulk diffusion equation, the 

distribution of tracer at any later time is; 

- )
2 

CC exp - 4 K - t  1 ) j 
C (, t) = I Co 

o 
t )  dt ' 

-0C 1. 1/2  1.4 n K (t-t ) 
1  

0 

To use this formula, time concentration data need to be 

converted to distance concentration data by assuming that no 

dispersion takes place during passage of tracer cloud past the 

measuring station. 

C (t, to ) = C (Xo
.t) , in which, i = u (to

-t), and 

t = mean time of passage past a station located at 
0 

longitudinal station X . 0 
To predict a curve for station X, C(X , t) from one 

t t 

measured at X0 • . The C(t,to 
 ) is replaced by C(Kilt), inside the 

integral ( is replaced by •TI (t1
-t), -L

I 
 = mean time of passage at 

X
i
.00
(,t

0
) is repalced by the co

(x
0
,1) and t' = u (to

- r) and 

t- t is replaced by the difference in mean passage times, i -t , 
0 i 13 

and the element cl intergration d'= Tt dr. 

r -  (T - T. -t + r )}
2 

1  u i 0 

exp. [ _ 
04 4 K (-1-. - t) 

I 0 — 
C(X,t) = I C (Xo

,r)  u dl ..(64) 
i -Cc 4 FIK (t 

i 
 - t 

0
1 

The routing procedure can also be used to predict 

downstream distribution once the value of K is known. This produce 
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was found to be reasonably accurate if the dimensionless time of 

the upstream observation is greater than 0.4. 

10. Studies Related to Dispersion 

During 50's decade 

The first published analysis of longitudinal dispersion was 

by Taylor in 1953. 

Based on the concept developed by him as "also given in 

eq.(17), Taylor (1953) analyzed the dispersion of solute in 

laminar flow in a tube assuming that soute has been in the tube 

long enough to become well distributed over the cross section so 

that axial symmetric is observed, and found that longitudinal 

dispersion coefficient is inversely proportional to the molecular 

diffusion coefficient and related in the following form ; 
2 2 

K = a u / 192.D   (65)  

where, a = radius of the pipe. 

u
0= maximum velocity on the center line. 

D = molecular diffusion co-efficient 

Subsequently in year 1954, Taylor studied the dispersion in 

turbulent shear flow and indicated that primary mechanism for 

dispersion in shear flow was because of the variation in 

convective velocity within the cross section,and the process had 

been described by a one dimensional Fickian diffusion equation. 

Taylor restricted his analysis to asymmetries flow in a 

long, straight circular pipe and described the turbulent 

dispersion co-efficient as ; 

K = 10.1 .a . u   (66) 

in which, u the shear velocity = 
1 2 

here I = .the 

wall shear, and P = the density of fluid. 

In year 1956, Aris had also conducted a study for laminar 

shear flow and showed that it would be possible to obtain Taylor's 
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main results without stipulating the features of the concentration 

distribution. He proved that the spreading by longitudinal 

molecular diffusion is directly additive to that caused by the 

velocity profile. The approach adopted is often referred as the 

"concentration moment" method. 

Using the same reasoning as considered by Taylor ,Elder 

(1959) analysed a flow down for two dimensional flow in an 

infinitely wide inclined plane using the von Karman logarithmic 

velocity profile and described the dispersion coefficient as 

follows : 

K = 5.93 d u* 

using , von Karman constant , x = 0.41 

During 60's Decade 

Much of the studies related to dispersion were during 

sixties decade. Studies reported by Fischer during the decade were 

appreciated from different corners. 

Fischer (1966) conducted study for application Elder's 

concept in Taylor's analysis and to verify the effect of lateral 

velocity variations on dispersion co-efficient in natural stream. 

He postulated that the one dimensional diffusion equation is a 

valid description of dispersion of dispersing cloud of tracer 

particles only after an initial, convective- dominated period. 

However, no methods had been given for estimating the duration of 

the convective period. It was further suggested that the method of 

moments is the better description for determining the longitudinal 

dispersion co-efficient whenever a tracer cloud is behaving 

according to a diffusion equation, irregardless of initial 

concentration distribution and irregardless of whether distance 

concentration or time concentration curves are used. The formula 

(67) 
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suggested for computing the dispersion co-efficient would be from 

the variances of C-t curve, as given below; 

2 2 
- 2 Cr - 

2 
2 t - t 

2 

2 2 
Where, e and or are the variances of the time 2 1 

concentration curves measured after the initial period when the 

lateral and vertical mixing is completed. t:.:1.nd t are the mean 2 
passage time. 

Subsequently in year 1967,Fischer justified his earlier 

concept and described that for natural streams dispersion of a 

cloud of tracer particles from a point source could be divided 

into two periods: a) the convective period, during which the 

movement of tracer particles is still dependent on their initial 

convective velocity, and (b) the diffusive period or "Taylor" 

period during which the bulk motion of the cloud is described by a 

one dimensional diffusion equation in the flow direction. The 

duration of the convective period in terms of distance downstream 

from a point or line source,(the criterion for use of the Taylor 

one dimensional diffusion equation) would be; 

L > 1.8 

2 
u 

  

(69) 

     

In addition to the above , Fischer had given an approximate 

functional relationship which relates the dispersion co-efficient 

to bulk parameters of the channel as described in eq. (57)and 

given below . An analytical description of the time scale for 

complete mixing had also been obtained as described in eq.(39, 40, 

42, 43, 44, 45 ). He also observed that dispersion coefficient is 

proportional to the channel width, and inversely to the depth. 

This was in contradiction to a previous study by Elder where it 

43 

(68) 



was said that the coefficient is proportional to the depth and 

independent of width. The dispersion coefficient observed by the 

Fischer for large streams was very much greater than what it 

obtained from the Elder's concept. Fischer concluded that for 

natural streams of reasonbly uniform cross section, his theory 

expected to be accurate within a factor of approximately 2. The 

method suggested for predicting the dispersion co-efficient in 

natural streams ( only variations in the transverse (y) direction) 

was ; 

1 W y 1 
K -   I q ( y ) dy f  dy f q'(y) dy 

A 
0 1.1. t ch  " 0 0 

d(y) 

in which, q'(y) = I u1(y,z) dy 
0 

= 0.23 d u* 

Later, Fischer (1968) validated his methods of predicting 

diffusion co-efficient and convective time period for different 

natural streams data. A procedure had been described for 

calculating dispersion coefficient from tracer observations in 

natural' streams. A comparative estimation of dispersion 

coefficients by various methods had shown that the procedure 

suggested by him was accurate. He further justified that the 

length of the dispersing cloud and the decay rate of the peak 

concentration remains within a factor of 2 and in uniform streams 

the dispersion coefficient could usually be predicted within an 

error of 30%. 

The other applications of Taylor's analysis during the late 

sixties to predict the dispersion in natural streams and channels 

were attempted by Krenkel (1960), Glover (1964), Patterson & 

Gloyna (1965), Thackston (1966), Hays (1966), Crunch (1967), 

Edward and Krenkel (1967), Sooky (1969) and in year 1970 , Bansal 

, Gofrey and Frederick , Yotsukura et al.. They came out with 

(70) 
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mixed success with wide variety of dimensionless dispersion 

co-efficient ranging from 1.75 to 7500. The largest value of 

dimensionless dispersion co-efficient (Kid u ) was observed by 

Yotsukura et al (1970) for Missouri River. 

During 70's Decade 

Because of the large variation in the longitudinal 

dispersion co-efficient in natural streams , there were lot of 

efforts during the seventy's decade to study the phenomenon of 

dispersion in natural streams for different shape factor and 

stream hydraulic parameters. The studies reported during seventies 

were; Chatwin (1971), McQuivey & Keefer (1974), Fischer 

(1973,1975), Todorovic (1975), Day (1975), Jain (1976), Liu 

(1977). 

Chatwin (1971) conducted a study for two dimensional 

uniform flow and argued that for large times, where Taylor's model 

is valid, the dispersion cloud become normally distributed 

approximately a time d
2
/K after its injection and the skewed 

longitudinal distribution is produced in period t-  < 0.4(d
2 
 /K). 

When t> 0.4 d2/K , the variance of the dispersion cloud grows 

linearly with time, and the initial skew degerates into normal 

distribution in the period 0.4 <(tk/d2) <1.0. He proposed that an 

adequate approximation for dispersion could be; 

t log 
e
( 

C t 
u t 

2K 

  

(71) 
J 

 

where B = constant, proportional to the amount of the 

diffusion material. 

Chatwin determined the value of constant 'B' by plotting 

left hand side of the eq. 69 against time (t) for several values 

of B and accepting the correct one which gave the smoothest curve 

near peak and determined the dispersion co-efficient corresponding 

to that value of B. 
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McQuivery and Keefer (1974) had proposed a simplified 

method for predicting dispersion co-efficient for use in stream, 

based on the uniform flow analysis. The analogy was observed 

between the linear one dimensional solute dispersion equation and 

the linear one dimensional flow equation and developed the 

relation between them to predict the longitudinal dispersion 

coefficients as given below; 

K= 0.058   (72) S W 
S = the slope of the energy gradient line. 

Todorovic (1975) attempted to develop a general stochatic 

model for longitudinal dispersion, studying the bed sediment 

particles released in a flow in various manner over a certain 

period of time and observed that the stochastic model appears to 

be a particular case of the random entry of variables like 

distance and time. 

Day (1975) attempted to characterize the longitudinal 

mixing in rivers by the dispersion co-efficient and related this 

co-efficient to bulk flow and channel geometry. He postulated that 

it would be incorrect to apply Taylor's analysis to a non-Fickian 

dispersion process. And also observed that spread or standard 

deviation of any initially concentrated mass increases linearly 

with distance and concentration distribution maintain a persistent 

asymmetry. He further observed that channel irregularities, mainly 

tapering, increases the value of dispersion co-efficient 

continually. 

Fischer (1973) compared results of some of the earlier 

studies carried out for natural streams with theoretically 

predicted dispersion co-efficient and observed that in some cases 

the error was in the order of 4.5 times. He described the 

differences becauses of the non uniform cross section and unsteady 
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flow which were not taken care of in the theory. He also studied 

the effect of channel irregularities on dispersion co-efficient 

and stated that meanders cause nine fold reduction in the 

dispersion co-efficient. 

Later in 1975, Fischer suggested a simple formula to 

compute the dispersion co-efficient for natural streams of any 

nature which was considered to be more accurate than other 

findings for two dimensional flow; 

0.011 71 2  W  (73) 
u* 

Jain (1976) presented a simplified method for estimating 

dispersion coefficient for natural streams (as given in eq. 74) 

incorporating the shape factor of the channel cross sections. He 

developed the method based on the Fischer's (1967) analytical 

formulation, as given below: 
— 2 3 

W 
K - 0 j    (74) 

v.,  A u
* 

giti= constant, value varies from 0.1. and 0.2, and, 

where, 

u*  = X X 
-0 f d - q ) J (d

o
)-2 

f (d- q )dy,dy.dy0 
 ....(75) 

0 0 0 u 0  
0 0 0 
= y/W , d= d/r, q  

0 * 

Liu (1977) suggested that since longitudinal dispersion 

mainly vary because of the transverse velocity gradient 

(Fischer,1967) rather than vertical velocity gradient it would be 

more appropriate to use new dimensionless dispersion co-efficient, 

0, which depends on the channel shape factor and shape of the 

velocity distribution across the cross section, rather than the 

conventional dimensionless dispersion co-efficient 4:it as used by 

Elder (1959). The dimensionless co-efficient 91.1 2 is similar to 

that chosen by Jain (1976).For wide channel , Liu observed that 
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the appropriate expression for dispersion co-efficient would be ; 

K = Q
2 

3 

 

  

u*  

where n' is analogous to an expression derived by Fischer as 

given in eq. (70), and similar to eq. (75). 

Experimentally, the relation of it3 was observed as; 
g r s

) 
u
* 

where, g = acceleration due to gravity. 
s = slope of the energy gradient line. 

During W's Decade 

Beltaos (1980) derived a dispersion model incorporating two 

dispersion parameters A and L ( described below) and suggested a 
yr: 

method for prediction of dispersion when the process is not 

Fickian. 

where, A = —,2 Tr / (L:1, TO 
u' = deviation of the local (time averaged) velocity. 

T = Lagrangian time scale, ; = cross sectional avg. velocity L • 

For large streams, it was further shown that within stream 

lengths of practical interest, the dispersion process will never 

be Fickian, with the exception of small streams. 

Dorbran (198-) had attempted a study to compute the 

behavior of dispersion co-efficient in mountainous natural stream 

and proposed a new method for calculating characteristics mixing 

length for non-uniform winding stream. He observed that : 

Fischer's methods ; a) the method of flow parameters and 

methods based on tracer study (1967,1968), 10 routing procedure, 

and c) the method of variance change represent (1966), are the 

most convenient methods for calculating dispersion co-efficient 

for natural stream even for non-uniform streams. 

(76) 

g = 0.18 
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Dorbran proposed that lagrangian time scale need to be 

adjusted for winding non-uniform stream because of the variation 

of the thread of transverse velocity profile from the axis of the 

stream in the winding. His adjusted time scale has been discussed 

in eq. (47). 

Because of the variation of dispersion co-efficient with 

respect to time particularly in the early stages of dispersion, 

accurate estimation of dispersion co-efficient becomes a difficult 

task. Jayawardena and Lui (1983) proposed a simple time-dependent 

model for the dispersion co-efficient based on the study conducted 

in few selected narrow streams in Hong Kong. The model was 

developed based on the Fickian concept consists of three stages; 

first stage is for t/T
L 0.1, the second stage is for 0.1 <t/T, < 

20 and the third stage is for t/T2 20. Where, t is passage time 

and T is lagrangian time scale for dispersion. The dispersion 

co-efficients for these three stages proposed as: 

For, t/T
L
; 0.1 , K - 

-2 
u r 

 ( b t' + b) 
u* 

For, 0.1 < t/T
r.
< 20, 

For, t/T
L
2 20, 

- - 
K=b  r 

 El - 9  [1 - exp 
0 u

* t' L  

K = 

u = cross sectional mean velocity, u
* = shear velocity, 

r = hydraulic radius, t'= dimensionless time 

= constant lies between 0.95 and 1.0 

b , b , b , and b = dimensionless constants 0 2 3 

K = dispersion co-efficient during Fickian period. 

It was also observed by them that for sufficiently large 

times, an accurate estimate for T is pre-requisite for accurate 

prediction of dispersion co-efficient. 

In 1984, Jayawardena and Lui attempted a study for 
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numerical solution of the dispersion equation for variable 

dispersion co-efficients as derived in their earlier study. The 

numerical model was developed using finite elements in space and 

finite differences in timefor the solution of convective period. 

The numerical model developed by them had been compared with 

dispersion equations for conservative and non-conservative 

materials and found to argee closely with the respective 

analytical solutions. Attempt was also made to apply the numerical 

solutions for practical applications and found a reasonable fit. 

11. Scope for Studies 

There are different opinions for application of Fickian 

diffusion equation in stream dispersion modelling. Some described 

that Fickian diffusion is the correct description for dispersion 

prediction after the convective period, however, some others 

observed that flow do not become Fickian even during the stream 

length of interest mainly for large streams. Moreover, mixing 

pattern in rivers mainly depend on the velocity variation both 

vertical and horizontal depending upon the river geometry and 

hydraulic characteristics, shear velocity, depth of -flow, width of 

the rivers as well as the river irregularities. These be the 

factors vary from river to river, scopes always persist for 

studying the dispersion phenomenon of each river and prediction of 

dispersion co-efficient for each river. 

One point is very clear from the studies carried out by 

different researchers that dispersion co-efficient is an emperical 

parameter derived from eddy-diffusivity assumption. Hence, further 

study is necessary for better approximation in prediction of 

dispersion co-efficient for more closure and accurate value of the 

co-efficient. 
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12. REMARKS 

Study of dispersion of pollutants in stream has significant 

importance in controlling pollution hazard of stream or to 

safegaurd the downstream users from the danger of accidental 

or sudden release of pollution. Dispersion has relatively 

unimportant where steady state of flows and loads are attained. 

It is clear from the various studies that Fickian diffusion 

equation is the correct description of longitudinal dispersion 

only after the convective period and where the complete mixing 

takes place. Wide range of variation of dispersion co-efficient 

and the basic A-D equation indicate that Dispersion Co-efficient 

is an emperical parameter derived from the eddy-diffusivity 

assumption. Better the assumption and derivation of parameters 

will lead to the closure value of dispersion co-efficient. 

Non-conservative material have less influence by the 

longitudinal dispersion co-efficient. The mixing of the 

non-conservative material take place by the first order decay 

co-efficient and the concentration of contaminants need to be 

determined by the first order decay equation irrespective of 

position of decay distance. 
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