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ABSTRACT 

Time series analysis belongs to major statistical 

techniques used in the extraction of information on hydro-

logic and water resources random variables from observed 

data. This report gives a brief review on time series 

models and steps used for time series modelling. Various 

criteria for the classification of time series models are 

presented and described. Available time series models are 

explained in the light of short memory models and long 

memory models. Short memory models include autoregressive 

(AR), moving average (MA), autoregressive moving average(ARMA), 

and autoregressive integrated moving average (ARIMA) 

models. Long memory models such as fast fractional Gaussian 

noise, filtered fractional Gaussian noise and broken line 

models are then described. Generation of daily data by shot 

noise model has been given. In the end disaggregation 

model and multisite models have been explained. 

Some of the areas in which further study and research 

are needed have been identified by the review of literature. 

These include (i) time series analysis of water quality and 

quantity to meet the solution of complex environmental pro-

blems, (ii) development of more comprehensive families of 

time series models, (iii) physically based time series 

models, (iv) development of daily flow generating models 
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with lesser parameters, (v) differential persistence and 

(vi), application of time series models (after modification) 

to Indian rivers as many of them have nearly zero flows during 

non-monsoon season (Nov.-May). 
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1.0 INTRODUCTION 

A time series represents a set of obenvations that 

measure the variation in time of some dimension of a 

phenomenon such as precipitation, windspeed, river flow 

etc. The time series can be considered in continuous or 

discrete form. Most practical applications in hydrology 

consider the discrete form primarily as it is easier to 

handle the discrete time series on a digital computer. 

Time series can be classified as stationary time 

series or nonstationary time series.if the expected value 

of statistical parameters does not change with time, the 

time series si said to be stationary, otherwise nonstationary. 

Most of the statistical methods used in hydrologic 

studies assume that the observations are independently 

distributed in time. In other words, the occurrence of an 

event in assumed to be independent of all previous events. 

This assumption is not always valid for hydrologic time 

series e.g. observations of daily discharges do not 

change much from one day to the next and there is a tendency 

for the values to cluster as high values tend to follow 

high values and low values tend to follow low values. Thus, 

the daily discharges are not independently distributed in 

time. Though this-is also true that this dependence between 

hydrologic observations decreases as time base increases. 
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1.1 .Components of Hydrologic Time Series 

Hydrologic time series is composed of two components 

i.e. (i) nonrandom element (deterministic component) and 

(ii) random element ( stochastic component). A non-random 

element is said to exist when observations separated by K 

timeunitsaredependent.Ifthevaluesofx.are linearly 

dependent upon the values of . , then the correlation bet- 

ween x.and xj+k  may be taken as the measure of dependence. 

This correlation is referred to as the kth-order serial 

correlation, represented by yk. 

If a time series is random, yk= 0 for all values of 

k ?.1. However for a sample of finite size, computed values 

of yk  may differ from zero because of sampling errors. Since 

N is small for most hydrological sequences the sampling 

errors are very large. 

The non-random element (deterministic component) 

may be composed of both a trend (long term movement) and 

an oscillation about the trend ( periodicity). Both of 

these need not be present in a particular time series. The 

first step in analysing a time series is to separate the non-

random element from the random element. 

The aim of time series analysis is to identify and 

separate deterministic component i.e. trend and periodicity 

from the original series. The resultant stochastic component 

is then modelled and the combined effect is determined by 

superimposing deterministic component on it. An excellent 

2 



discussion on determinism and stochasticity in time series 

is given by Yevjevich (1973) and Kumar (1982). Analysis of 

deterministic and stochastic components is described in 

subsequent sections. 

1.1.1 Cetenninistic Component Analysis 

Trend: A steady and regular movement in a time 

series,through which the values are on the average increas- 

ing or decreasing,is termed as trend. The'existence of trend 

in hydrological series may be due to low frequency oscillatory 

movement induced by climatic changes or through changes in 

land use and catchment characteristics. Many hydrologists 

have the view that hydrological (river flow) time series 

have no important trends which can be identified by statistical 

analysis since the typical length of the series is generally 

less than 50 years ( trend analysis is generally done on 

annual series and not on seasonal series so as to supress 

the effect of periodic component)cannot reflect the long 

term climatic changes. It is, however, quite likely that 

there may be an adhoc change in the mean flow in a river 

due to some abstraction of water from one river to another 

or because of construction of some reservoirs. In such 

cases, the trend analysis is generally limited to adhoc 

modification in the mean. Such a study was done by Smirnov 

(1969) for the flow of the Volga river at Volgograd. However 

if a trend in a particular series is obvious it can be 

described by fitting a polynomial to the original series. 

There are number of statistical tests to detect 

the presence of trend in a time series. Kendall's rank 
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correlation test ( Kendall and Stuart, 1973, Kottegoda,1979) 

and linear regression tests can be used to check whether the 

time series is trend free or not. The rank correlation test 

as well as the linear regression test are not valid for 

detecting the presence of non-homogeneties like jumps 

in the series. The important test for detecting the presence 

of jumps in the series is.given by Buishand (1977) using 

Von Neumann's ratio method. 

Many a times, smoothing techniques are first used 

before the trend analysis is attempted. Smoothing techniques 

enables to bring certain systematic behaviour in the observed 

series .Of the various smoothing techniques a linear moving 

average model is the most generally used. Durbin (1962) has 

given mathematical justification to these techniques. An 

undesirable consequence of this type of trend removal is 

that the artificial cycles may be induced into the data. 

This is known as 'Slutzky-Yule' effect (1937). To circumvent 

this problem, harmonic and other weighted type of trend 

removal have been applied in meteorology (Holloway, 1958 

and Brier, 1961). Smoothing techniques have directly been 

borrowed from communication engineering literature. This 

may be quite useful to separate signals from noise, but 

are quite laborious if used in natural time series. Generally, 

these methods should be used in conjunction with spectral 

analysis. The details of various smoothing techniques are 

given by Kendall and Stuart (1976) and Brown (1963). 
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Periodic Component: There can be two types of 

periodic components i.e.(i) long range periodicity and(ii)sint 

range periodicity, in a time si,ries. These are being explained subsequently. 

Long range periodicity: 

A hydrologist is interested to know whether the series 

has a long range periodicity ( more than a year). For example, 

it is commonly said that drought occurs once in five years. 

Many climatologists and hydrologists in an effort to 

make long range forecasting have tried to relate the 

river flow series to various geophysical factors. The 

phenomenon which received maximum attention from researchers 

is the sunspots and its likely relationship to precipitation 

and runoff series. The sunspot number varies approximately 

in a long term periodic manner, the period ranging from 13 

years to 8 years with a mean of 11.1 years. Similarly, 

Smirnov (1969) found significant correlation between sunspot 

and the mean flows in the Volga. Indian scientists 

at I.M.D., Rxro, have recently correlated changes in the 

monsoon activity with the sunspot numbers. However, Rodriguez 

and Yevjevich(1967) investigated the relationship of 88 

series of monthly precipitation, 174 series of annual 

precipitation of USA and 16 series of annual runoff from 

all over the world with the sunspot number and they could 

not find any significant correlation. It can be assumed 

that the observed river flow series does not follow any 

long range periodic behaviour (Kumar, 1982). 
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Short range periodicity (seasonality): The river 

flow series may be obtained as an annual, monthly, ten 

daily, pentad ( 5 daily) or as a daily observed data. Though 

the annual data does not follow any long term periodic 

behaviour, the seasonal cyclic effects are present in other 

series. Within the year periodicity is due to annual revolution 

of the •earth around the sun, by the moon and by daily rotation 

of the earth. These are called seasonal effects as they are 

repeated at the same time in each year and are thus deter-

ministic. Seasonality is observed in pentad and daily data 

(Bernier, 1970) also. 

Seasonality can be removed byl prewhitening: A common 

method of prewhitening is to standardize and remove perio- 

dicity. If x
t, 

t = 1,2 • and T= 1,21•• • • , 12 

is a monthly series, then 

xt_ -x 
iT 

t,T 
G 

is a standardized series. Here x and a are 

mean and standard deviation of the ith month. The drawback 

of standardization is that large number of parameters are 

required e.g. in case of daily data 365 values of mean and 

365 values of standard deviation are required to standardize 

the series. In case of short samples, the estimate of such 

large values may lead to sampling errors. In such case, the 

values of x T  and a are smoothened by harmonic analysis. 

A good description of harmonic analyses is given by Roesner 

and Yevjevich (1966). 
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1.1.2 Stochastic component analysis 

The remaining series i.e. series after removal of 

deterministic component from original series is stochastic 

series. Any modelling will now require the modelling of 

stochastic component. The modelling of stochastic component 

depends upon its statistical properties, probability dis-

tribution to which this series belongs and structure of the 

internal dependence ( short term as well as long term). 

Whether a series is dependent or not is checked by correlation 

analysis, spectral analysis, run analysis and range analysis 

etc. These have been explained in detail by Lawrance and 

Kottegoda (1977) and Kumar (1982) and many other authors 

in different bnct books. An approach for time series 

modelling is described in the subsequent section. 

1.2 Approach for Time Series Modelling 

A systematic approach to hydrologic time series 

modelling is composed of following six main steps ( Salas 

and Smith, 1980): 

identification of model composition, 

selection of model type, 

identification of model form, 

estimation of model parameters, 

testing goodness of fit of the model and 

evaluation of uncertainties. 
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Each of these are being described below: 

1.2.1 Identification of model composition 

In any modelling of hydrologic time series, one 

has to decide whether the model will be univariate or 

multivariate model or a combination of a multivariate and a 

disaggregation models etc. This decision is known as the 

identification of the model composition. Such identification 

generally depends on the characteristics of the overall 

water resources system, the characteristics of the 

hydrologic time series and the modeler's input. For 

instance, to analyse the operation of a reservoir by simula-

tion, monthly inflows to such reservoir must be generated. 

If there is no other upstream reservoir or structures that 

may affect the operation of such reservoir, the univariate 

modelling of monthly streamf lows at or near the site of the 

dam should be selected. On the other hand if other reservoirs 

exist or are planned upstream from the reservoir under study 

the multivariate modelling of monthly streamf lows at 

various sites should be the choice. However instead of 

multivariate modelling of monthly streamf lows, the 

modeller may select the multivariate modelling of 

annual series and then use disaggregation model to 

obtain the corresponding monthly flows. The above decision 

are contingent on the availability of adequate data in 

the system under study, as well as on their statistical 

characteristics. For instance, two time series which 

show cross correlation will require a bivariate elling 
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but if the cross correlation is not significant the two 

time series can be modelled independently by univariate 

models. 

1.2.2 Selection of model type 

Once the model composition is identified, the type 

of the model( s) must be selected. Namely the modeler has 

to decide on one among the various alternative models say 

AR (autoregressive), ARMA, ARIMA, FGN, BL (Broken line), 

SL (shifting level)or any other model that is available 

in stochastic hydrology. In this decision, these factors 

are important: the characteristics of hydrologic physic& 

processes, the characteristics of hydrologic time series 

and the modeler's input. 

1.2.3 Identification of model form 

Once the type of model is selected the third phase 

of the modelling is to identify the form of the model. 

This identification as implied herein goes beyond determining 

the orders p and q say of an ARMA model as in the Box-

Jenkins approach. For instance, in time series analysis of 

weekly streamf lows, it is necessary to identify whether the 

series is skewed and if such skewness is constant or periodic 

whether the week to week correlation coefficients are periodic 

and whether the periodic characteristics should be described 

by the Fourier series, in addition to identifying the order 

say of an ARMA model. 

1.2.4 Estimation of model parameters 

Once the model is identified, the estimation of 
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the parameters of the model is made. The- method of moments 

and the (approximate)• method of maximum likelihood are the two 

methods usually available. Generally the latter method gives 

the best estimates. 

1.2.5 Goodness of fit of the model 

The model estimated in phase (4) needs to be checked 

in order to verify whether it complies with certain assum-

ptions about the model and to verify how well it represents 

the historical hydrologic time series. The model assumptions 

to be checked are usually the independence and normality of 

residuals of the model. In addition comparisons based 

on correlograms can be made to see if the model correlogram 

resembles the historical correlogram. Further comparison 

based on data generation, can be made to verify whether 

the model reproduces statistically historical statistics 

such as the means, variances, skewness, correlations, 

storage related statistaics, drought related statistics etc. 

1.2.6 Evaluation of uncertainties 

Once the model is judged to be adequate, it remains 

to evaluate the corresponding uncertainties i.e. (i) model 

uncertainty (ii) parameter uncertainty. Model uncertainty 

results because the true models of hydrologic time series 

are not known and at best the identified model composition, 

and selected type and form of the model are only close 

approximations. 

Parameter uncertainty results because the model 

paramters are estimated from a limited amount of data . Model 
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uncertainty may be evaluated by testing whether significant 

differences in the statistics generated by alternative models 

exist or not. Parameters uncertainty may be determined by 

finding the distribution of paramter estimates and by using 

the models with paramters sampled from such distributions. 

1.3 Applicability of Time Series Models 

Time series models have mainly two applications in 

hydrology and water resources i.e.(i) generation of synthetic 

time series and (ii) for forecasting future hydrologic 

series. Synthetic streamf lows are required for reservoir 

sizing, risk analysis of water supply for irrigation systems, 

determination of rsik of failure of dependable capacities of 

hydroelectric projects and similar applications. Forecasting 

of hydrologic series are needed for short term planning of 

reservoir operation, real time and short term operation of 

river basins br systems for planning operation during an 

ongoing drought and similar operations. 
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2.0 REVIEW OF LITERATURE 

2.1 Time Series Models in Hydrology 

Development in the field of time series models 

started with the work of Hazen (1914) and Sudler (1927) who 

showed the feasibility of using statistics and probability theory 

theory in analysing river flow sequences. Hurst (1951) reported 

studies of long records of river flows and other geophysical 

time series. Barnes (1954) introduced the idea of synthetic 

generation of streamflow by using a table of random numbers. 

Stochastic models proposed in the literature include: 

autoregressive (AR) models ( Thomas and Fiering, 1962; 

Yevjevich, 1963; Matalas, 1967), periodic autoregressive (PAR) 

models ( Jones and Brelsford, 1967; Pagano, 1978), contempora-

neous autoregressive moving average (CARMA) models ( Salas et 

al 1979 ), fractional Gaussian noise (FGN) models ( Mandelbrot 

and Wallis, 1968; Matalas and Wallis, 1971), fast fractional 

Gaussian noise (FFGN) model ( Mandelbrot, 1971), filtered 

fractional Gaussian noise model ( Matalas, 1977), autoregressive 

moving average (ARMA) model ( Carlson, et al, 1979; O'Connel, 

1971), autoregressive integrated moving average (ARIMA) model, 

broken line (BL) model ( Mejia, 1971), shot noise model (Weiss, 

1973), model of intermittent process ( Yakowitz, 1973; Kelman, 

1977), disaggregation models (Valencia and Schake, 1973), 

Markov mixture models ( Jackson, 1975), ARMA-Markov models 

(Lettenmaier and Surges, 1977), 4pace time autoregressive 
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moving average (STARMA) model ( Deutsch and Ramos, 1984, 

Pfeifer and Deutsch, 1980), and general mixture models 

(Hoes and Sals, 1978). 

Although each model has its own merit and some of 

them can be successfully applied in hydrology yet they do have 

limitations. All of these have been criticized for one or 

more of the following reasons: 

not being able to reproduce short term dependence, 

not being able to reproduce long term dependence, 

difficulty in estimating the parameters, 

limitations for generating large samples of synthetic 

data, 

lack of physical basis and 

too many parameters. 

2.2 Classification of Time Series Models 

The first step in model construction is to select 

suitable classes or families of models from which the 

most appropriate model to fit to a given time series can 

be chosen by following the identification, estimation and 

diagnostic check stages of model development. For example 

when modelling annual hydrological time series one may 

wish to consider the ARMA family of models ( Box and Jenkins, 

1976), the classes of non Gaussian models suggested by 

Lewis (1985) and fractional differencing models ( Hosking, 

1985). Certainly if one is not aware that certain classes 

of models exist, one may not fit the most appropriate model 

to a given time series. 
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The time series models can be classified 

according to number of criteria. Hipel (1985) gives the 

following criteria for the classification of time series 

models: 

physically based and black box models 

discrete and continuous time models, 

continuous and discrete observations models 

Gaussian and non-Gaussian models 

linear and nonlinear models 

nonseasonal and seasonal models 

stationary and nonstationary models 

long and short memory models 

multivariate and univariate models 

disaggregation and aggregation models 

time domain and frequency domain models 

Bayesian models 

state space formulation and Kalman filter. 

The above criteria are explained in subsequent 

sections. 

2.2.1 Physically based and black box models 

Physically based models are designed to mathematically 

simulate the physical processes involved in the hydrological 

cycle. A physically based model can be deterministic or 

sometimes stochastic or it may contain both deterministic 

and stochastic components. Black box models don't 

consider the physical processes as such and are concerned 

with input and output only. 
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The problem with physically based model that it 

contain large number of parameters (Tong et al, 1985). 

Further due to great complexity of natural systems, the con-

ceptual or physically based model is only a crude approxima-

tion to reality. Thompstone et al (1985) dermnstrate that 

a simple stochastic TFN model forecasts more accurately than a 

cumbersome conceptual model which is very expensive  to 

maintain and calibrate. 

Even though most stochastic models were not originally 

designed to reflect the behaviour of physical phenomena 

a physical basis to these models can often be justified. 

For example, Salas and Smith (1981) demonstrate that a parti-

cular conceptual model of a watershed leads to ARMA 

streamflows and—ARMA groundwater storage. Further discussions 

regarding physically based models are given by Klemes (1978) 

Yevjevich and Harmancioglu (1985) stress the importance of 

linking stochastic models with physically consistant proper-

ties of any particular water resources time series. 

2.2.2 Discrete and continuous time models 

The time vriable in a stochastic model can be 

designed to handle discrete or continuous time. Most 

practical time series models are built for use with obser-

vations available at discrete time points. So most of the 

models are discrete time models. 

2.2.3 Continuous and discrete observations models 

Variables which are being observed such as riverflows 

and precipitation can be recorded as continuous or discrete 

variables. Most of the stochastic models have been 
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developed for modelling a continuous variable available 

at discrete, evenly spaced times. Lewis (1985), Salas 

et al (1985), and Vecchia (1985) present a range of models 

for use with continuous variate time series. McKenzie (1985) 

dEscribes models for which the variable being modelled is 

discrete. 

2.2.4 Gaussian and non-Gaussian variabale models 

Whether a model is Gaussian or not depends upon the 

variable. If the variable has been assumed to follow normal 

distribution than model is Gaussian variable model otherwise 

non-Gaussian. 

Simple linearmedEas such as the family of ARMA models 

are not necessarily defined as having Gaussian variates but 

are simplest to use as such because linear operations on 

Gaussian variates preserve Gaussianity or normality. Further-

more model construction procedures, based on the assumptions of 

Gaussianity are well developed. As a result, theoretical research 

regarding the development of stochastic models which can 

explicitly handle variables which are non-Gaussian and there- 

fore don't follow a normal distribution has only been initiated 

recently. When the data are nonGaussian, one approach for 

obtaining data which are approximately normally distributed is 

to transform the original data, using a transformation 

such as a Box-Cox transformation (Box and Cox,1964) to produce 

a transformed series which is Gaussian. A model based upon 

the Gaussian assumption can then be fitted to the transformed 

series. An alternative approach is not to assume Gaussianity 
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initially but to select a distribution that the original data 

actually follow. rads (1985) describe a range of new models 

developed for use with continuous variate nonGaussian time 

series. The distributions considered are Exponential,Gamma, 

Weibull,Laplace, Rata and mixed exponential distributions. 

2.2.5 Linear and nonlinear models 

When a model is linear, it is a linear function 

of the variables in the model. In a nonlinear model 

there is atleast one term where the variables and or 

innovations appear as products or are raised to powers. 

For instance, average daily riverflow data may have to 

be modelled using amodel containing nonlinear terms because 

of the nonlinear relationship between runoff and precipitation 

over a small time scale. On the other hand a linear model 

may be sufficient to model mean annual river flows. 

2.2.6 Nonseasonal and seasonal models 

Nonseasonal models are designed for modelling time 

series which don't contain periodic components created by 

phenomena which are seasonal in nature. Certain types of 

geophysical records are strictly nonseasonal while in 

other situations it may be required to consider a time 

series of average annual values even if seasonal data are 

available. For example, tree ring indices and mud verve 

thickness are usually obtainable only in the form of yearly 

records, whereas mean annual riverflow, temperature and 

precipitation data can be calcualted from average weekly 

records. 
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Nonseasonal models can befitteoliooyearly reocrds 

for use in various types of applications. For instance, when 

studying changes or trends in the climate over a long time 

span it may be advantageous to analyse annual time series. 

By using transfer function noise models (TFN) to link annual 

riverf lows, precipitation and temperature with tree ring data 

for intervals at which the time series overlap, the calibrated 

TFN model can be used to back forecast the missing observa-

tions in the hydrological time series. 

Seasonality consists of different kinds of periodic 

behaviour in a given phenomenon which are caused by natural 

or man induced events. For instance, due to the annual 

rotation of the earth about the sun and the concurrent 

changes in tilting of the earth's axis, weather characteris,  

tics at a given location on the earth usualy possess 

pronounced seasonal characteristics. The seasonal properties 

of precipitation and temperature, in turn, impart periodic 

behaviour on the entire hydrologic cycle. Riverf lows in 

the Indian subcontinent, for example, are much higher during 

monsoon rains. Besides natural causes for seasonality in 

time series , man's activities Can create significant 

seasonal behaviour in time series. For example, agricultural, 

residential and industrial water demands are often dependant 

upon the time of the year. Because a man induced seasonaility 

may not occur at precisely the same time every year, it 

is sometimes necessary to model the starting times of 

various kinds of seasonalities using random variables. 
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Yevjevich and Harmancioglu (1985) and Salas et al (1980) 

discuss the different kinds of periodic behaviour of 

hydrological systems and general ways the measurements 

from these natural systems can be appropriately modelled. 

Periodic autoregressive moving average (PARMA) and periodic 

autoregressive (PAR) models are specifically designed for 

modelling seasonal hydrological time series. Most of the 

nonseasonal models can be extended for use with seasonal data 

by deseasonalizing the data. To economize on the number of 

parameters required in the deseasonalization procedure, a 

Fourier series approach can be employed ( Rao et al, 1985; 

Tao and Delleur, 1976; Salas et al , 1980; McKenzie,1985) 

whatever is the case, subsequent to deseasonalization a 

model such as a nonseasonal ARMA or a nonseasonal fractional 

differencing model ( Hosking, 1985) can be fitted to the 

deseasonalized data. 

2.2.7 Stationary and nonstationary models 

Stationarity of a stochastic process can be qualita-

tively interpreted as a form of statistical equilibrium. 

Therefore, the statistical properties of the process are 

not a function of time. Besides reducing the mathematical 

complexity of a stochastic model, the stationarity 

assumption may reflect reality. For instance, if a natural 

river basin has not been subjected to any land use changes 

such as urbanization and cultivation, it may be reasonable 

to assume that a stationary stochaetic model can be fitted 

to the time series of historical annual riverflows. 

In certain situations, the statistical characteristics 
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of a process are a function of time. Water demand tends to 

increase over the years as metropolitan areas grow in size 

and the affluence of the the individual citizen increases. 

The average carbondioxide content of the atmosphere may 

increase with time due to complex natural processes and 

industrial activities. To model an observed time series 

that possesses nonstationarity, a common procedure is 

to first remove the nonstationarity by invoking a suitable 

transformation and then to fit a stationary stochastic 

model to the transformed series. For instance , Box and 

Jenkins (1976) suggest differencing the given data to 

remove homogeneous nonstationarity before designing an 

appropriate stationary model such as an ARMA model. Therefore, 

even when modelling nonstationary data, the mathematical 

results that are available for describing stationary processes 

are often required. 

Some researchers believe that natural processes are 

inherently nonstationary and therefore the greater the time 

span of the historical series, the greater is the probability 

that the series will exhibit statistical characteristics 

which change with time. However, for relatively short 

time spans it may be feasible to approximately model the given 

data sequence using a stationary stochastic model. 

2.2.8 Long and short memory models 

When considering a stationary time series represented 

by z
t at time t, the autocovariance function or equivalently 

the ACF can be employed to measure the linear dependence 
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between observations. The covariance between Zt 
and a value 

t+k which is k time lags removed from Zt  is theoretically 

defined in terms of the auto covariance at lag K given by 

yk  = Coy [Zt, Zt+k  I = *t-P ,  (Zt+k-N  
A normalized quantity that is more convenient to deal with than 

yk 
is the theoretical ACF which is defined at lag k as 

P
k 
- 

The theoretical ACF(Pk)  is dimensionless and therefore 

independent of the scale of measurement. Furthermore, the 

possible values of pk range from -1 to +1 and P
k 
is unity 

at lag zero. 

For a known stochastic process, such as an ARMA process, 

it is usually possible to calculate the theoretical ACF. An 

important measure of the appropriateness of a model, which 

has been fitted to a given time series is to see if the 

theorertical ACF of the fitted model statistically resembles 

the sample ACF of the data. 

When the theoretical ACF is summable it must satisfy 

(Brillin ger,1975) 

E I Pk 1 CO 

A covariance stationary process is said to possess a 

short or long memory according to whether or not the theoretical 

ACF is summable. Examples of short memory processes are 

the stationary ARMA processes of Box and Jenkins(1976) whereas 

the fractional Gaussian noise model ( Mandelbrot and Wallis,1969) 
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possesses long memory for a specified range of a model parameter. 

The importance of both long and short memory processes for 

modelling annual hydrological time series is exemplified by the 

study of the 'Hurst Phenonmon'.Hosking (1985) briefly describes 

the Hurst phenomeon and explains how the fractional differencing 

model can be used to model both long and short memory. 

2.2.9 Multivariate and univariate models 

Salas et al (1985) present an extensive survey of multi-

variate modelling of water resources time series. The term 

multivariate is employed because at least two time series are 

modelled when using a multivariate model. Qualitatively, a 

multivariate model can be written as 

Multiple outputs = Dynamic component + Noise component 

Where the dynamic component models the way in which all 

of the series dynamically influence one  another and the noise 

component models the correlated portion of all the series 

which is not modelled by the dynamic component. Because the 

behaviour of each of the multiple series is dependent over time 

upon the other series, the overall multivariate model is often 

referred to as a dynamic model. 

An univariate model is a model for which there is a single 

output but there may be one or more inputs plus a noise component. 

A special type of univariate model for describing a single time 

series is the ARMA model. 
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2.2.10 Disaggregation and aggregation models 

Another special class of multivariate models is the 

disaggregation model proposed by Valencia and Schake (1973). 

This model allows one to break down a series for which there 

are longer time units separating values into a sequence of 

values separated by shorte time units. For instance, an 

annual series can be disaggregated into a monthly series. 

In disaggregation relevant statistical properties remain 

consistent at both the annual and seasonal level. Annual 

flows can be generated by a short or long memory model and 

these annual flows can then be disaggregated to the seasonal 

flows. 

Many researchers believe that there is not much infor- 

mation contained in the annual series, a better procedure may 

be to aggregate rather than to disaggregate. Vecchia et al 

(1983) present a convincing argument which favours the concept 

of aggregation over disaggregation. They prove that, if the 

original seasonal data follow a PARMA model with one moving 

average and one autoregressive parameter (i.e., PARMA(1,1)), 

then the aggregated annual data must be an ARMA model with one 

AR and one moving average parameter (i.e., ARMA(1,1)). Further- 

more there is significant gain in parameter estimation 

efficiency at the aggregated level when the seasonal data and 

their model is used rather than the aggregated ( i.e.annual) 

data and their model. 

23 



2.2.11 Time and frequency domain models 

In order to fit a time series model to a data 

set various techniques are available for use at the three 

stages i.e. identification, estimation and diagnostic check 

stages of model construction. If a given method or statistic 

such as the sample ACF which can be used for model identi-

fication is expressed directly in terms of the time variable 

one is said to be working in the time domain. Alternatively, 

one can work in the frequency domain also by entertaining 

Fourier transforms. The Fourier transform of the autocovari-

ance function produces the spectrum which expresses the 

distribution of the variance of the series with frequency 

(Jenkins and Watts, 1968). Brillinger (1985) presents 

interesting results regarding Fourier inference. 

2.2.12 Bayesian models 

By employing Bayesian approaches, one can take 

various types of prior information into account in a 

time series study. Kryzysztofowicz (1985) explains how one 

can obtain optimal forecasts of hydrologic time series by 

employing the Bayesian processors of forecasts. 

2.2.13 State-space formulation and the Kalman filter 

Another general set of concepts which can be utilized 

with most time series models is the state space formulation 

of models and the Kalman filter. As explained by Bergman 

and Delleur (1985a) a given model can be transformed into 

a state-space formulation for which the state variable vector 

can be continuously caliberated as new data become available 
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by using the discrete Kalman filter algorithm. Bergman 

and Delleur (1985b) apply state space techniques and 

Kalman filtering to the class of autoregressive models 

for the purpose of real time flow forecasting. They 

present an adaptive Kalman filter algorithm which is 

evaluated using simulation. They apply it for the daily 

streamf low forecasting of the Potmac River. 

As is clear from the above discussion,discrete 

stochastic models may be classified in may ways. Here it 

has been subjectively decided to classify them as 

short memory or long memory models. Attempts to reproduce 

long term characteristics such as the Hurst phenomena 

distinguish the long memory from short memory models. Short 

memory models of hydrologic phenomena include the moving 

average (MA) models, autoregressive (AR) models and mixed 

autoregressive moving average (ARMA) models. Each of 

these models is sequential and may be univariate or 

multivariate. Long memory models include fractional 

Gaussian-noise models, filtered fractional Gaussian noise 

models, broken line models, and depending upon parameter 

values, certain autoregressive integrated moving average 

(ARIMA) models. They may also be univariate or multivariate 

and are sequential. A non-sequential model that may have 

either long or short memory and be univariate or multivariate 

is the disaggregation model. All of these models are 

reviewed and described briefly in forthcoming sections. Daily 

flow generating model and multisite data generating models 

have also been explained in the end. 
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2.3 Short Memory Models 

The use of short memory models in hydrologic 

analysis was introduced primarily to produce synthetic 

sequences of flows to route through a water resources system, 

the idea being to test it under variety of conditions and 

with longer sequences of flows than historically available. 

The implication is that long sequences will contain more 

extensive events than observed and thus a more stringent 

test of the system. The basic requirement is that the syn-

thetic flows should have properties which are indistinguishable 

from the historical flows. This is taken to mean that the 

statistical characteristics are maintained the same way 

as has been observed in the historical series. 

A very early work on the use of short memory models 

is by Thomas and Fiering (1962) now famous as Harvard Water 

programme (Mass et a1,1962). They introduced a monthly flow 

generator which is in effect a seasonal short memory model. 

It was applied in designing a water resources system for the 

Meramac river basin, Missouri.consisting of small reservoirs. 

Further application of such models include Fiering (1967), 

Hufschmidt and Fiering (1966), Schaake and Fiering (1967) 

Davis(1968), Hall et al (1969), Morean and Pyatt (1970), 

Hamlin and Kottegoda (1971,73), Gupta and Fordham (1972), 

Hamlin et al (1973,75) , Spolia and Chander (1974) and many 

others. Most of t se studies have not taken the sampling 

errors in the historical series into account. The theoretical 
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implication of ignoring the sampling variability have not 

received the attention it deserves. Recently, these have been 

included through the Bayesian Framework analysis, notable studies 

being Lenton and Rodriguez Iturbe, 1974 and Klemes, 1979. 

Short memory models have also extensively been used for 

forecasting flows. If the series is nonseasonal the models 

used for simulation can also be used for forecasting However, 

in the case of seasonal data, the special class of multiplica-

tive time series models are preferred. The use of multiplica-

tive models in riverflow forecasting is quite extensive and, 

the notable studies being; Macmicheal and Hunter(1972),Mekrecher 

and Delleur (1974),Clarke (1973),Delleur and Kavass(1978),Chander 

et al (1980). Recently the use of control engineering concepts 

have been introducad in the time series modelling. These are 

also called Bayesian Forecasting (Harrison and Stevens, 1971; 

Maissis 1977,Chander et a1,1980). These models have also 

been used for extending the record (Hamlin and Kottegoda,1971), 

infilling missing data (Kottegoda and Egly,1977), flood 

evaluation (Kottegoda,1972,73) etc. 

Commonly used short memory models to hydrologic Time 

series, modelling are described in following sections. 

2.3.1 Moving average model 

The moving average model is the simplest short memory 

model and expresses a sequence of events (i.e. annual flows) 

in terms of deviations at time t, Zt' 
from the mean, p of the 

process or sequence of events,Zt • 

Z= - 
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The deviation from the mean of the process is expressed 

as a finite weighted sum of elements plus a random element 

at. 

Z
t 
-p = at- 01 at-1 - e24t-2 

e a 
— q t—q 

in which the ei are the weighted parameters and the at-i are 

random elements (white noise). The above equation represents 

a moving average process of order q. It embodies q+2 para- 

meters, p, e1 andthevarisricsofa.,0a2, that must 

be estimated from data sets, before it can be used in practice. 

2.3.2 Autoregressive model 

Another model that has been used rather extensively in 

hydrologic analysis is the autoregressive model. It is a very 

useful tool in the simulation of hydrological and climatological 

data. As with the moving average process., this model alaDworks 

with deviation, Zt  from the mean,0 of the process or sequence 

of events, Z. However, the autoregressive process expresses 

the deviation from the mean of the process, a finite weighted 

sum of previous deviation plus a random variate, a
t. Thus 

+ 0 (Z -0) ... (6) 
p t-p 

is an autoregressive process of order p. .It contains p+2 

2 parameters, p , and aa that must be estimated 

from a given data. The mean of the sequence of events is p 

0 the weight factors are • and the variance of random variates 

Matalas (1977) discuss the autoregressive model and some 

of its waaknesses as well as corrections that should be applied 
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to the coefficients to correct for bias in estimates of moments. 

2.3.3 Mixed autoregressive moving average model 

In practical solution to many hydrologic problems 

it may be necessary to include both autoregressive and moving average 

terms to obtain a parsimonious model. Box and Jenkins (1976) describe 

such a composite model by expressing the deviation of a variate from 

its mean, Z
t
,as a finite weighted sum of previous deviations 

plus a finite weighted sum of random variates plus a random element at. 

Thus: 

it - 01 
Z
t-1 

 

.... -0 a - OZ =a-Oa 
p t-p t 1 -t-1 q t-q 

 

is an autoregressive moving average (ARMA(p,q)) model of autoregressive 

order p and moving average order q. 

2.3.4 Autoregressive integrated moving average model 

Hydrologic data such as flow records, temperature, rainfall 

etc. exhibit seasonal and other cyclic patterns. These patterns can 

be eliminated from the data by seasonal transformation to zero mean 

and unit variance: 

zt — 
qt-q; 

 

Cli 

. 
where j denotes the j 

th  period in the cycle. Such transformations 

require many parameters especially if monthly patterns are present. 

Both the effects of a trend that is not seasonal and 

cyclic seasonal patterns in the mean can be removed by a proper 

differencing of the data set, i.e. the substraction of a value from 

its previous value or its value j units apart. If this has been 

done properly, then the data set will be a stationery series and 

the moving average, autoregressive or the mixed autoregressive 

moving average models can be used to describe the process. In this 
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case, mixed model is known as an autoregressive integrated moving 

average (ARIMA) model. 

Box and Jenkins (1976) discuss the ARIMA (p,d,q) model 

expressing the d
th

order differences of a series Z
. as ARMA(p,q) model. 

In general, this type of model is of much more value in forecasting 

than in simulation.O'Connel (1977) discusses application of ARIMA 

type models in synthetic hydrology. He states that in general most 

hydrologic phenomena, particularly runoff can be expressed as an 

ARIMA (1,0,1) or ARMA (1,1) process. This process should resemble 

the historic sequence in terms of the mean, variance, lag one auto-

correlation and Hurst phenomenon. 

Some researchers have also looked at use of ARIMA models 

in forecasting. Mckerchar and Delleur (1974) compares a second order 

autoregressive model with 27 parameters, operating on standardized 

monthly flow data to an ARIMA model that required only 4 parameters. 

Forecasting with both models tended toward the monthly means as the 

lead time increased. The autoregressive model forecasts also tended 

toward the monthly standard deviations. However, because the ARIMA, 

model did not account for seasonal variability in monthly standard 

deviations, the forecasting errors could not be associated with 

physical reality. 

Mejia et al (1975) demonstrated the use of ARIMA type models 

in simulating or predicting fluctuations in water quality parameters 

of the Passaic river. Different forms of the ARIMA model were best 

suited to different parameters. Daily flow residuals were represented 

by an ARE4k(2,1,0) model, daily water temperature by an ARIMA (1,0,1) 

model, and daily Biochemical oxygen demand and oxygen deficit by 

ARIMA(1,0,0) models. 
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2.4 Long Memory Models 

Long memory odels are specifically designed to reproduce the 

Hurst Phenomenon (Mandelbrot and wallis,1968). This is accomplished 

by several means even though the concepts or causes of the phenomenon 

are not known. The Markov models or autoregressive models can 

faithfully produce the high frequency components of the data sets 

but fail to produce the extremely low frequency components typified 

by the Hurst phenomenon Multi lag models have attempted to account for 

the low frequency components but they are generallynot satisfactory 

for the very low frequency response. 

Discrete Fractional Gaussian Noise (DFGN) is one of the 

approaches considered. It is Gaussian random processes with a k
th 

order antocorgelatdon coefficient (Mandelbrot,1971) given by 

P(k) 
Ik+112H  -2102H  4- 11c-11 

214 

2 

It has a single parameter, H, the Hurst coefficient, 

which inmost hydrologic applications has a value in the interval 

0.5s Hs 1.0. The above process was invented by Mandelbrot to model 

the variance of phenomena characterized by long run effects in which 

the cumulative influence of very small serial correlations between 

remote values is non-negligible. 

Construction of a sample function of DFGN involves the 

summation of an infinite number of components. Therefore, approximations 

of DFGN are used to limit- the number of domponents. However, the number 

of operations must be high enough to preserve the desired value of 

H if long term properties of a series are of interest. The order 

required tends to increase in proportion to the total lengtn of period 
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T, to be simulated. 

Fast fraction Gaussian Noise (FFGN) processes (Mandelbrot, 

1971), Broken line processes (Mejia et a1,1972) and ARIMA 

processes are used to approximate DFGN. 

2.4.1 Fast fractional Gaussian noise processes 

Fast fractional Gaussian noise (FFGN) models are discrete 

approximation to theoretical fractional Gaussian noise. They are made 

up of three components:(i) An independent autoregressive processes, 

P
h
X
h(t-1), used to obtain the high frequency effects, not present in 

the low frequency term, but necessary for discrete time fractional 

Brownian motion; (ii) A low frequency or long-run-effects term 

to reproduce the low frequency properties of the covariance function. 

formed by superimposing weighted outputs from a parallel set of 

first order autoregressive processes,E 115(pi  xi  (t-1)+Ej  (t)) 

and (iii) A random element Eh  (t) 

The model is defined as 

ni,t)=p
h
)ut_ji
n

i.E14.0. 
 3
x.et-11.1.c.(t) )4. 6

h
(t) j=1 3 

Here X(H,t) has mean 0 and variance 1; E h  and Ej  are independent 

Gaussian processes of mean 0 and variance 1, ph  is a function of the 

Hurst coefficient, H, the number of terms used in the approximation, 

N, and a 'base' value, a; (1  is a function of sonly; and Wj  is the 

weighting factor for the jth autoregrssive process Each of the 

autoregressive processes in the long run effects term have success-

ively longer memories. 

The number of AR(1) processes required for the long run 

effects term is expressed as; 

(10) 
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N = log (fl/log ( s) ... (11) 

Where T is the maximum duration of the period of interest, 6 is 

the base value ( 8>1) controlling the separation of individual AR(1) 

'decay' parameters, and Q is a 'quality' parameter controlling 

the number of AR(1) processes needed for a given Svalue. As 8 

approaches 1, Q increases and the approximation becomes more 

accurAbbecause more AR(1) processes are included. Sufficient 

accuracy for most practical applications should be achieved 

if Q = 6 and S= 3. If these values are used, then 

N - 2 log (6T) 

The weights applied to each autoregressive subsystem 

output are obtained from 

H(2H-1) ( 1-H 
- 

r( 3 - 2 H) 

where F denotes the Gamma function. 

The autoregressive correlation parameter is 

exp ( -S-n) .... (13) Pn 

Chi et al (1973) demonostrate how to use the model in 

simulation and describe all of the steps necessary. Using these 

steps, the FFGN is probably the best of the discrete fractional 

Gaussian noise models. 

2.4.2 Filtered fractional noise processes 

The sequence of values, )(1 ,X2  of a filtered fractional 

noise process, are generated by applying a set of weights, Wi, 

1?, = 2(H-1)n 
; 1 n s N ... (12) 
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successively to a sequence of independent random variable, e(i). The 

generating equation for the value of X at time t is 

X
t 

(H-0.5) pt-1  
E W. e(i) ; 0.5 <h <1.0 

i=pt-M 
where, 

= pt-i)
H-1.5 

where M, the memory of the system, (usually much longer than the 

period to be generated, that is several thousand) is a function of 

Hurst coefficient, H, and the lag-K autocorrelation coefficient, p is 

an integer greater than one. The weights, (pt-i)H-115, vary in value 

from nearly zero to one. Matalas and Wallis (1971) derived values of 

the mean, variance, skewness and lag one autocorrelation coefficient 

for this model and expressed equation (14) in terms of these paramters. 

Estimated values of parameters plus the value If H may then be used to 

generate synthetic sequences. However if short sequences are generated, 

values of variance, skew, lag one autocorrelation and Hurst 

coefficient must be adjusted for bias as described by Matalas (1977). 

A major disadvantage of using this model is that it is computationally 

expensive because of the large number of terms added to produce the 

synthetic sequence. H may take on values from 1000 to as high as 

50,000. 

2.4.3 Broken line processes: 

A broken line process consists of the summation of a finite 

number of simple broken line processes (Mejia et a1,1972). The 

simple broken line process ( Fig.1) is a sequence of intersecting 

line segments in which the time projections between intersections are 

of same length a. The values of the process c(t) at the intersections 

are independent and are identically distributed random variables, 

7  with zero mean and unit variance, 
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A simple broken line process is given by 

n , - am (t) = I/1.
m 

+  ra±sa 
(t-ma) II 

1 
(15) 

where, 

Ti = independently identically distributed random number of 

zero mean and variance a
2 , 

a = time distance among Tim  

I =j when ma< t <(m+1) a 

0  otherwise 

The variance of the fractions of the process is 

the autocorrelation function as 

202/3  and 

p k  = 1-0.75 (k/a)
2 ( 2-(k/a) for 0 <k‹a ...(16) 

= 0.25(2-k/a)3  
Pk 

for k >a ; .,.(17) 

P
k
= 0 for a <k/2 ...(18) 

for modelling, a BL process is formed by adding a finite 

number broken line8 .(t) 

at = 1=1 1 

TIME 

FIGURE 1 Schematic representation of simple broken 
line process 
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Mejia (1972) has related the parameters ,ai, ai, i=1,2...n 

with the mean, standard deviation and the correlogram 

structure of the process. The biggest disadvantage of the 

use of broken line model is very large number of parameters 

to model it. FFGN models therefore been preferred compared 

to BL for long memory modelling. 

2.5 Daily flow generating models 

The modelling of realistic daily flow sequences is 

slightly complex because of three leasons ,viz.,(i) daily 

flows are highly non Gaussian, large variability and having 

high P1  correlation between flows, (ii) there are spurts 

of rising limbs followed by a longer period of falling flows 

(iii ) there are many days when there is no flow. This 

asymmetrical behaviour of hydrographs leads to the statistical 

property of time irreversibility. The autoregressive 

models described earlier are based on the principle of time 

reversibility and therefore cannot produce sharp rising 

limbs and slow recession Kumar(1982). 

Weiss(1973a,b) suggested a daily flow generating 

model known as ' Shot noise model' which has a built in 

capacity to model the ascension recession behaviour. The 

model is briefly explained in the following section: 

2.5.1 Shot noise Model 

Examination of a continuous streamflow record 

shows series of spikes of various heights, followed by 

exponential decays. Weiss (1973a) used this observation 

in proposing the use of shot noise model to represent daily 

flow records as a stochastic process. 
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The shot noise model is a continuous model that assumes 

the temporal distribution between events and the magnitude 

of the jump inflow values associated with each event, the 

peak or spike, are exponentially distributed(Fig.2a t02d) 

taken from O'Conne11,1977). The absolute value of the flow 

on any given data is assumed to be fraction of all previous 

events(the flow rate on the previous day multiplied by a 

decay parameter) plus any increase from an event that may 

have occurred since the previous day. Since the process is 

continuous in time more than one event may be generated in 

the time interval of one day. The generating equations 

accumulate these and then discrete values, which are assumed 

to be based on a daily average, are calculated. 

To use the model in synthetic data generation, two highly 

interrelated processes must be modelled. One is the increr-

mental increase in flow rate denoted by xt+11 and the other 

is the discretized value of the continuous process denoted 

by, x(t+1), for example, the daily flows. The numerical 

increase in flow rate is given by 

(-b(t+1- t 
xt+1 = l/b (1-e

-b N(t+1) 
)x(t) + E (0) ym ( 1-e ) 

m=N(t) 

....(20) 

and the discretized continuous (daily) process is given by 

N(t+1) ) 
x(t+1) = e 

(-b(t+1 - Tim ) -b x(t) + E .. 
m=N(t) Ym .. (21)  

In equations 20 and 21 

b is the decay rate; 

m 
is the time of an event within the time interval of 1 day 

and is calculated as T
m+1 

= Tm 
+E ; 
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SHOT NOISE PROCESS 

Fig.2 -ShOt Noise Process (a) Events..., T  from a Poisson piocess 
with rate v . (b) Jumps , Yrn  m from an exponential dis- 
tribution with mean O. (c) Pulse-g with values ...., 

Yme-b(t-T ...., at time t. (d) Schematic plot of COIItJnDUS 

single shot noise process (From O'Connell, 1977, Fig.2). 
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u0 2(b-(1-e-bD, 

b
2 ' 

(1-e-b)2 

2(b-(1-e-b) ) 

u 2 x = 

and 

....(23) 

...,(24) 

is pseudorandomly generated from an exponential distribution 

with mean 1/ u  ; 

Ym 
is the magnitude of the spike at time Tm 

and is generated 

from an exponential distribution with mean 0 ; 

is a number used to keep track of the number of events, 

if any, within the daily interval t to t+1; 

N(t) is a Poisson process with rate u • 

The first term in equation 20 and 21 is the effect of 

previous events and the second is the innovation term. Both 

the equations describe a continuous time process. Daily flow 

values which are used in analysis are average values of 24 

values. Values of 0,e and b are calculated from moments of 

mean daily flows as 

1-1 T-
x 

u0 ...(22) 

  

In equations 22,23,and 24 ux , 
ax2 and r(1) are the 

mean ,variance and la-g1 aut000rrelation coefficients respectively of 

the mean daily flow makes ( Weiss, 1973b; O'Conne11,1977). 

In dealing with instantaneous flows equation 22 to 24 

should not be used. Modified equations given by Weiss(1977) 

should be used. 

Weiss (1977) also suggested a double shot noise model, 

one to represent direct runoff for rainfall &other one to account for 

ground water storage. If used in seasonal flow modelling 
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obviously, the value of and b may vary from month to 

month. Fitting of such a model to daily hydrologic data is 

quite complex and is a laborious task. So one should consider 

the use of a watershed model with stochastic input rather 

than a completely stochastic model of daily flow. 

2.6 Disaggregation Model 

Disaggregation model is a general autoregressive 

model of which all other autoregressive models are a special 

case. This is capable of using the output of any model as 

input and generating a parallel series of seasonal events that 

aggregate to the original series. Furthermore the model may 

feed upon itself to further disaggregate the series to 

monthly, weekly daily and hourly events .Structure of the 

output series is based entirely on the statistical character-

istics of the originaal data set; thus the model cannot 

reproduce physical characteristics of a daily streamflow 

series but it can be used for the generation of hourly rainfall. 

Fundamentally the model, disaggregates the annual series 

into seasonal values by using statistical data that show 

what fraction of the annual series is attributed to each 

season. It is made up of two components, a deterministic 

component that is proportional to the correlation of each 

season with the annual values and a random component. 

The disaggregation model takes the form Valencia and 

Schaake,1973). 

Y(t) = A X(t) - BV (t) ...(25) 

where, 
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Y(t) is an n x 1 vector of seasonal values for the tth year. 

is the number of seasons in a year ( for example 12 

if monthly values are to be generated); 

X (t) is the value of the annual series for the tth year 

V(t) is an n x 1 vector of independently distributed stan-

dard normal deviates; 

A is an n x 1 vector of coefficients 

is an n x n matrix of coefficients 

The vector A and matrix B are obtained by analysis 

of N years of the historical data that relate the seasonal to 

annual values 

A = S S 1  yx xx 

where, 

A is estimated A vector, 

yx is the (nxl) cross products matrix (proportional to the 

covariance matrix) between n seasonal observation,Y 

and the annual values x summed over the N year of record 

used to evaluate the coefficients; 

xx is the inverse of the sum of scpares matrix of the 

N years of observed annual values,X. 

BE
T
= S

yy 
-s s -1 S 

yx xx xy 
....(27) 

where, 

BBT is the ber't estimate of the product of the B matrix 

and its transpose; 

YY 
is the sum of squares matrix over N years of the 

n seasonal values Y; 

and S as described above yx xx 
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is the cross products matrix between the annual values xy 

X and n seasonal values Y summed over N years. 

The matrix B can be calculated from BT  by the technique 

of principle component analysis (Matals,1967) 

Valencia and Schaake (1973) show that the parameter matrix 

A and B preserve continuity between seasonal and annual 

values; 

I.,1 i j=1 
...(28) 

Equations 26 and 27 are used with historic data to 

solve the A and B matrices respectively. These matrices 

are used in equation 25 alongwith a random number generator 

and the annual series to develop seasonal values for the 

annual series. The values may further be disaggregated to 

form sequences of any desired time interval. 

Disaggregation model can be extended for multisite 

data generation also ( Tao and Delleur,1976). In this case 

the vectors X and Y become matrices of annual and seasonal, 

respectively, extending across as many stations as 

desired. Vector A becomes a matrix of coefficients that 

disaggregated each of the station's annual series into average 

seasonal values. Matrix B is a coefficient matrix that 

preserves the covariance and corss-covariance structure of 

the residuals introduced in the vector V. They used the 

model for both single and multistation disaggregation and 

evaluated the model performance with respect to preservation 

of both first and second order moments. Tao and Delleur (1976) 

also showed how the model can be used to generate annual 
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and monthly runoff volumes from annual rainfall. Mejia and 

Roussele (1976) modified the disaggregation model to preserve 

correlations of the last season of one year with seasons of 

the following year. 

The model can be used alongwith any annual data 

generation model. The model is specially useful where the 

long range properties of the annual series are of interest. 

A major disadvantage of the model is the need to calculate 

the large number of parameters for the A & B matrices. 

2.7 Multisite models 

Multisite models are used when joint modelling of 

hydrologic sequences of several sites is required. Sometimes 

it is not sufficient simply to model flows at every site 

independently because the flows at various sites are strongly 

interrelated. The simultaneous modelling of flows at more 

than one site at a time began with the key and sattelite 

approach of Thomas and Fiering (1962) which took account of 

cross correlations between the series but did not model the 

serial correlation at the satellite site. Later Fiering 

(1964) approached-the general multisite model using a princi-

ple component analysis. The classic appraisal and develop-

ment of Fiering's work by Matalas (1967) forms the basis of 

presently used multisite lag 1 autoregressive models,such as 

young and Pisano (1968) and Moreau and Pyatt(1970). Lawrance 

(1976) improved upon the Fiering model in the sense that lag 

0 and lag one Cross correlation coefficients are maintained 

in the model. Multisite models can be classified as 
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(i)Multisite short memory models and (ii) Multisite long memory 

models. 

Multisite short memory models include multisite lag one 

and higher order autoregressive models. Multisite higher 

order autoresseive models are required if serial and cross 

correlation coefficients at lags more than one between sites 

are to be maintained. A good dicription of multisite short 

memory models is given by Kumar (1982), Lawrance and Kottegoda 

(1977). 

In order to simplify the estimation procedure in multisite 

short memory models, decoupled multisite modesl have been 

evolved by Ramaseshan (1975). In this methodology, the 

modelling is done at two stages, First, a suitably identified 

ANNA (p,q) model is fitted to the standardized and the trans-

formed ( for accounting skewness) series at each site. The 

fitting is done by treating the process as univariate series. 

After the univariate model at each site is fitted the serially 

independent random component at each site is separated and 

tested for their randomness. This is done to ensure that a 

properly identified and validated ANNA model has been fitted 

to the data. The residual series will be serially independent 

but will have cross correlation with residual series at other 

statiors. Again an ANNA (p,q) model is fitted to the 

cross correlated residual series such that after the model 

fitting the residuals are white noise. By coupling the two 

models, a coupled multivariate model is obtained. 

The development of long memory models in the multisite 

domain is at an early stage. The only known work is that 
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of Matalas and Wallis (1971) for the fractional noise process 

Mejia et al (1974) for broken line process, O'Connell (1974), 

for the ARMA models and Weiss (1977) for shot noise models. 

The properties and behaviour of different models in maintain-

ing long run serial and cross correlation matrices using 

multisite long memory models are yet to be examined. 
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3.0 REMARKS 

The literature available on the application of 

time series models is enormous. In this review note, time 

series models have been briefly reviewed. The main emphasis 

has been given on fundamental structure of various models 

and techniques for time series modelling have only been 

touched. Review of rainfall generating models has not been 

attempted. Some of the areas in which further work is 

required are as follows:- 

There is need to develop more comprehensive 

families of models that can simultaneously handle 

a wider variety of the criteria given in section 

2.2. For example it may be possible to design a 

multivariate model that can handle both non linear 

and non Gaussian characteristics of data. However, 

any new class of models should be designed to be 

as simple as possible and thereby not have too 

many parameters. 

Efforts should be made to incorporate both the 

physical and statistical aspects of the problem 

into the basic model 

3. Daily flow modelling 

opens an interesting  

design. 

as suggested by Weiss(1977) 

vista for realistic simulation 

of ascension-recession behaviour of daily hydrographs. 

This method needs further developement especially 
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in reducing the number of parameters to be calculated 

from the historical records. Application of shot 

noise model for Indian rivers will be highly informa- 

tive. 

Further work is required regarding use of a watershed 

model with stochastic input. 

Differential persistence is another area where not 

much work has been reported. Pattern recognition 

technique ( Pannu and Unny,1980), may lead to better 

insight on the run of high and low flows. Further 

work on the modelling of differential persistence w%11 

be highly welcome. 

In depth study of short memory and long memory models 

is required. The drawback of short memory models is 

that they don't model Hurst h. Long memory models do 

model Hurtst h but it is only a mathematical excercise 

without any physical meaning. 

There is need of work in water quality and quantity 

time series analysis to meet the ongoing concern for 

the solution of complex environmental problems. 

The use of time series models for modelling monthly/pentad flows for 

Indian rivers may require some modifications as many Indian rivers 

have nearly zero flows during non-monsoon season (November-May). 

Case studies regarding application of time series ittilels to Indian 

rivers will be highly informative and good contribution to 

hydrology literature as very little has been done in the appli-

cation side. 
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