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ABSTRACT
Routing of flood in open channel is one of the unsteady flow
problem of importance to engineers. Flood routing is a computational
procedure aiming at tracing of a flood wave incident and known at
the upstream location. The objective of flood routing is to find
the maximum elevation reaghed and corresponding time, the maximum
volume rate of flow, for use in the design of spillways, bridges,
culverts, channel sections, etc., and total volume of flow for design
and operation of storage facilities for flood contrel, irrigation
and water su-pply. Engineers are mainly interested in finding the
two field quantities which are stage and discharge( or velocity).
In the case of hydraulic routing continuity equ'a;ion and momentum
equation are used. These are frequently referred to as St.Venant
equations. These are as follows:
-Continuity:

e
Mompentum:

i ol RS S CHEI RN T
where, A is area of the flow_(mz). Q is discharge (m3/sec), g is
acceleration due to qravitylm/seczl S¢ is energy slope, S;D is bed
slope and Y is depth of flow. -

The above partial differential equations along with initial
conditions and appropriate bodndary conditions are solved using
numerical methods. The finite difference models and the finite elem-

ent models are commonly used. The review includes a discussion on
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the above in addition to the method of characteristics. The review
also includes uncertainties, in natural flood flow, iike flood plain

h and channel interaction, alluvial 'bed deformation etc.

iv



1.0 INTRODUCTION

Routing of flood in an open channel is one of the unsteady
flow problems of interést to engineefs. Flood routing is a computa-
tional procedure aiming at tracing the temporal variation and special

history of a flood wave incident and known at the upstream location.

1.1 Importance in Water Resource Development

Ploods are natural events affecting mankind. Man's response
te this problem is interdisciplinary because of industrial develop-
ment and urbanization man chooses to live in flood prone areas(flood
plains). Hence one is interested in the extent of inundation of
flood plain etc. Irrigation development and improvement of water
transport, require one to understand the movement of floods. This

is achieved through methods of £lood routing.

1.2 Physical aspects of flow/flood phenomena in canals and natural
rivers(including flood plain system);
The main river flowing to the sea is fed by numerous tributa-
- ries and also by small gullies through which water trickles from
rain or from other sources like subsurface etc. Larger floods norma-
lly overflows the banks and used to occupy the flood plains. The
existence of wide flood plains will have a favourable influence
'on attenuation of flood waves, because of the large storage capacity
fo; flood water. In almost all the rivers, the bed on which water
+ moves .will get altered. For certain rivers an. assumption of rigid

bed is appropriate for flood routing. For rivers in alluvial plains



the deformation of bed produces different forms which cause different .
resistance of flow. In addition the rivers in alluvial plains trans-
port sediments also. .They cause problems of erosion or siltation.
The hydraulic connection between stream and aquifer also modify
the flood to a greater extent in alluvial river reaches. Sometime simplif-
ied models are used. Table 1 gives comparison of simplified & complete models.
1.3 Basic Eguations:

Flow in a river s generally changing with time. It also
varies spatially. It may form a three dimensiunal. But for many:
engineering purposes it is enough to study rivers in one dimensional
model especially for flood roqting, with exception of cases ‘where
flood plains are also involved. This review is mainly concerned
with one dimensional problems.

Water movement in a river is deséribed by continuity and

momentum equations{2,6) as follows:

Continuity eguation: a9 _, .aa (1)
at ax
Momentum: ) ]
a_Q._ ._Q_ _Q.... - ...L-: vesl2
t YA X + AglSe = S5t 3 ) (2)
where:

A is the wetted area of cross section of flow(mz)
Q is the discharge(mB/S)

g is the acceleration due to gravity (m/52)

Sg is energy slope

So is bed slope

y is the depth of flow

X is the general flow direction

Since the area{A) is a unique function of the depthly) these two

equation essentially contain two unknown y and Q, provided the energy



Table 1 -'Comparison of Simplified Vs.Complete Models

—

No. Simplified Model{Hydrologic Routing ) Complete Model {Hydraulic
: _ : Routing)
Advantages
1. Computationally easy Relatively difficult
2. _ Many problems can be solved even A computing .machine
without recourse to a digital is very essential.
computer . :
3. Provides answer in much less tiﬁe_' Takes time
4. Computational cost is less More
Disadvantages-
5. ‘Normally do not have necesaary Desired accuracy can
accuracy be obtained depending upon
the uncertainties involved
6. Large amount of past flood records Model calibration requires
are needed only few.
7. Tributory flows and other controls Can be modeled.
can not be modeled, in general. ’
8. Accuracy of the results very The reach length is nor-
much depend on the length of mally discretised.
reach.
9. All acceleration terms are excluded. Included.
10. Does not require data on cross- Needs data on cross-
section ete. sections, Mannings 'n’'
at all discretised
points.




slope (sf) is known. Hence before going to any solution procedure

avaluation of (Sf ) i3 to be made.

1,4 Osjective and Scope
| In majority of the cases, in India the flood problems are

cauées by over bank flows. These problems are associated with agére—
dation or degfadati§n. éspecially in northern parts of this country.
The National Commission on floods has examiﬁed various aspects rel-
ated to floods and discussed them in Volume I of its report (1980).
The table 2 provi@eg the regiohwise flood problema in India as-extr-
acted from ﬁhe above report. Floods passing the alluviai river reach
are modified due-to the bank storage effects. |

In this review note, the following are briefly dealt with:

1. Complete equations and boundary conditions |

2. Numerical methods |

a) Einite Difference

b} Finite Element

ci Method of Characterijstics

3} betermination of energy, slope

4) Bank storage effects and

S5) Flood plain effects.
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2.0 REVIEW

| In solv;mg the unsteady problem of flood routlng, 1t is- usual
to go in for one dlmenSLonal approach. The pr1n01pa1 11m1tatzon
: of this approach is that the flow is assumed to vary in one dlrectlon
,1.e..along the river. In ‘most of ‘the. practioal situations {Chen
1973), this approach is suffzcient to model flood flows. When largé
area of flood plain is inundated, quasi one dimensional models are

used as adopted by Dass and Simon(1976) .

2,1 Complete equations and boundary conditioos:

The one dimensional differential equations of gradually varied
unsteady floﬁ, in naturol alluvial channels can be derived based
on the following assumptions:

1. The channel is sufficiently straight and uniform in the

reach.

2. The velocity is uniformly distributed over the cross sec-

tion.

3. Hydrostatic pressure prevails at every point in the chdnnel(

4. Water Surface slopo is small.

Continuity of water:

o--{3}

Momentum equation: : '
39—_4- 2 A t-—a—f"—+s -5 ...(4)

where,

Q is discharge in m3/s



A is area of.flow in m2 _
g is aqcelefat;on‘due to gravity m/sec>
y is the depth of fiow in {m)
Sg is:eﬁéfgylslope
So is bed slope.
In the case of alluvial rivers the'cbntinuify of sediment is accou-

nted using the following equation.

3p ™1 _aac ; A% o | (5}'
at at ax , tee
where;
P is the volume of sediment per unit volume of bed layer
Ad is the volume of sediment per unit length of channel(mz)
C is the mean concentration of sediment in the flow
Qp is the total sediment discharge(m3/8}
A is the area of flow in (mz)
{a) Supplementary equations

In the above equations (3,4) Q.y are basic unknown. In equation
5 Ad is an additional unknown; The other variableslmust be. expressed
as a function of these three va?iables to obtain a solution. Physical
properties of the prototype found in thé equations are treated as
follqws:
1. The geometric properties of cross-sections are expressed
as a function of stage from the known channel geometry.
2. The mean bed slope S  is known from initial bed elevation.
3..The éneréy slope is treated separatély.
4. The sediment discharqe can be computed as suggested by
Shen(1971), Garde(1960)

{(b) Boundary conditiocna:



There are two kinds of boundary conditions for one dimensional

(Chen, 1977) routing models:

(i) exterior boundary conditions, and
(ii) interior boundary conditions
(1) Exterior boundary conditions:

If the flow is sub-critical the routing solution is possible
only when one condition is specified at tﬁe downstream end of the
reach. If the flow is.sﬁpercritical the condition at the downstream
condition is redundant. For this type of flow the conditions can
not influence the uﬁstream situ&tion and the boundary condition
should be séecified at the upstream,bouﬂdary.

There are three different ways of specifying this boundary
condition as follows:

a) the stage hydrograph

blthe discharge hydrograph

¢} the rating curve, and
in case of sediment routing following additional boundary condition
may be used

d) the sediment discharge hydrograph or

e) the bed elevation

If there is a disturbance (according to R.K.Price,1974) such
ag from a triburary or from a tide, downstream of_the boundary it
islpreferable to define either the discharge or the stage. If there
is no disturbance affecting the downstream of the boundary and if
a rating curve is available the latter can serve as the boundary
condition. If no such rating curve is available an approximate Bou-
ndary condition can be obtained by extrapolation and used. R.K.Price-

{(1974) justified the approximate boundary condition, saying that



for msst of the river flows the Froude's number is 'éﬁall._ which
ensures that -any disturbanbe generated by this boundary condition,
do ndt - propogate ﬁps;rehm appreciably. Price,R.K.{1974} discussed
the number cof boundary ébndiﬁion§ and described them to be dependent
upon the method of solution. But it is to be understood that the
number of boundary conditions are'indeéendent of the mefhod of solu-
tion(Cunge,1975) whether it is numerical or analytical.
(ii) ' Inierior boundary conditions:

| They are usuélly conqerned with continuity 6f discharge or
water level or energy balanée. The following are some of the examples.
1. At abruptly varying river cross-gsection as shown .in Figure 1.
Two compatibility equations are to be saﬁisfied.

a) Q = Q

by ¥, + vi/2g + Mu =y + v2/29
2 2 ] 1773
where, A H is the expansion or contraction loss. In case of
sediments, the third compatibility should be satisfied.
c) G1 = G2 |
- In energy loss and kinetic energy head can be neglected the _
condition(b} would become
Yo 5 ¥,y
2. At tribytory confluence as shown in figure 2.

a) Q3 = Q, + Q,

2 2
b) h1 + v1/2g = h3 + v3/29 + hf1_3, or
h1 = h3
¢) h, + V2 ) 2
2 2/29 = h3 + V3 /g + hf2-3' or
hy = hy

d) Sediment continuity is also to be satisfied.
3. Flow through other control structures

10
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FIGURE 1-- CROSS SECTION VARIATION BETWEEN TWO REACHES .

FIGURE 2 - JUNCTION OF TWO RIVERS
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a) Q, =0,
b) Discharge formula incase of weir etc.

c¢) Sediment continuity equation.

2.2 Numerical Methods:

The partial differential equations are solveéd by numerical
methods. With the development of digital compﬁters, the sophisticated
numerical methods have come up. There are a variety of numeripcal
techniques each claiming certain specific advantages in terms of
convergence, stability, accuracy and efficiency. Subramanya, K(1984)
classifies the numerical methods used in flood routing as follows}
I. Direct Methods (FDM)

a) implicit

b) explicit
iI Method of characteristic(MOC}

a) characteristic nodes

b) rectangular grid
It1 Finite element method
In case .of method of characterisfics he further classifies them
into implicit and explicit methods.

Numerical solution approximates the K continuous (defined at
every point) partial differential equations with a set of discrete
equations in time and space. The region of interest is usually divi-
ded into discrete nodes and the nodes will be used to make discrete
equationé for each sub region and time step. These equa;ions are
assembled to form a system of algebraic equations to be solved for

each time step.

12



Numerical considerations:
In applying numerical methodé, three characteristics are
important; 1) accuracy, 2) efficiency and 3) stability. Accuracy
deals with how well_the discretized solution approximates the soluticn
to the continuoys problem it represents. Efficiency is a measure
of how much computational work and computer resources are required
to obtain a solution. Stability addresses the question of whether
or not a solution isg pbssible at all. The above definitions are,
oversimplifications for p;actical purposes. Although numerical anal-
ysis provides the above information on alternative numerical methods,
‘it does not tell which one is optimum for particular (Mercer,J.W.1981)
application. ﬁercer,J.w.(1981) concluded that no particular combi-
nation of numerical technigque and matrix solution procedure is best
for all applications.
The numerical techniques commonly .Fsed in floed routing as

used different researchers are briefly reviewed below.

2.2.1 Method of characteristics

In the method of characteristics (MOC) the St.Venant equations
are converted into a set of two pairs of ordinary differential equa-
tions{in characteristics forms) and then solved by finite difference
methods. Four computational schemes, of calculations are commonly
made in MOC. While applying finite Qifference method, an implicit
or an explicit method in combination either te a rectangular grid
or irregular characteristic grid are used. The Courant condition
required for stability( Atg I(A X/v + ¢l|) is automatically satisfied

in MOC,
The method of characteristics was proposed for graphical

integration of the shallow water equations by Massan{1905).This

13




method assumes a constant wave property(f{(h,Q) along the wave path

defined by the following

dax - A
dt C

where, C is the wave velocity. This velocity can be found by

c-2 . G QY
where,Q is the discharge in m3/sec,

A is the area of cross section of flow in m2

B is the top width of flowing water in m.
Introducing this in the momentum ecjuation and continuity equation

the following can be obtained.

aQ 2 dh _ +8_ )=0 el (9)

A computational mesh can be built up from the characteristics
as shown in figure 3. If x and t for two points 2 and 3 are known
along with the values of depth and discharge the new point 1 can

.
be found using approximations of dx = C.

dat +
Xy =X, = C2(t1 - t2) ...(10)
. Xy =Xy = C3(t1—t3) vee (1)

where C+= v+ /ga/B

From these x and t, can be solved. Infact the velocity of propagation
at the right hand sides of the equations can be described more accur-
ately by the mean values between 1,2,_ and 1,3 respectively. In this
case the systerﬁ becomes implicit. The computation will become more
accurate. Writing the equation 9 in a different form:

- - - - -t )= =0
Qz)/{t1 t2) + BZ(CZ ZQZ/AZJ (hI hz)/(t1 tz) AgIS°+Sf2}

... (12)

(01
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PIGURE 3 - IRREGULAR CHARACTERISTIC GRID

t4
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' FIGURE 4 - REGULAR CHARACTERISTIC GRID
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J-Aq(S°+Sf2)=0

from which Q1 and h1 can be solved. eaa (13}

(@, ~Q3)/tt ~t ) +B(C =20, /A, ) (h ~h,) /(t -,

In this way, starting from the initialconditions, a new layer
of points in the x-t diagram can be determined which in turn is
the bagis for another layer. Repeating this process, the full region
of interest and the full time interval under consideration can be
covered by computational peints, It can be seen that in the case
of bouridaries the scheme has to be modified, since only one charact-
eristic is available. At the boundary, x-coordinate will be known
and a boundary condition either on Q or h will also‘be known. This
allows a solution at the boundary. More on boundary conditions are
explained by Liggett,J.A.et a1(1975}.

Explicit schemes were used by Liggett and Woolhisex(1967)
Streeter and Wylie(1967) John Ellis (1970). Ellis(1970) has appiied
this method to a channel of varying c¢ross section which has also

been explained in this review. Amein{1966) used an implicit scheme.

Ellis(1970) used the following form of equations of flow:

Continuity:
udad u_, 3 _ u 4 &b el (14)
ax " % W%t T’ T "p  ax
Momentum:
3u wd u_ . _3d 22
% * e 9l ¢t wsi +8, 1 =0 eea{15)

where, u is mean velocity in m/sec
d is mean depth (A/b) inm
b is mean width in m

In addition to these equations the following were also used:

U 3u

B dx + wdt = du ) c..{16)
_9d 94
a.‘ dx + at dt=dd e

16



From these equations Ellis(1970) obtained the following chara-
cteristié equations
1/2 . . ., 172
du+ (g/d) ad+ g(dz/dx) dt+gsfdt+u(gd) {db/b) {dt/dx)}=0 ... (18)

and

du - (g/8) 243 "+ gldasdxiat+g s.dt-u(gd) /2

£ {db/b) (dt/dx) =0

see (1)

Integrating along(1-2) and (3-2) as shown in figure 3 the following

are written:

3/213 ve. +F._  +W,. =0 ... (20)

[u + 2(gd) PIMEIPIMAY:
3/2

+e._ +f. .. +w,. =0 , ... (21)

) 32 32 32

fu - 2(ga) 2

where
e = fg(dz/dx}dt

£

B at

t flutgd) 2/ (uziga) ) 9%

w
The integral '‘e' is concerned with changes in bed elevation along
the length ®wf the chanﬁel. The integral 'f' is evaluated using the
Mannings equation wherein the hydraulic radius is replaced by the
mean depth. The third integral 'ﬁ' involves change of chénnel breadth"
aloﬁg the length of the channel. E11is(1970) used the following
expression for evaluating W between Ehe limit a,b. B

2u2 : ‘ db

- , ] 1n [ ]

W=1[nu

where u is the mean velocity,

1 b _Q
u  w— ax
X X, El.l' bd

and Q,b,d are assumed to be linear function of x.

The characteristic equations are now written as

17



12 12 _ 1A
u, + 2(g@,) 7T =T, 4 20gd,) e o+, 0wy,
2 _ _ 12 - ]
u, -I2(gd2) = u, 2(gd3) + e32+f32 + W, IB
IA + IB . _ Ia-1IB .
u, = T b 9= 169 - (22)

Conditions at ! and 3 are known but due to the unknown conditisns
at point 2 some initial estimates have to be made in order to evai-
uate ‘e''f' and ‘'w'. Therefore, an iterative progress has to be
employed to solve the unknown at point 2.

El1is(1970) applied the above scheme in studying flows in
Rhu Narrow at Clyde Sea area(Scotland). The grid is very. similar
to that of Hartree, who first developed this method (Fox 1962).

In the figure 4 the conditions at node i are assumed to exist
at j and using these values the - characteristic velocities uittgdi)bq
are calculated. From these celerity and the time stepAt, the inter-
cepts a and b of the '‘positive aﬁd; negative characteristic on the
line tO are found. Interpolations between nodes i-1 and i and between
i and i+l give conditions at a and b respectively. Th= relationship
between section spacing, the wave celerity and the time increment
is such that the intercepts a and b always fall within the adjacent
nodes. From conditions at i,a and b, values IA and IB are calculated
as explained earlier. An iterative method is used till desired accu-
racy is achieved. It has been said that the computing time required
for a 16 hr.tide simulation was 1 hr.

It can be found from .Ellis(1970) work and others that the
method of éharacteristic is accurate. This method generally and

automatically makes a closer mesh in area of rapid change and sparse

18
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mesh in other regions of the domain. This is a favourable spacing in

computation_.ﬂut often practical problems need the grid as used
by Ellis{1970). In either case this method is associated with. a
main disadvantage that it requires river cross-sectional data and
roughness character etc.at intermediate sections in between the
sections at which they are known. Since, these data will be Xknown
only at fixed locations and not at intermediate sections, which
needs interpolation, this method did not gain importance; in the
field problems.

- However, Wylie,E.B.,(1980) developed an alternaté, formulation

where interpolation are made on time line rather than space line

as has been done in Ellis method.

2.2.2 Implicit Modelling

Stoker and his colleagues (1953) first anticipated the need
for an implicit method for flood routing. Later Isacson (1954) devel-
oped further and applied them to river problems. In implicit method,
two or more unknowns at the upper time level are related to one
another. Since implicit methods do not require short time steps
for solution, they are preferred.

Among the various implicit schemes used in open channel flows,
- the four point scheme of Amien(1970) ,abbot{1967) are mentionable.
In a comparative study, Price,R.K.(1974) has concluded that implicit
scheme of Amien to be fhe most efficient one. Amien(1975) presented
a modified version of his earlier work.
Amien's four point scheme:

Amien(1975) considered a non uniform rectangular grid on

x-tplane as shown in figure 5. The partial derivatives at a point,

19



i+, j#

at’

j—AX

i1'1 ’J

FIGURE 5 ~ SPACE TIME GRID

20

26




M, of a function of Q:y,etc.,with respect to x,t are expressed as:

9a__(m) _ a{P} + a(T) _ a(R) +a(s) , 1
5t [ = 5 3 ]ﬁt e (23)
where, a is a variable.
_ggim) = a(P')- a (T')
X A
X
= &{ (1-8 ) [ a (R) - & {s)] + & [a (P)-a (T}]}
' e..(24)

in which; g= At'/p t; is a weighting factor.
Thé weighting factor, has been found to be important, in the stabil-
ity of the numerical methods. When g =0 the schedme reduées to explic-
it, when 8 = .5 the scheme produces an implicit centered difference
scheme known as bok scheme. The box scheme is accurate and stable
for slowly varying flows. However it produces numerical oscillations
under certain transient conditions. They do not occur for 0.5<6
< 1.0. Amien says for 8 = 1 the method can take flow problems fanging
from abrupt to slowly varied. But Cunge(1976) recommends a value
of less than unity. |

Applying the above approximations with 8 =1 the continuity
and momentum equations 1 and 2 can be written as follows:

a) Continuity equation

41 j+1 _a)
Qd*) o it Miedy - due -l .
i+1 i + 2 2 _ j+1 1 =0 (25)
ﬁx At q i + .2- LI )
in which: .
1 i+t
Af{i +— ) = - JA(x)dx . . (26)
2 xi+1 xi xi

The wvalue of A (i + 12) depends on the shape of the channel and how
the cross sectional area varies with distance. A practical approxi-
mation is mentioned in section:

21



b) Momentum equation.

g+ .
N MY
At e 3T 3 M
(i+ 5= )
Coit! (2 3412
1 [ Q74 ) ~ (Qj_ ) 1 1 .
j+1 L j+1 j+1 TR R,
A+ % Aie1 Ay i+1 1
4 341 Sy i ‘ j+1 _
+ - [ (y; +2, ., )= (y; +z)l+gs =0
in which Xiw Xy A*1 AT UL TR f. 1 ea(27)
BAg R
Q: l 1 . i +1
2T XL x, xr* Q_(;.t) ‘_lx
i+ i i :
and _ R
' ' [
ngl 1 = & —x. e S0 %,t) ax

Amien assumeé a linear var.i.nl::l.ori_ in Q." Sf, A and y with distance

x between the grid points.

The finite difference ‘representation of the two eq_uhtions

L]

are modified with the above assunpt’ion-.-anﬂ written as follows:

j+1 hj+1' C j+1 J+1, .3 3 ' _
Qe ~ @ +(bei /At:i )« lﬂ YA L ¢ L 1= (A7 .y Ai;rqix.tlei 0 |

~ e (28)
+1

I _ 4] ¢ ol 2, 341 _
Qi_ Qi+1)+'“°i+1}/ni+1

(21« 037 -

41,2, 341
CQhE AT aey ) vy sax)

(gi+1  _ j+1' j+1
Tier THTOY ORAY

j+1

f

- ag”) + (g7er(sd? 4 s
' 1 i+1

£1 } {Atj)
341

141 Ay =0

A
.e.{29)

All variables with superscript } are known with J+1 are unknowns.

In the above two equationg, there are 4 /independent unknowns. These '
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unknowns are the values of the discha;ge and stage at ‘gtid points
(i, j+1) and (i+1,j+l);'_The distance increment ﬁxi and the time incre-
ments A t.. need not be constant. The equations (28), (29) constitute
a system of two non linear algebraic equations in four unknowns.
But they are not sufficient to solve for the unknowns. It may be
noted that if there are N points,2(N-1) equations can be written
in 2N unknowns. Two additional equations are needed to determine
all the unknowns and they are provided by the boﬁndary conditions.
The following may form the necessary boundary condition:

1.Stage or discharge as a function of time at the upstream

end.
2.-Stage or discharge as a function of time or stage-discharge
relationship.

The generalized Newton iteration method is recommended by
Amien for the solution of the system of algebraic equations. Amien
alsc applied the methodolbgy to various field problems and showed
that implicit scheme requires much less computer time, in view of
large time steps used:. Another advantage of the implicit method
is that the time step can be selected in accordance with the physical
requirements of the problem rather than those of numerical stability.

Price's R.K.(1974) conclusion on four numerical methods has
been Imenti'oned in the beginning of this section on implicit modeling.
It is to be noted that his comparison is based on modeling of mono-
clinal wave with Chezy form of equation for energy slbpelsf). He
compared the followimj methods: 1} Leap Frog explicit method, 2)
Two step Lax\-Wendrof'f explicit method 3) Four point implicit method
'of Amein and 4) Fixed mesh c¢haracteristic method. He further discu-

ssed that if a rating curve is available at the downstream section
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of the river and if the flocod wave speed' is sufficiently smaller
than the courant speed{ Ax/ A t) then the implicit method isidefini-
tely faster than other methods for a similar accuracy. This advantage
is. particularly useful in the case of floods in rivers with small
bottom slope. In case of steep slopes the speed of the wave may
be comparable with the courant speéd, there is little choice between
the methods. The speed of the peak of the flood ﬁave, which is over
the bank,' can be considerably lesser than the speed of a flood
peak which is just with in the banks of the same river..This varia-
tion in the speed of the peak has a direct bearing on the accuracy
of the implicit method. Price,R.K.(1974) suggeéted that the accuracy
of the numerical solution for a large flood, which inundates the
flood plains can be maximised by a choice of the time step appropr-
iate to the speed for the peak of the flood just overlaps the banks
of the river channel. Finally, it is to be noted that the dependence
6f a variable at one mesh point on the values of variables Qt all
other mesh points on the same and the previous time levelé. can

not be explained on physical basis.

2.2.3 The Finite Element Methqu(FEM}:

The ability to model curve boundaries accurately and to repr-
esent non linear material propertiea easily make this method a power-
ful technigue to solve many engineéring problems. Among various
methods in FEM Galerkin technique is popular in solving complete
St.Venant equations. In this method algebraic approximation to the
variables appearing in complete equations produce an expression
for the residual error. Then by using certain mathematical criterion

each method forces the residual to zero. This criterion is different
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for different methods. In this_process of making the residual vanish,
the method produces an algebraic system of equations solving this
system yields thelvalues of unknown variable at the required points
.in time and space. Fread, D.L.(1981) commented that the mathematical
bagis for finite element sdlution sbhemes is not as easily understood
as finité difference approach. The use of finite element method
to route floods in channels and natural streams is presented by
Cocley and Moin(1976).
A variance of conventional FEM methdd was proposed by Niljolaos
D Katopodes(1984). He concluded that the cost of computation using
above approach is comparable to that of an implicit finite difference.
Scheme using same number of grid points. Table 3 brings out the
relative merits and demerits of finite difference and finite element

methods.

2.3 Energy Slope
The dynamics of the river flow is much influenced by the
energy slope. (Sf) caused by the frictionai resistance produced by
bed and banks. Prediction of this still pose a problem to engineers.
There are many models which are using uniform flow equatiaons
like'thelManning's equation, the Chezy's equations etc. For example

HEC 2, HEC6, HEC2SR use the Manning's equation.

s «++ {30}

wheré R is hydraulics radius and others are as defined Iearlier.
Einstein and Barbarossa(1952) reéommended the use of Mannings-
Strickler equation
0/, = 7.66(x/x_)'/® e (31)

/2

1 . .
where, U = (gRSf} and is known as shear velocity and KS is sand
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Table - 3 Comparison of Finite Difference Methods(FDM) and
Finite Element Method(FEM) '

No. FDM FEM

1. A difference approach An integral approach

2. Approximation by grid points aApproximation is by finite

element

3. Non linear variation between Non linear variation adds
grid points are not possible no complexity.

4, Curved boundaries require Curved boundaries can be
larger grid points represented with few curved

elements.

5. Grid formation is simple Needs greater care to discretize

6. Unit cost of computation Unit cost increases with
{Per node per time step) size of the problem. '
is independent of the overall
size of the problem
(Weare,T.J. 1976}

7. Matrix techniques are not a must Matrix techniques are gener-

. ally required.

8. Accuracy is comparatively less High order accuracy can
{in few cases) be achieved.

9. Hand computations are possible Computer is a must

10. Problem formulation and

subsequent computer programs
are relatively simple

Both formulation and computer
program development are
formidable task.

26



grain diameter taken as bed sedimenﬁ size such that 65% of the mat-
erials-are finer. | -

‘Both the equétions(30,31) can be used .with confidence .in
the cése of rigid bed channels and also for alluvial rivers with
flat bed.

Bowever, when undulations are present in the bed these equations
can not give any reasanable prediction cof energy slope. The Manning's
n is found (Garde, et al 1977} t6 be a function of discharge Q.
_ Krishnappan,B.G.(1985) derived the following form of the equation
based on works of Kishi and Kuroki(1974).

Sf = Constl R/D)M(VKgR)N .. {32)
where, V is the avgrage-velocity, M, N are constants and other terms are
defined as earlier. He has also brough£ number of existing formulae
to the above form which are shown in table 4.

In the model MOBED developed at the Hydraulic Division of
National Water Research Institute at Burlington, Ontario, Canada
the generalized equation {32)for energy slope is used. This permits
easy updating of the analysis without any structural modification
and enables the users to improve predictive ability as new relation-
ships are developed for energy slope.
ﬁoundary Conditions:

The equations 1 and 2 are solved for the following boundary
corditions. |

Initial condition:

A(x,o0) Should be known for all

Q(x,0) x under consideration when t=o

Upstream condition:

Al{o,t) should be known for all
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Qf{o,t) Time steps t so at x =o
Downstream condition:
A(L,t) Should be known for all time steps t o at x=L
When ﬁ is the total 1length df the river for which routing
is done and t is time. Almost all the modelers use these boundary
conditions. However a simplification is _usually made by usin§ the
water depth y(x,t) instead of A(x,t}. This means that an assumption

of uniform width throughout the depth of the cross sections is made.

2.4 Bank Storage Effects:
The flood problems in India are concentrated in places where
hydraulic connections between stream and aquifer are actively present.
In the case of rivers in the Ganga region where élluvial river
lengths are large the bank storage can modify the flood magnitude.
Pinder G.F. and Saﬁer,S.P. have made a numerical simulation
of flood wave quification due to bank storage effects. The partial

differential equations used by them are:

yr. L 8 | 3y

ax ox 3t = ' 9 *tq /b .44 (33)
av Ay
V 55 t9 ™ + V(ql+q° ) /by + g: =95, =S.) ...(34)
2 - 2
d"h 3"h
T + T, 28 = ah_
” 382 Y ay2 S 3% *q /(br2y)+ Wix,y,t) ...(35)
9/ {b+2y) = - kp (y + z, - h) / Az o0 (36)

where:

Note: Bank storage is caused temporarily during the passage of
flocd and consequent raise in ground water level near a channel

because of inflow from the stream.
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y — the depth of flow(L)

v - veibcity of flow (L/T)

ql - flow into the channel per unit length of wetted peri-

meter (LZ/T}

q, - lateral flow per unit ,length‘ over the channel banks
and from tributaries(L/T) -

b - is width (L)

g is acceleration due to gravity

S, - bed slope

Sf- energy slope

T - tranémissivity (Lz/T)

h ~ hydraulic head L

S - Storage coefficient (dimeﬁlion less)

Wix,y,t) - verticél discharge from the aquifer per unit'area(L/Ti
= 0 if there islno sourxce o£ sink.

Kp - hyaraulic conductivity

-The following boundary conditions are also applied

ah =
dx l (OJYrt, 0

3h -
ax | (llet} 0

0 dh_

dh I =
a3y ' { x,0,t) _éy-l (x.dat)=0

together with an initial condition

h {(x,y.,0} = f(x,y}
Pinder,et al. used finite diffgrencé.nethod to solve these equations.
They found that bank storage attenuates a flood wave and this modi-
fication of the wave may be considerable in a long alluvial reach.

The length of the channel reach and the hydraulic conductivity of
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the flood plain aquifer has a considerable influence on the modifi-

cation of a flood wave by bank storage.

Hall and Moench({1972) have given analyticél equations that
would give the hydraulic gradient at.the interface between stream
and aguifer for an unit change in stream stage. Making use of these
expressions and convolution techniques Larry F.Land developed a
model for streamflow routing with losses due to bank storage. The
model is being used in U.S.Geological Survey. Routing is carried

out by a simplified model known as diffusion analogy.

2.5 River and Delta

A delta is usually formed by sediment depoéition as a river
enters into a reservoir, a lake or a massive water body. It is nece-
ssary to determine the variation of the flow pattern during a delfa
formation, since it affects the hydraulic parameters, such as flow
velocity, energy gradient.

Chang and Hill{(1977) use minimum stream power concept in
hydraulic routing of a flood in river deltas stream. It is postulated
that during delta formation the delta stream width varies in such
a way that the total stream powef of the river flow is minimum.
However, physical-constraints are to be taken into account. In other
words,a the delta stream adopts a width that represents the most
efficient pattern of river flow with the minimum rate of work done
to overcome flow resistance. Yang(1976) has also used this concept.
But he used minimum unit stream.power and hence different from Yang's
who used total power.

Basic equations used in hydraulic routing by Chang are :
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39 + __.._aa -gq = 0 : .. {37)

ox at
2,2
oH .| 13( A ) _Q_ =
g B 99 - Q_ax;,gs 2 q=0 ...(38)
JA aQ
(-xy 22 %8 L .ea139)
at X 8

where,

Q is flow discharqe(m3/sl:

A is area of flow (mz)a

H is watersurface elevation{m);

8 is the energy slope computed using Manning's equation;

Ab is the cross sectional .arga of bed above an arbitrary

frame;

'Qs is the volumetric sediment rate; and

9 is lateral inflow of sediment per unit length.

The sediment rate Qs needs to be_gvaluated using proper équation.

The non linear partial differenfial equations will be written
as difference equations at a number of discrete points in the space
time domain. Usually the cross-section along the river reach are
taken as the discrete points. Using initial and boundary conditions,
the solutions- are obtained.

| In the finite difference scheme used by Chang and Hill(197f}

the partial derivative at point 'B!' of a function with  respect'

to x, t can be written as

_aL - """1"" j+1 j+1 : . 40
ax Ax.( ¢i+1 °i ) (40)
and i
o 1 j+r j
ottt B — ( 0 l - ¢ . 1 )
ot ﬂtj {1+ 2 ) (i+ E—) ...Fd!)
in which
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3 X
¢ (i + 12) -ﬁxi £ $(x) dx ee.(42)

and i,j represent space and time. For practical purposes the equat'ion

42 can be simplified as

0( iv2) " (_¢i + ¢i+1) /2 ... (43)

The primary equations 37,38 are written in the finite diff-

erence for:in as follows}

; = 0ly -0l el Al Al )-alx, &) At =0 .. (44)
- 3+ j+1 Q- oI
€ = AL 40y, -y,
j+1.2 i+ _ j+| 2 j+1
* 0l A, / A
j+1 _ it j+1 §+1
+ (g/2) 9([-! H 1 [ Af, + A ]
G+ j+1 3+1
+{g/2) S +1/2( Aiagt ) A 1::J
j+1 3+1 j+ j+1 _
£(01+1 V{Aiﬂ + Ai Y] qix,t)A 1:j =0 .+.{46)

In the above two equa.tions, all variables at time j are known
and at j+1 they are unknown. There are N-1 points in the space domain
where similar equations can be written. Therefore there would be
2(N-1) _equations containing 2N unknow_ns in Q,H. CQther wvariables
liké A and S 3are dependent upon Q and H. Two additional equations
are obtained from boundary conditions at the upstream and downstream
ends of the stream. At the upstream boundary, the discharge or stage
may be given as a function of time, and resulting the following

additional equation:

. QJ+|'_ Q'(th) -0 ... (47)

o ] _
or"

- Hj+1 - (t]+1

Go 1

) =0
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\ j+1 : , N
in which Q'(t37') and H‘(t.t'”) are the discharge and stage at the
upstream end at time t]+1. At the down stream end if the sﬁage is

known as a function of time, the boundary condition is:

F =B j+1

N L '
v = By He(e?T) = 0 | ... (48)

If the stage and discharge relationship is known, then
R, T - j+t,
Fy = Hy H (QN ) =0
is imposed as an additional equation. The generalized iteration
method of Newton is used for solution. This method achieves the
solution by. successive solution of linear system of above equations
44-48.
The sediment bed area correction A Ay for a time increment
At is found using sediment continuity equation 39 as follows:
AAb=-(At/(1—)\))[(aos/ax)-qs] T .ea(49)

At a section i the term for lateral sediment inflow is written as

= J+1
: (1/2) (qai+ Qg )

A backward difference in space*' and centered difference in time is

used to represent( 9Qs/x)

j j+1 3 41
Thus aQs = _l_ [ 9i * 9% _ 95i-1 %i-1 ] (50)
ox Ax, . 2 2 Tt
{i-1}
The total stream power of the river is
€ = [Yosa ... (51)
4]

where,€ is streampower or energy loss per unit time;
L is the total length of the river;
Y is the specific weight of water and sediment mixture;
Q is the discharge; and
S is the energy slope.

This stream power, € is computed at each of the time steps. The width
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at which stream power is minimum is found by trial and error pro-

cedure. A new delta radius is obtained according to:

3 phd
. Q +Q
It _ 3 SN SN At ...(52)
& X -1 Axyoi R '
d d

The computer program FLUVIAL 5 is based on above methods
developed by Chang and Hill(1977). They have given step by step

procedures for computations.

2.6 Flood Plain

Complications occur in routing with flood of flood plains.
Extensive flood plains will generally show a flow pattern which
is essentially two dimensional(in a horizontal plane). This situation
is complicated by the ocpurance'of field irregularities and obstruc-
tions like bridges etc. Grijsen and Vrengdenhil,(1976) have modeled
Rhab Plains in Morocco. Implicit finite difference technique has
been used. Inundation maps were reproduced very satisfactorily.

Radojkovic(1976) used two separate - equations defining flow
in the channel and plains; A similar study has been made by Puru-
shotam Das and D B Simon (1976). They have divided_the flow according
to the conveyance of the channel portion and other divided portions
of the sections. This is a multi-stream flow approach and can be
called as quasy two dimensional model. Dass et al{1976) included
sediment transport also in this model. D.L.Fread{1976) studied unst-
eady flow in a natural river which meanders through flood plains.
He has distinguished flood plain length from channel iength. Flood
peak attenuation and travel time were found to increase as' flood

plain roughress and width increases and as channel sinosity decreases.
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Attenuation increases and travel time decreases as the flood plain

flow increases except at low flood plain flows.

nay

Data requirements:

The primary data needed forﬂhydfaulic routing is the geometric

coordinates of the cross-sections_ More the number of cross-

sections better would be the physical description in the model

subjected to the limitétion‘of croés-sectiona should adeguately

describe the flood glain'-bn either side

F&r rivers in plains Fhe characteristics of river bed materials
are necessary. The size distribution of bed materials are
to enable_the estimation oftééiét;on factor.

Upstream hydrograph the hydvographs at tributaries alongwith

their locations.

W,

These are general requi:eugﬁ#p_ however diffefgnt Programme

need different additional data.
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3.0  CONCLUSIONS | t .

Routing models for water in rivers and to some exfeht in
alluvial river have been reviewed. Although all the methods present
in the literatures are not included, some useful methods that have
been tested and verified are reviewed.- They are one dimensional
models. In general, a one dimensional model is adequate to study
large river problems when extensive flood plains are not involved.

The complete equations are sufficiently correct and only
the supplementary equations require cqnsiderable attention amd furthér

research.

The method of characteristics have- been applied to field
problems. Since this method uses a finite Qifference grid, it requi-
res the same amount of effort as FDM. Complex curved boundaries
produce difficulties in both the methods.

Finite difference approximation are relatively easy to apply.
There are several applications of this method. Amein's (1970) impli-
cit finite differences method is reported to be the best.

fhe finite element method is foudd to have been used by few
modeler in routing. These methods have admirable quality of modeling
curved boundaries.

No particular numerical method is best for all ;pplications.
For any given problem the choice of the method depends on the pfoce-
sses being modeled, and the accuracy desired. However, as Fread,D.L.
pointed ocut that the personal preference(based on his familiarity)

of the model developer is determining factor in selecting the method.
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