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ABSTRACT
Overland flow is defined as a thin sheet flow occuring before
surface irreqularities cause a gathering of runoff into discrete stream
channels. The primary distinguishing characteristic of overland flow
is its shallow depth relative to roughness elements. The overland flow
is an unsteady free surface flow and the most dynamic part of the res-
ponge. of a watershed .due to excess precipitation. Since the floods
are mainly due to direct surface runoff resulting from excess precipi-~
tation, therefore the accurate estimation of the direct surface runof f
will provide the better estimates of the flood peaks and frequencies
to the engineers and scientists involved for the design of flood control
structures. Linear mathematical models describing stream or river out-
flow due to stérm- runoff do not explain several- important observed
features, such as the change in shape of the discharge hydrograph,
the non-linear vafiation of peak discharge rate with variation of rain-
fall intensity. Numerical model based upon the shallow water equations
or the kinematic wave equations can be used to calculate runoff hydro-
graphs resulting from rainfall on small watershed as it overcomes
'the deficiencies associated with the linear models. The kinematic wave
approximation model has also advantages over the linear -model for
predicting runoff for ungauged watersheds because the model structures
and resistance parameters can be estimated without prior rainfall and
runoff records.
The first step in applying these models is to decide upon the
model geometry The simplest way is to represent the catchments by
simple geometric elements such as a combination of two planes and channel

or linearly converging or diverging sections. The next step is the



solution for the overland flow. Horton and Izzard had solved the mass
balance equation for the estimation of overland flow. Later on Behlke,
Henderson, Wooding, Morgali.Linsley,Abbott,Brakensiqk and Woolhiser
had applied method of characteristics for -solving. continuity and
momentum equations numerically. pifferent shapes of input are considered
as a separate case, out of those three cases are of our interest:
(i) the rising hydrograph for a constant input and initially dry cﬁnd-
itions, (ii) the recession from steady outflow conditions after the
cessation of input and (iii) the transition fraﬁ one.éteady state to
another when there are two diffe:ent constant supply rates in successive
interv#ls of time. ”

Generally two main problems arise with kinematic flow mpdelling
{i) ﬁhe physical relevance of the .kinematic shocks that result ‘from
the mathematics (ii) the adequacy of the numerical scheme with respect
to its stability and convergence to the equations that the scheme is
intended to represent it. Indeed numerical schemes based upon a direct
discretization of the partial differential equations are incapable
of predicting and tracking.the shock§ that are known to occur in the
exact solution. Instead, instaﬁility or convergence to a different
set of equations result. A general review has been made for different
n;.lmeriéal schemes utilized by various investigators for modelling the
overl#nd floww The advantages and limitations of these numerical schemes

are also described.
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1.0 INTRODUCTICON

1Nl-'uanver and wherever the rate of precipitation exceeds the infil-
tration rate at the sgurface, the excess water begins to accumulate
in static surface storage. The capacity of this storage is governed
by the extent to which geometrical surface irregularities and surface
tension can dévelop forces to balance the_ increasihg gx;avitional'_ forces.
When the local static storage capacity is exceeded, surface runoff
begins as a thin sheet flow. The local gravitionai potential gradientsl
are develcoped due to surface irregularities and due to this gathering
the runoff inﬁo ‘discrete stream channels take place. These channels
form a tree like network which ensures that the flow immediately below
each confluence exceeds that in either of the merging branches. It
is clear therefore that in general there exists a whole spectrum of
channel geoﬁetries and flow types. At one extreme lies the thin sheet
flow called overland flow. It is likely to be the primary flow in urban
runcff and in surface runoff from mrf small natural areas having little
topographic relief. The next distinctive type is found in the smallest
- stream channels which gather the'.‘ overland flow in a continuous fashion
along their length of form the lowest order of stream flow. As these
smallest streams merge with one another, they form streams of higher
order which will have concentrated tributory inflow as well as contin-
uous lateral inflow.
" The build up and decay of river flow as a consequence of heavy
rainfall is a central problem in design ot hydraulic structures and
the planning of. flood contr-ol measures, often the prediction of flood
peaks needs to be made with considerable precision.

Most of the standard methods of analysis of surface runoff are
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based upon linear models and of these, the unit hydrograph is the most
widely used. However, the underlying physical mechanism of  runoff is
not taken into account and the assumption of linear model appears to
be in coﬁflict with known profession of the runoff equation.

Recent application use the equations of motion(particularly
with kinematic flow approximation) -in describing the hydrodynamics
of overland flow. Kinematic eagcade models, which consider the outflow
from one area as the boundary .condition for the next area serve as
a generally good physical model for overland flows and are amenable
to economical numerical solutions.

Generally two main problems arise with - Kinematic flow modell-
ing: (1) the physical relevance of the kinematic shocks that result-
from the mathematics, as evidenced by intersecting characteristics
in the method of characteristics solution and (2) the adequacy of the
numeric&l schemes with respect to its stability and convergence to
.the equations that the scheme is intended -to represent. Indeed, nume-
rical schemes that are based upon a direct discretization of the part-
jal-differential equations are incapable .of predicting and trackihg
shocks that are knowq to occur in the exact solutions. Instéad. insta-
bility or convergence to a different set of equations result. Here
a general review has also been made for different numerical schemes
utilised by various investigators in order Ito estimate the overland
flow and _the advantages and limitations of these various numerical

schemes.



2.0 REVIEW

2.1 ¢eneral

The movement of water in surface or overland flow is another
import#nf land surface process. One should consider the interactions
betweeh overland flow and infiltration as both the processes occur
simultianeously. During -dverland flow water held in detention storage
remains available for infiltration.. Surface conditions such as heavy
turf or very mild slope reduces the total quantity of runoff and incr-
eases the infiltration rate. Short high intensity rainfall bursts are
appeared as surface detention storage reducing the maximum outflow
rate from overland flow.

‘Whus, the essential prqblem pf overland flow is to determine
the qlow off the plane at the downstream end for giwven physical condit-
ions '‘and a given pattern o lateral inflow along the plane. Tﬁe contin-

uity equation for this problem can be written as:

-*%E + %f— = gix,t) (1)
where
Q = Q(x,t) = rate of overland flow per unit width
Y = y(x,t) = depth of overland flow
and q ='§(x,t) = rate of iateral inflow.per.unit area.

The dynamic equation for two dimensional overland flow can be
written as

gu 3y u_ . Ju
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where u=ui{x, t) velocity of overland flow

"
]

Slope of plane

-

Sf = friction slope

Though the continuity equation is linear in Q and y, the dynamic
equation is highly nonlinea‘r. Equations{1) and (2) can be solved numer-~.
ically by means of a high speed digital «ogputer for any given set
of boundary conditions. This approach will bhe considered in the later
part of this review. For the preseht., however, the simpler .approaches
to th‘e particular problem are considered and an attempt is made to
find a simple mathematical or a .Bi.ll.'lple éonceptual medel .

The classical prﬁblem of overlalld _flow is to solve the particular
case where the léteral flow is uniform along the plane and takes the
form a unit step function:

q (x,i) = U(t) vee(3)

The complete solution of this pfoblem can be divided into several

parts:

(i) | There is the steady state problem of determining the equilibrium
profile when the outflow at the downstream end of the plane
is equal to the inflow over the surface of the plane.

(ii) There is the pr.oblem of determining the rising hydrograph of

outflow before equilibrium for the special inflow case repres-
ented by equation 3. If the problem were linear one, the solut-
ion- of this second problem would be sufficient to characteriz.:e
the response of ﬁhg gy_a_tém, and the outflow hydrograph for

any other inflow pattern could be derived from it. However,



since the problem is inhefently non-linear, the prin;iple of
‘superposition can not be applied, and each case of inflow must
be treated on its merits.

(iil) There is the basic _problem of determining the recession from
the equilibrium condition after the cessation of long continued
inflow.

(iv) Another basic problem is to study the nature of the recession
when the inflow ceases bhefore eguilibrium is reached(that is
before the outfléw builds up to a value equal to the inflow).

{v) The next step is to investigate the effect of an inilow formed
by the superposition of two or more Step functions. Thus, the
fifth basic problem' involves consideration of case where there
is a sudden increase from one uniform rate of inflow to a second
higher_rate of uniform inflow.

(vi) The sixth case considered is that when a uniform rate of inflow
is suddenly changed to a second uniform rate of inflow which

is smaller than first.

2;2 Different Approaches For The Sblution of Overland Fiow Problem

Two approaches have been considered by various investigators
for the solution of overland flow problem.

.

2.2.1 Mass balance approach

In this approach the dynamic equation 2 is replaced by an assumed
relationship befween outflow and storage. Because this method was first
proposed by Hortan (1938) for owerl;nd flow on natural catchments and
subsequently used by Izzard(1946) for paved surfaces, it may be referred

to as the Horton-Izzard approach.



Hydrologiéts noted that when the equilibrium runoft{that is
the equiiibrium discharge at the downstream end) of a number of exper-
imental plots was ploﬁted' against the average surface detention {or
total surface detention) at equilibrium on ‘log-log paper, the experi-
mental points fell approximatelv aléng a straight line. An exact linear
relationship on logarithmic paper would indicate that the equilibrium
outflow at the downstream end and the equilibrium storage were connected
as follows:

QL,t ) = Q =25 | .o (4)
. e . .e ' e -
where Qé was the discharge at the"downstréam end of the plane under
equilibrium cohditions, Se was the total surface storage at equilibrium
conditions and a and olwere parameters.

In the Hortan;Izzard .apéroach to the' overland flow problem,
the assumption is made that such a power relationship holds not only
at equilibrium, but also at any time during the rising hydrograph or
during the recession. Using this équggion one can write

Q(L,t) =QL_=as° veod5)
where QL is the discharge at the damngtream end at any.time and .S ig
the corresponding total storage on the surface of the plane of overland
floﬁ.. The equation of continuify. _equation 2 can be written in the

hydrological form as:

= 48

Qb = Q. = Gt ] v..(8)
which for the above assumption can be written as
' C  ds ' ...(7a)
_ Q ~ 35 * &
or ' - a dtl= _Q% . ..s17b)
The solution of the equation(7) is:
= . _d{s/Se )
aSe e
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Equation 8 can be solved for different values of C. Horton (1938) solved
thé equation of the rising hydrographs due to the step function input
for the case of C=2, which he dgscribed as 'mixed flow' since the valuq
of Cis intermediatg between the value of S/3 for turbulent.flow and

value of 3 for laminar flow. Horton's solution may be written as:

g: 2 i . .
Qe tan h™ ( t/Ke) | .-+ {9a)
where
s «e.{9D}
K =—=
e qe

Since the system is non linear, the time parameter Ke will depend
on the intensity of :inflow. Hbrton gave an ‘emperical expressiqn .for
;he equilibrium storage per unit width and his equatioﬁ for the rising
hydrograph has been used in the design of airport drainage since that
time. 1zzard(1944) presented the solution for the case of C=3 (for
laminar flow) in the form of a dimensionless rising hydrograph. Izzard
used as his time parameter a time to virtual equilibrium,which is exactly
twice the time parameter used in eQuatiop 9 above.

For recession from equilibrium, the recharge in equation 6 becomes
zero and the insertion of the value for q from equaiion 5 leads to -
the sclution: | _ :
Q o | ...{10)
{_QESC “N/Ca 1 4 (e-1) t/K o
where Q is the ordingté-of the receasion curve and t is the time elapsed
since the dessation of ihflow, that is, the time since tﬁe Qtart_of
recession.

If the duration of the inflow(D) is less than the time required

to reach virtual equilibrium, we get a partial recession from the value



of the»‘outflow(QD) which has been reached at the end of the inflow
having the same shape as for recession from equilibrium except that
the recession flow enters the curve defined by equation 10 at the appro-
priate value of Qe/QD |

If there is a change to a new rate of uniform inflow during
the rising hydrograph, two cases can occur., If the new rate of inflow
is higher than the rate of outflow when the change occur, the same
dimension less rising hydrogrgph can still be used, but since 9 is
equala to the inflow at equilibrium the value of q/qe will change as
scon as the rate of inflow changes. If the new rate of inflow is less
than the outflow when the change occurs, the hydrograph will correspond
to the falling curve of the varied flow.function.

The conceptual modoel based on Horton-Izzard solution clearly
assumes that the whole system can be lumped together and treated as
a single non-linear reservoir whose ocutflow-storage relationship is
given by équation 5. Even tﬁough this conceptual model is extremely
simple in form, the fact it is nonlinear makes it less easy to handle
than some of the apparently complex conceptual models used to simulate
linear or linearized systems. Thus the impulse response for such a
system no longer characterized the system because the output will also
depend on the form and intensity of the input. The solution for a step
function input can not be used to obtain the output for a complex pattern

of input.

2.2.2 Solution of kinematic wave equations
The second simple sclution propoaed for the overland flow problem
is kinematic wave solution. The Kkinematic wave equation comprise an

equation of continuity and an approximation to the momentum equation.



These equations for the plane can be written respectively as

X 22— = g (x,t) NOREED

ot
Q =ay" | el (12)
where
Q = rate of outflow
y = depth of flow
gl{x,t) = lateral inflow per unitarea varying in time and space.
t = time coqrdinate
X = space coordinate, and
@and m = Kinematic wave parameters of friction relationship.

Combining equation (11) and {(12):

9y -t 3
+oamy” 55' = qlx,t) _ eea(13)

Equation(13) is a partial differential equation having a single
family of characteristics. The solution of equation(i13) in conjunction
with appropriate initial and bﬁundary'conditiona, will completely
characterise the outflow hydrograph.

The above forms of continuity and momentum equations was first
Gerived by Koulegan in 1945 for overland flow. After an an‘dlysib of
the magnitude of the terms in the momentum equation, he suggested that
the above form of equation which we now call the kinematic wave eguation
would he appropriate for overland flow. The following two are methods
available for solving the kinematic wave equatlons:

a) Analytical methods

b} ‘Numerical methods.

a) Analytical Methods: -
Parsen(1949) used the ‘kinematic approach in describing the rising

hydrograph of small runoff experimental plots. In a landmark paper,



Lighthill and Whithamn{1955) developed the mathematical theory df kine-
matic waves including the mathematicacZ phenomeﬁon of kinematic shock.
They also suggested the kinematic approach to overland flow modelling.
Iwagaki(1955) independently bame to the same conclusion for channels
with steep slopes. Henderson (1964) obtained analytical solutions for
the kinematic wave equation for simple plane and channel geometries.
He analysed the problem and developed the equations for the rising
hydrograph and falling hyﬁrograph by arguments used on the method
of characteriétics. Wooding(1965) alsec obtained analytical solutions
by the method of characteristics, firstly, for flow over a plane V
shaped catchment uhder a constant uniformiy distributed rainfall of
finite duration and secondly for the stream outflow arising from the
catchment dischafge. This simplified two component model had only four
parameters: two dimensionless ipdices in the power law eqﬁations of
" the motion assumed-for catchment and stream flow, a scale of (i)} rainfall
intensity or{ii) total rainfall or (iii) rainfall duration and a

dimensionless parameter which reapresents a ratic of suitably defined
time constants for stream and catchment respectively. Wooding found
_the catchment stream hydrograph for either stage or discharge rate
was a smooth curve having six' diaéontinuities in curvature. He also
gave the locations of these discontinuities, and hence the shape of
the functior. depending upon the value of the parameters. He noted that
the rising hydrograph depend_sl initially only upon the integral of the
catchment out flow. In this region various segments of the curve exhibit
~ power law behaviour, but this is in fact a cénsequence of assuming
power law depth discharge relationships. For a similar reason, the falling

part of the curve exhibits the power-law decay.
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b) Numerical methods
Since the assumptions leading. to anhklytical solutions are_so res-
trictive that their practical utility is greatly diminished, therefore,
numerical or hybrid solutions of the kinematic wave equations were
obtained by investigators.

Wooding{1965) obtained the numerical or graphical solutions
for the problems where the rainfall varies arbirtrarily with time over
the catchment. He examined the effects of varying rainfall over the
outflow hydrographs. The variation in rainfall was performed by consider-
ing (i) total rainfall constant'or(ii).constant ‘intensity of rainfall
or (iii) constant duration of rainfall. He.élso investigated the possible
modifications due to infiltration at the catchment outflow hydrograph.

Brakensick(1966) used numerical solutions of the kinématic wave
equation to describe surface runoff from rural watersheds. SChaakey
(1965) used numerical solutions of the contiﬁuity and momentum eguations
to describe runoff from urban watersheds and Margali and Linsley{1965)
used a similer approach for rural watersheds. In 1967, Woolhiser and
Liggett identified a dimensionless paraﬁeter that could be used to
determine when the kinematic approximation is adequate. They. demonstr-
ated that kinematic approximation is very good for overland flow on
a piane surface if the dimensionless pmrametef(K=S°Lo/HoF2} is greater
than 20. Here So is thg slope,,L° is the slope length, Ho is the normal
depth at the lower end of the plane and F, is the Froude number. Morris
and Woolhiser(1980) showed that the additional criterion SOLO/Ho 2 9
is also required. From the typical rising.hydrograph found by Woolhiser
and Liggett, it appears that the shape of the.early stage of the rising
hydrograph approximates to the kinematic soclution, whereas in the later

stage it approximates more to the Hortan-1Izzard sclution. This is not
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unexpectedbecause in the early stages of the flow.Eg_ would be relatively

ax

small, thus approximating the kinematic solution for which %%- is zero
downstream of the characteristics which starts .from the upstream end
of the plane at the start of the inflqw; In the later stages of the
fisinglhydrograph, the value of gg would approach the lateral inflow
rate. In this case Hortan-Izzard solution based on an emperical relatioh-
ship, which is a good approximation at equilibrium, might be expected
to give better prediction than the kinematic mocdel.

Various numerical schemes which have been frequently utilized
to solve the equation{13) are:
(i) Upstream finite differencing scheme,
(ii) Grank-Nicholson scheme;
(iii) Brakensick scheme, and
{iv) Lax-Wendroff scheme

Equation{13) is a non-linear partial differential equation and
for these equations convergence and stability conditions are not yet
established, except for some simplified cases. An alternative approaoch

is to linearize the non-linear equations and.then perform the analysis.

After linearizing the equation(13}, the equation becomes:

gy ;™1 _ , ... {14)
TR 3% gix,t)

where y ig a constant. Let a sgm y 'm-t. It will be seen that the ana-
lytical treatment of step error remains unaffected (since gix,t} is
always known) making equation(14) homogeneocus. Thus the homogeneocus
form of equation{14) may be written as:

W’ ¥ _ 0 eee{15)
Bt 3 x

The formulae for each schemes to solve the equation(15) are given as:

+ a
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i) - Upstream finite differencing scheme

Equation{15) can be approximated by this scheme as:

be Yi, n - Y(i-1),n) ..{16)

2

Yi, (n+1) ~ Yi,n Ax
where Ax and At are step lengths in space and time respectively.
ii) Grank~-Nicholsen Scheme

This scheme approximates equation(15) as:

At
Yi vtnen) T Yin 7% Fx Yin T Yeaeny,n® Yagnen) YV (io1) (ne)
. LI ) 1
iti)  Breakensick scheme (7

This is four point implicit scheme. Equation(15) can be appro-

ximated by this scheme as:

Y+ (n+1) ~ Yaen,n T Yi,(nety T Yin
2A ¢

a _
= _— - - N .. 18
| T2 YU, e T Y, ten) T Y(aay,n T Yip ) ce-008)
iv) ‘Lax-Wendroff scheme

This scheme is the most popular one. It is a single step.second

order explicit scheme. Equation(15) can be approximated by this schemes

as: At

= [ —2 - ']
Yitn+1) = Yi,n & 2 " Y(i+1),nY(i-1),n

At 2 a :
+ Ax ) 2 {Y[i.H),n_zYi,n + y(i*l),n)

... (19)

Singh,V.P.(1976) has developed the step error of the above finite
difference schemes. He has also shown that for. convergent and stable
schemes, the production of step error of one scheme may not be same

as that of another. Such treatment éan be useful in:

a) determining the accuracy of a method,

b) estimating a priori the step length to be used in the scheme,
and |

c) choosing among 'the schemes.
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S$ingh(1976) also found that the step error of Léx-Wendroff
scheme is the least of all. This partly expléin; the popularity of
this scheme. The Brahensiek 4-point :i.mp.licit scheme, although uncond-
itionally stable, has the highest step error. This points out that
this scheme should not be recommended for .use under all circumstances.
Thus the . important point is that the stabi;ity and step error of a
numerical scheme must be considered simultaneocusly. That is, one must
decide the step length such that the criteria of stability and possibly
- minimum error production are simultaneocusly aaﬁisfied. It _will 'be useful
to choose a step length that leads to minimum step error but the scheme
becomes unstable. Stability and step error are intertwined and must

be- treated in the light of one another.

2.3 Overland Flow Models

The amount, temperal distributions and spatial distribution
of the lateral inflow exerts the u;o'st significant influences on the
runoff hydrograph predicted from a model. Therefore, errors in estimating
infiltration are the most serious in watershed response simulation.
Infiltration rates are governed bf initial water content of the soil,
vegetative cover, soil macro porogsity and by soil depth. Although the
infiltration process and flow in porous media have been studied inten-~
sively, but the complexity of the procegsses and spatiail and temporal
variability of soil characteristics create barriers that are difficult
to overcome. Many overland flow models treat rainfall excess as given
and route it over the. soil surface. This procedure ignore the interactive
nature of the problem and is not compatible with the variable Ssource
area concept. Other models(i.e.Rovey, Woolhiser and Smith,1977) include

an interactive, one dimensional infiltration model which is effective

L 14
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at each grid point. If the conditions or infiltration modelwparamters
are not uniform, this model will generate overland flow 6ver only part .
of the watershed. The area contributing overland flow will change with
the rainfall rate. This model will not handle runoff induced by satur-
ation from below. The modzl presented by Freeze(1972) Ean, in principle,
accommodate all types of runoff generation, but computer time and sto-

rage requirements have prevented practical application.

2.4  General Procedure for Modelling Overland Flow
In order to apply the equations describing overland flow to

complex watersheds to better understand watershed respons.e or .to make

predictions the following decisions must be made:

i} A decision must be made regarding the method of spatial repre-
sentation of the watershed.

ii) A decision must be made on the form of the hydraulic keéistance
law and the infiltration Ilaw and several key parameters,

iii) Finally, the user must select appropriate numerical methods
for solving the equations. In this section a review has been
»done for different methodis of spatial representation of water-
sheds and the different methods “for estimating the parameters.
Various numerical scheme for solving the equations of  overland
flow and criteria for selecting an appropriate scheme have already

been described in section 2.2.2.
2.4.1 Method of spatial representation of the watersheds

The methods of spatial representation that maintain. model flow

pattern similar to those in the prototype watershed are:
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i) - Regular grid method, rectangular and triangular grid
ii}) . Kinematic cascade
iii) Finite element methods

In 1937, Merrill Bernard divided a watershed into elemental
areas 150 metres square. He used a graphical technique to route iainfall
excess from the elemental areas to a channel and subsequential to the
mouth of the basin. The problem of kinematic shock arose in his cal-
culations and he handled it by essentially the same technique as we
use today. He also analyzed the influence of various cropping systems
on runoff hydrographs.

Almost aftgr 30 years of Bernards work, Huggin and Monke( 1966}
used the same grid technique to represent watershed geometry. Rainfali
excess was computed for each element and routed to downstream elements
by assuming a relation between storage of water within an element and
the outflow-an approach that is e#sentiallf kinematic.

Kibler and Woolhiser(197b)f Harley, Perkins and Eagleson(1970)
and Rovey, Woolhiser and Smitht19?f] used a network composed of planes
and channels to represent watershed geometry. All used kinematic routing,
but Harley, Perkins and Eagleson(1970) included an option of the linear
response function to the complete equations for flows not dominated
by lateral inflow. In his repfesentation all planes(catchments) with
the same number had the geometric characteristics. This methd& has
advantngéu over the sguare method in that it may require fewer elements
and the programming logic and storage requirements are not 8o severe

A triangular grid representation of .a watershed ﬁas certain
appealing features in that it would confirm more closely to-watérshed
topography. But one may require more difficuit programming légic. The

other most popular way of representing the watershed is in the form of

16



fectangular grid.

Recently there have been attempts to use the finite element
technique for numerical solutions of the equations describing overland
flow. An examination of the results of this work, however, reveals
serious problems with continuity errors. Furthermore, the kinematic
wave equations seem ’particularly i1l suited to this approach because
the analytical solution may contain jump discontinuitiea at abrupt
changes in slope of roughness at element boundaries. Also the advantage
of downstream sequential solution of 'the kinematic equation is lost.
Beven and Woolhiser set up the equation for a Galerkin finite element
solutidn to the kinematic wave equations using triangular elements.
They found that the solution algorithm gave accurate results if the
triangular elements were part of a longer plane but the solution det-
eriorated when the triangular elements wére allowed to conform to a
realistic overland flow surface.

The choice of the model watershed configuration is highly
subjective. Lane, Woolhiser and Yevjevich{1975) have examined the
effects of simplified watershed geometry as represented by a kinematic
cascade on the goodness of fit of the response hydrograph. They also
noted that the. optimum hydrauiic resistance parameter depends on the
geometric goodness of fit. Singh and Woolhiser(1976) and Singh(1976)
investigated the possibility of using a converging section as a gimp-

lified representation of natural watersheds.

2.4.2 Estimation of parameters and the form of a hydraulic resistance law
Once the decision regarding the method of spatial representation
of a watershed has been made, the user must decide on the form of a

hydraulic resistance law and must estimate several key parameters.
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The informations regarding slope and slope lengths etc. can be derived
from the map. However, the channel characteristics are poorly defined
at the map scales normally available. Machmeier and Larson{1968) and
Geolany and Larson(1971) used stream hydraulic geometry relations to
define stream characteristics in numerical.sfudies of watershed response
utilising a physically based mecdel. Betson{(1979) suggested the use
of geomorphic equations relating diécharge te cross sectional area
or channel width in flood routing for planning studies. Considering
natural channel Qariability and the costs assoclated with the field
measurements, this method appears to have considerable promise as a
practical tool.

Resistance to overland -flow over natural and manmade surface
is influenced by several factors, and is frequently much greater than
that encountered in ordinary hydraulic structures. These factors are:
i) Rates of flow
ii) Raindrop impact

At low rates of flow, the boundary elements protrude through
the free water surface, and at high rates of flow the boundary geometry
may change in time and distance_because of erosion or bending of vege-~
tation. On non-vegetated surface raiﬁdrop exerts a significant retarding
effect. The ideal resistance law would include a hydraulically smooth
plane or densely vegetated surfaces as special cases of the general
law, and would have parameters that could be measured by direct physical
means.

a} Form for the resistanze equation

There have been many laboratory and field investigations ajimed

at finding the best form for the resistance equation and methods for

estimating parameters for hydrclogically significant surface. The most
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common ‘approach ‘has been to assume that the Darcy—Weishbach‘ egquation
is the appropriate form and then to relate the friction factor f to
hydraulic and geometric variables. The Darcy-Weisback eguation is ,

" = J—‘ZTS: . cee (20)
It has been observed that overland flow behaves initially as if it
were laminar. However, the turbulance may generate by rain drop impact.
As the Reynolds number' increases there is a transistion from laminar
to turbulent  flow in the range 100 < Re < 1000. The most frequently
cited values for transistion range from 300 to 500. Within the laminar
flow range the friction factof f is related to the Reynolds number
by the relationship:

‘ f= K/Re «o.(21)
For hydraulically smooth surfaces with no raindrop distrubance,
K=24 if the Reynolds number is defined as Re = uh/2 where is the
kinematic viscosity. Raindrop impact produces the same effect as an
increase in viscosity. However, rather than introducing a psedo-viscosity
term the parameter K can be approximated by (Woclhiser 1975):

K=K +Ai .. 122)
where Ko is the parameter without rainfall, i is intensity of rainfall
and A and B are parameters. If the surface is hydraulically smooth
the resistance effect of raindroﬁs is significant. However, this effect
can be neglected for vegetated surfaces.

The parameter K is related to the characteristics of the surface.
Set of values for Ko and the parameters A and B have been reported
by Woolhiser(1975) for different surface characteristics. Most of the
data, have been used to estimate hydraulic resistance parameters, have
been from small pldts so bias is undoubtedly present. The small rills

present on longer slope would certainly affect hydraulic resistance.

19



For turbulent flow, the Manning formula has been most commonly
used. The tabulated Mannings n in handbooks are suitable for most
channels. But for shallow overland flow or flow in grassed waterways,
it has been found that the values change substantially with Reynolds
number. Kouwen Li and Simons{1980}) have deﬁelopod a method to estimate
n or £ for vegetated channels where resistance is due to flexible rodugh-
ness. They include a._ method to estimate the critical shear velocity
above which the flexible roughness becomes prone. This velocity depends
upon the number of steps per unit area and th§ elastic and geometric
properties of the vegetation. Wu,Yevigevich and Woolhiser(1978) utilized
data from an outdoor experimental watersheds to demonstrate that an
equivalent hydraulic resistance can be estimated for watersheds with'.
non-uniform roughness.,

b) Infiltration models

Infiltration models which requii'ed detailed numerical solution of the
partial differential equation of un'aaturated flow require too much
computer time and soii data for practical use. Apprcocaches based on
simplifications of those equation such as the Green and Ampt egquations
or the model presented by Smith and Parlange(1978) or Morel-seytduse

(1978) appear to be the best at the moment.
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3.0 CONCLUSIONS

Significant advances have been made in developing physically
based models through the scientific study of watershed runoff processes.
Several different ruanf generaping_ mechanisms exist, however, they
do not have a signif_icant'effect'-on the inathematj._cal description of
unsteady surface runoff processeé .inﬁluding ;overlahd‘ and open channel
 flow. The continuity and momentum equaﬁicwl may be aimplified to the
kinematic wave equation for most overland glow cases. To apply the
kinematic wave equations to practical situation one muaé first decide
on the method of spatial representation of watershed and level of
geometric details to be presented. Then an appropriate model for infil-
tration must be sélected and linked to the overland flow model. Also,
appropriatqnparﬁmeters for ‘hydraulic resistaﬁce and porous media char-
acteriﬁtics must be estimated. Finally, a stable and consistent numerical
scheme may be selected for the solution of kinematic wave equation.

Much progress has been made to describe the spatial variability
in watershed characteristics affecting infiltration, depression” storage
and surface runoff velocities. However, .more objective techniques are
badly needed to. describe this variation in watershed characteristics.
. One may develop some criteria in order to determine the optimum levels

of agregation of watershed element.
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