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ABSTRACT 

Optimization is one of the most powerful and popular technique for solving 

various problems associated with the operation of a reservoir. During the past/  

few years, its use has grown tremendously due to wider availability of computer 

and the solution techniques. 

In the present report a comprehensive review of optimization techniques 

as applied to study the various aspects of operation of reservoirs is made. 

The theories of linear programming, non linear programming and dynamic progra-

mming have been discussed in detail. This follows a review of important works 

which have used linear programming and dynamic programming as solution 

techniques for analysis and solution of problems of reservoir operation. Multi 

objective optimization is also becoming popular nowadays. This aspect has 

also been discussed and two important techniques for solving multi objective 

optimization problems have been discussed. A comprehensive bibliography is 

given at the end for reference purposes. 
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1.0 RESERVOIR OPERATION 

1.1 Introduction 

Dams are constructed across the streams to give rise to storage space. 

This storage space is used to regulate the natural flow of the stream. This regulat-

ion may change the temporal and spatial availability of water. The water stored 

in a reservoir may be diverted to far away places by means of pipes or canals 

resulting in spatial changes or it may be stored in the reservoir and released 

later for beneficial uses giving rise to temporal changes. 

A reservoir which is operated to serve only one purpose is called a single 

purpose reservoir. This purpose may be flood control which requires that the 

reservoir must be operated so as to protect a downstream damage centre by 

storing the water during high flow periods and releasing it later. In this case 

the reservoir is called a flood control reservoir. After the passage of the flood, 

the reservoir is emptied as soon as possible to prepare for next flood event. 

The operation problem is the regulation of spillway.gates so that the downstream 

flow is less than safe discharge(the discharge at which there is very little or 

no damage) to the extent possible. For big reservoirs ,the problem is slightly 

simple because small to medium floods can be easily absorbed but for smaller 

ones it is quite tedious as judicious operation of gates by determining how much 

to release and when to release has very much influence on the flood moderation. 

A single purpose reservoir may be operated to cater for irrigation, water 

supply, hydroelectric power, navigation or recreation etc. These purposes have 

one thing in common; it is required to have as much water as possible in the 

reservoir. This is in clear contrast to flood control operation. These purposes 

are called conservation purposes. In case of irrigation operation, the reservoir 



is required to supply water for crop irrigation to augment the water available 

from rainfall and ground water. The demand for water will vary depending upon 

these factors as well as the type and extent of cropping in the command area. 

The crop water requirement also varies depending upon the stage of crop growth. 

As the water use benefit function is highly non-linear, it is very important to 

optimally determine as to when water should be supplied, particularly in case 

of scarcity. 

The hydroelectric energy generation from a power plant of a reservoir 

depends upon two factors- the head available and the discharge passing through 

turbines. Thus, if the reservoir level is high, less water will be required to gene-

rate a particular amount of energy while comparatively more water will be 

required at low heads. Here the operating decision is how much energy should 

be generated to best meet the targets. 

For a reservoir which serves for recreation, benefits are obtained from 

the use of lake for boating, picnic, swimming and other water sports etc. These 

demands require a high water level in the reservoir and sufficient surface area 

of the lake. Further ,the variations in the level of reservoir must be minimum. 

Large variations in the lake levels cause bank sloughing and interruption in picnic 

facilities because these have to be frequently shifted. 

The operation of a multipurpose reservoir is aimed towards meeting more 

than one of the above purposes. The complexity of the problem depends upon 

the nature of the purposes which are combined together. For example, let us 

consider the case of a reservoir serving for irrigation and municipal and industrial 

water supply. Both these purposes require the reservoir to be as much full as 

possible. The decision to be taken is as to how much water should be released 

from the storage to meet the demand and in what proportion it should be divided 

between two purposes. Similarly, in case hydroelectric power and irrigation 

needs are combined, the water released from the reservoir can be passed through 
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turbines first and then used for irrigation. But many times two or more conflict-

ing purposes are combined as in case of a reservoir serving for irrigation and 

flood control. It is a well known fact that in India upto 80% of annual flows 

occur during four monsoon months . Hence this is the period during which the 

operator has to fill the reservoir so that he can meet the demands during the 

rest of the year. However, this is also the time when major floods occur and 

in case a major flood occurs when the reservoir is already full, it may not be 

possible to moderate it and the safety of the structure itself may be under 

risk. On the other hand the reservoir can not be kept empty with the aim to 

moderate the likely floods. These floods may never come and the reservoir 

may remain empty. Thus the bottom line of the argument is that whatever 

is safe from one point of view is equally unsafe from other points of view when 

the purposes are conflicting. 

1.2 The Need for Optimization 

It is clear from the above discussion that the problem of reservoir operat-

ion arises mainly because of scarcity of water and conflicts among purposes. 

If plenty of water is available all the time, there is virtually no serious manage-

ment problem. Secondly, it is also seen here that at each time, there are a 

large number of possible alternative decision options available. However, it 

is not possible to evaluate each of them without a computing aid. Even with 

it, unless calculations are performed in a systematic manner, the solution may 

be impossible to obtain. For example, if the attempt is made to get the solution 

by evaluating each discrete point in the feasible space and then comparing the 

outcome, computer memory requirements will exceed what is available right now 

even on major computer systems. Further, the solution, if possible,will be too expensive 
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to obtain. 

In the optimization techniques, an initial solution is chosen first which 

is feasible. Thereafter, a systematic search is made to obtain a better solution 

until no further improvement is possible. The algorithms are designed in such 

a way that a definite answer is obtained in a finite number of steps. 

1.3 Scope of the Present Study 

The present report deals with the problems associated with operation 

of reservoirs and the status of optimization models developed for their solution. 

In the beginning, a detailed description of a few optimization techniques which 

are commonly used in the field of reservoir operations has been given. After 

this, a comprehensive review of models proposed by various investigators to 

solve the problems encountered regarding operation of reservoirs is made. A 

bibliography of the related works is given at the end. 
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2.0 OPTIMIZATION TECHNIQUES 

2.1 Introduction 

Optimization is the science of choosing the best from amongst a number 

of possible alternatives. In many engineering problems, a situation arises in 

which there are many ways of doing a particular thing. For example, a number 

of alternative designs may be available to serve the required need, a number 

of management decisions may be available to increase the production and a 

number of release decisions may be available to cater for irrigation and hydro-

electric power. Naturally, the result attained in each case will be different 

and hence it is required to evaluate each alternative and then choose the best 

from the point of view of interest, say economical or physical or convenience 

etc. 

The complexity of these type of problems goes on increasing with the 

number of factors affecting a particular choice. For simple problems, the analysis 

can be performed manually but the computations become unmanageable manually 

when the number of factors become large and the optimum choice in such cases 

is to use a digital computer. 

Mathematica ly, an optimization problem can be stated as: 

x 
n 

Find X = 
• 

... (I) 
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which minimizes f (X) 

Subject to the constraints 

gi  (X) k b., j = 1,2  m 
... (2) 

a =nd i(x) = b. j m+1, m+2 (3) 

where, 

X = a n-dimensional vector called decision vector, 

f (X) = objective function, 

g1()
. X = inequality constraints, and 

 

l(X) = equality constraints. 

The decision vector represents the variables to be manipulated to obtain 

the solution. As an example, release from the storage is a decision variable 

of a reservoir operation problem. The decision variables are chosen such that 

the operator's objective, f(X), is optimized, i.e.,either minimized or maximized. 

Generally, the objective function either represents benefits in which case it 

is maximized or it represents costs which are to be minimized. It can be easily 

seen that maximization of a function is analogous to minimization of its negative. 

Thus, in a reservoir operation problem, the aim may be to maximize the benefits 

by deciding the amount of water to be released. But in many cases it may not 

be possible to release a particular amount of water because of limited capacity 

of outlet structures or because that much water may really not be available. 

In other words, the decision variable is forced to take value within a specified 

range.If this is the case then the problem is said to be a constrained one. It 

may happen that constraints may force the decision variable to have value less 

than a upper limit ( say release restriction because  of limited capacity of outlet 

works), or they may force it to have a value greater than a lower limit(say 

a binding that release must always be greater than a minimum value), or both. 

These types of constraints are known as inequality constraints since the 
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left hand side and right hand sides of the constraints need not be equal. However, 

it may so happen that the condition of equality has to be satisfied. Continuity 

equation, for example, appears as equality constraint in many problems. It speci-

fies that the initial storage plus inflow minus releases and losses must be equal 

to the end of period storage. 

An optimization problem, in which no constraints are present, is called 

an unconstra.ned optimization problem. This condition rarely arises in practice 

where constraints are almost always present and the problem is of constrained 

optimization. 

A solution of the optimization problem which satisfies all constraints 

is called a feasible solution. A feasible solution, however, may or may not be 

optimum. If no further improvement to a feasible solution is possible, the solution 

is called optimum solution. If it is not possible to get any feasible solution, 

the problem is termed infeasible. Further, it may happen that more than one 

combination of decision variables may give same value of objective function 

which may also be the best value, in such cases all the solutions are called 

alternative optimum. Sometimes due to wrong formulation it so happens that 

the objective function can be increased( or decreased) as much as one wishes. 

The corrective step is to check the formulation, particularly constraints. 

The optimum seeking methods are also known as mathematical programming 

techniques. Depending upon the nature of the problem, the available optimization 

techniques can be classified in several ways, viz.,linear or nonlinear optimization, 

deterministic or stochastic optimization, constrained or unconstrained optimization 

etc. A useful way of classifying the techniques is shown in figure 1. For the 

purpose of this rePort, the discussion of methods is being made under following 

three major heads: 

(a) Linear Programming, 
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INTEGER 

Nonlinear Programming, and 

Dynamic Programming. 

LINEAR NONLINEAR 

DETERMINISTIC 

STOCHASTIC 

FIGURE- 1 CLASSIFICATION OF OPTIMIZATION TECHNIQUES 

2.2 Linear Programming (LP) 

The optimization problems in which the objective function and constraints 

are linear in nature alongwith the condition that the decision variables are posi-

tive are termed as Linear Programming problems. 

The standard and expanded form of a LP problem is: 

Min Z =z ci  xi  
..(4) 

subject to 

all x1 + a
12x

2 
+ +a x > b 

In n— 1 

a
21 x1 

+ a
22 

x
2 

+ +a x >b 
2n n - 2 

a
ml xl +a  

m2 
x

2 
+ +a x > b 

...(5) mn n— m 

and, x.> 0 in ,2, ,n. 

Here x. are decision variables, ci  are cost coefficients ( or benefit coeff.) i 
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of tk particular problem, aii  and bi  are coefficients. The coefficients ci  represent 

coet• incurred by increasing the xi  decision variable by one unit. For example, 

it may represent additional economic loss by increasing the flood release by 

one unit. The right hand side of constraint equations represents resource availabi-

lity.These arise due to limited availability of a particular resource, say water. 

The a.. coefficients are called technological coefficients and quantify the amount 
tj 

of particular resource i required per unit of j
th activity. Further, a constraint 

of ( >) type can be easily converted to a ( <) type by multiplying (-1) throughout 

the equation. 

An inequality constraint of (>1 can be converted to equality type by introdu-

cing a variable 

Thus the constraint 

a ll x1 + a12ex2 + + a In  x n >)1 b ... (6) 
-  

is equivalent to 

a ll x1 + a12x2 + a In xn - 51 = b1 
...(7) 

The variable s
1 

is called as surplus variable. 

Similarly, an inequality constraint of the type ( < ) can be converted to 

equality type by introducing a slack variable s i . Hence the constraint 

a ll x l 
+a  l2

x
2 

+  +a x <b In n- 1 

can be written as 

+a,x +5 
a l 1 x l + a l2 x  + 2 n I 

2.2.1 Matrix representation of a LP problem 

In matrix notations, a LP problem may be presented as: 

Min Z = CT X 

subject to 

A XI b 

X 0- 



where, 

X = [ x1  x2  xn 

1 c2 cn 

a ll a l2 
 aln 

a21 22 2n 

aml am2 
 a

mn 

2.2.2 Standard form of a LP problem 

A LP problem is written in standard format as 

Min Z = c. x. i 

subject to • 

a11 x1  +a12 x2  + + alnxn =b1 

a21 x  I 
+a22 

x
2 

+ + a2n 
xn = b2 

• 

amIx1 +a  m2 x2 
+ +a  mn 

xn 
= b

m 

and x i  , x2,  x > 0 n - 

If the number of variables n is equal to the number of constraint equations 

m, the problem has a unique solution, if it exists. If m >n, and if m-n equations 

are not redundant, it has a solution only in the least square sense. 

If m < n, then we can set (n-m) variables equal to zero and solve the m 

equations for m variables. However, there will be nCm such solutions. Each 

of these solutions is called a basic solution. The (n - m) variables which have 

been set equal to zerà are called nonbasic variables; remaining n variables are 

called basic variables. 
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A basic solution which satisfies all the constraints is called a basic feasible 

solution and any such solution which provides minimum (or maximum) value 

of the objective function is called an optimum solution. The feasible region and 

constraints are shown in figure 2. 

Suppose in a particular problem, n = 20 and m = 10, then the number 

of possible basic solutions will be 20C10 

or 2W  
(20-10): 1W - 184756  

Hence to solve this problem, 184756 solutions will be required to be obtained 

and compared. This is formidable task even with the help of a fast digital compu-

ter. A very efficient method was developed by Dantzig which is called Simplex 

Method. Before discussing the Simplex Method, graphical solution of a LP problem 

is being discussed. 

2.2.3 Graphical solution of a LP problem 

Here a LP problem in two dimensions will be discussed. 

Max Z = 2 x I + x2 

subject to 

2x1 - x2 8 ...(13) 

x1 + x2 410 

x < 7 

x x2  >" 0 1 '  

In the figure 3, constraints are plotted against the coordinate axes x1 

and x2' The non-negativity constraints are plotted ;as the amts theimeives. TD 

mark the constraint 2 x1  - x.2 we plot a straight line 2x1  - x2= 8. Similarly, 

we plot lines x1  + x2  = 10, and x2  = 7 to mark second and third constraints. 

The feasible region can Se easily delineated and is shown by hatched lines. 
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X2 

INFEASIBLE 
REGION 

xi 

FIGURE - 2 FEASIBLE REGION AND CONSTRAINTS 

12 



12 

2X1- X2.5.8 

OPTIMUM POINT 

+ X2  10 

12 

FIGURE - 3 GRAPHICAL SOLUTION OF A LP PROBLEM 

13 



Now we start with a particular value of objective function, say 6 and plot the 

line 2x1 + x2 = 6. Since it is a maximization problem, the objective function 

line is shifted forward as far as possible while ensuring that at least one point 

lies in the feasible region. It can be seen that the farthest point upto which." 

we can go is point (6, 4). Hence, this is the optimum point at which the objec- 

tive function is equal to 16 and x1  = 6 and x2  = 4. 

A closer inspection of figure 3 will show that the optimum point will 

always be a corner point. 

2.2.4 Simplex method 

To begin with, we first transform the problem into canonical form. The 

characteristics of canonical form are: 

The basic variables have positive unit coefficients and only one of them 

(different each time) appears in each equation. 

The basic variables do not appear in the objective function. 

The RHS of constraints must be positive. 

One way is to arbitrarily choose the basic variables and use a technique 

like Gauss Elimination to transform the equations in the canonical form. If 

the equations contain only the slack variables, these can be automatically consider-

ed as basic variables. But in case problem has surplus variables and equality 

constraints, we introdifee artificial variables in the equation. An auxilliary objec-

tive function is now formed which is equal to the sum of artificial variables. 

The computations are demonstrated using following example. 

Min Z = x
1 + x2 

subject to x
1 + 2x2 35 ... (14) 

2x1  + x23 4 

x1' x2 30 

Writing this problem in standard form by introducing surplus variables 
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Min Z = x1 + x2 

subject to x
1 

+ 2x
2 

-x
3 

= 5 (15) 

2x
1 

+ x
2 

- x
4 

=4 

x2  , x3, x4  4,0 

Now in this problem, the number of variables n is 4 and number of const-

raints m = 2. Hence, there will be two basic variables which could be chosen, 

arbitrarily. If the coefficients of xi  and x2  were + 1, the equations would have 

been in the canonical form. This not being the case, we introduce two artificial, 

variables. The idea is to avoid laborious computations using Gauss Elimination 

method. The problem now looks like 

Min Z = x
1 

+ x
2 

subject to '2 
x
1

+2x -x
3 
 +x

5 
 =5 
 

2x
1 

+ x
2 

- x4 + x6 = 4 (16) 

x x   x > 0 1 ' 2' 6' 

The auxiliary objective function is 

Min W = x5  + x6  

= (5-x1-2x2+x3) + (4-2x1-x2+x4) 

= 9 - 3x1  - 3x2+  x3  + x4  

Now the problem in canonical form is 

Min Z = x1 
+ x

2 

Min W-9= -3x1-3x2+x3+x4 (17) 

subject to xi  + 2x2  - x3  +x5  = 5 

2x
1 

+x2 - x4 + x6 = 4 

x x  x > 0 1 ' 2 ' 6' 

This method is called two phase simplex as we have two objective functions. 

The first phase aims at minimization of the auxiliary objective function. If 

as a result of this phase, this function can not be made zero then the problem 

is infeasible and the algorithm is terminated. If W = d, then the optimization 
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of the main function is taken up. For ease of computation, the Simplex Tableau 

is formed as follows: 

RHS x l x2 x3  x4 x5 x6 

5 1 2 -1 0 1 0 

4 2 1 0 -1 0 1 

-Z.-0 1 1 0 0 0 0 

-W.-9 -3 -3 1 1 0 0 

2.2.5 Computational steps of Simplex Method 

After simplex tableau is formed, it is checked whether the objective 

function will improve by replacing a basic variable. A solution will be 

optimal if all the cost coefficients are positive or zero in a minimization 

problem or are negative or zero in a maximization problem. 

Thus ,if optimality is not satisfied then the variable which will 

improve the objective function at the fastest rate, i.e.,for which cost 

coefficient is most negative(for minimization) or most positive(for maxi-

mization) is brought in the basis. The decision is arbitrary in case of 

tie. Let this variable be xr. 

Now for this variable, we take b./ a, ratio for each constraint row i 

and the minimum ratio determines the row in which this variable will 

have unit coefficient. Corresponding variable from this row(which was 
• 

a basic variable) will leave basis. The equations are again converted 

into canonical form by suitable row and column operations. 
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These steps are repeated until an optimal solution is found. 

2.16 Concept of dual 

Associated with every linear programming problem called primal, {here 

is another problem called its dual. 

Let the primal be 

Min Z = bT  X (18) 

subject to A X 313 

X 30 

Then the corresponding dual will be 

Max Z1 
= bT Y (19) 

Subject to A
T 

Y 
 

4C 

Y 30 

Some important relations between primal and dual are: 

If the primal is a maximization problem, the dual will be a minimization 

problem and vice versa. 

The dual of a dual is primal. 

If a finite solution exists for the primal,. same is also true for dual. 

For each variable in primal, there exists a constraint in dual and vice versa. 

If the primal has an unbounded solution then the dual will either have 

an unbounded solution or will be infeasible. 

Let the primal be 

Subject to 

The the dual will be 

Min = 5 x1 + 4 x2 
+ x

3 

- 2x1 + 3x2 
+ x3310 

2x1 - xi2 
+ 3x3 3 15 

x
1 ' 

x2' x3 
40 
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Max Z i  = 10 y1  + 15y2  

Subject to -2y1  + 2y2  4 5 

33'1 - Y2 4 4  

3Y2 1 
(21) 

Y1' Y2 ° 

Similar to primal simplex, a technique called dual simplex can be used 

to solve a dual problem. If a finite solution exists, then the optimal solution 

for primal and dual are same. 

In dual problems, y is a vector of variables called shadow prices or oppor-

tunity costs. These define the contribution of each constraint •to the objective 

function. The shadow prices reflect as to how much more output can be obtained 

by releasing a constraint by one unit of any input resource. Further, if the optimal 

solution does not completely use any of the resource then the shadow price 

of that resource must be zero and any excess quantity of this resource has 

no economic value since whatever is already available has not been fully utili-

zed. If the price of a resource is less than its shadow price in a given situation, 

it is desirable to buy more of that resource and expand the production. The 

significance of duality and shadow price is that it gives added insight into the 

problem. 

Further, many times solution of the dual may be computationally more 

efficient than that of the primal, say in case where primal contains a large 

number of constraints. 

2.2.7 Transportation Problem 

Transportation problems are special type of linear programming problems. 

The aim is to seek the optimum transportation plan of a commodity from a 

number of source nodes to a number of destination nodes. This problem, most 
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commonly arises when a big company has several production centers, may be 

all over the world, and a number of demand centers or warehouses. In simple 

transportation models, there is only one commodity. More than one commodities 

can be considered in a complex transportation model. 

Considering the case of a single commodity, the demand at a particular 

node can be met with from a number of sources. The required input includes 

the production at each supply center, demand at each destination point and 

the unit cost of transportation from each source to each destination. If the 

total supply is equal to the total demand, the problem is said to be a balanced 

one. The solution consists of the amount of commodity to be transported from 

each source node to each destination node such that the total cost of transpor-

tation is minimized. 

Being a linear programming problem, the transportation problem can be 

easily solved using Simplex Method. However, because of special nature of the 

problem, solution techniques which are far more effitient than Simplex are 

available. As usuak first a basic feasible solution is obtained which is subsequently 

improved. 

Three procedures are available to get a starting feasible solution for 

a transportation problem. These are North-West Corner rule, Least Cost method 

and Vogel's Approximation technique. Out of these three, the Vogel's Approxi-

mation technique provides the best starting solution and many times, little or 

no improvement to it is required to obtain the optimal solution. 

The transportation model can be very easily applied to management problem 

of a water resources system. The reservoir or groundwater pumping nodes are 

the sources of the commodity water and the agricultural land, cities and indust-

rial areas are the demand nodes. Depending upon the losses during flow and 

other factors, the unit cost of transportation of water from a supply node to 

demand node can be determined. However, it may not be possible 
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to supply water from a particular source to a demand node because of physical 

reasons such as negative slope etc. In such cases very high cost value is assigned 

to that route. To make the formulation more realistic, upper limits on capaci- 

ties are imposed for sources and transporting routes. These refer to capacity 

limits for reservoirs and carrying capacities of channels. 

By doing the above exercise, we are infact moving towards very popular 

algorithms called 'Network Flow Algorithms'. A network consists of a number 

of nodes and links. A reservoir, a diversion point, and a junction of two rivers 

are typical examples of the nodes. Further, a node may or may not have a storage 

capacity. The nodes are interlinked by links. Natural rivers, canals and pipelines 

form link in a water resources network. In general algorithms, flow in a link 

can occur in both directions but in case of water resources, generally only 

unidirectional flow is possible in a link. In such cases, the network is called 

directed. The continuity equation must be satisfied for each node, i.e.,the flow 

entering the network added to the initial storage, if any,less the outgoing flow 

must be equal to the end of the period storage. In the earlier developed techniques, 

the flow entering in a link was assumed equal to the flow leaving it or in other 

words, there was no provision of channel losses. This provision was made in 

more generalized versions later on wherein there is a provision of expressing 

the channel losses as a percentage of flow entering in the channel. This factor 

is called gain of the channel and the network with this feature is called network 

with gains. The technique most commonly used to solve a network problem in 

water resources is 'Out-of-Kilter 'algorithm. This is nothing but a linear prog-

ramming formulation where the objective is to minimize the total cost of flow 

ensuring the satisfaction of demands to the extent possible. 

A large number of generalized computer programs are available which 

use out-of-kilter algorithm. These programs are mostly quite general in the 

sense that any system configuration can be studied. The inflow to the network 
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and spill from it can only occur at nodes, all the demands are also to be 

placed at nodes only. 

2.2.8 Sensitivity Analysis 

The coefficients used in an optimization problem are not sacrosanct num-

bers and in many engineering applications, it is required to find out how the 

solution is effected by a change in them. For example, we may have to find 

that if the cost coefficient of a particular variable changes then whether the 

optimal solution is changed or not and if it is changed than what is the new solu-

tion.The analysis,which is also called post optimality analysis,can be classified 

in following distinct cases: 

Changes in cost coefficients of a)basic variables and b) non-basic variables. 

Changes in RI-IS constants 

Changes in technological (a-) coefficients 

(a) of basic vector (b) of non-basic vector 

Addition of new variables 

Addition of new constraints 

Depending upon a particular problem, three types of cases may arise: 

The optimal solution may remain unchanged. 

It may be possible to obtain the new solution by proceeding from the 

final Simplex tableau. 

The entire problem may have to be resolved to obtain new solution. 

The technique of linear programming is very extensively used in solving 

water resources system problems. One main reason is that very efficient and 

generalized computer packages are available nowadays. The typical input to 

these programs consist of specifying the type of the problem, i.e.,whether maxi-

misation or minimisation, and cost coefficients in the objective function. 

The required information about the constraints include their 
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number, their type (i.e.equality, greater-than-and-equal-to, or less-than-and-equal 

-to), the coefficients on the left hand side and RHS constants. Output from 

the program includes message whether optimal solution could be found or the 

solution is infeasible or unbounded etc.,the value of objective function at optimum 

point and value of basic variables. Further details such as intermediate compu-

tational results etc. can be printed using several options which are usually 

available. 

2.3 Nonlinear Programming 

As mentioned earlier, the precondition for application of linear programm-

ing is that the objective function and constraints must be linear in nature. 

However, in many engineering problems this may not be the condition. Further, 

the possible remedy of linearizing -these functions may lead to unwanted distor-

tions in the objective function and constraints and hence inaccurate results. 

In such cases, the technique of non-linear programming is used to solve the 

problem. 

A nonlinear programming problem can be stated as 

Min f(x) ...(22) 

Subject to g1(x) i = 1,2,....p 

hj(x) = 0 j = 1,2,... q 

where x is a vector of variables, g represents all inequality constraints 

and h represents all equality constraints. 

In this section, optimization of functions of single variable will be dis-

cussed first followed by unconstrained minimization problems and then constrained 

minimization problems. 

The most fundamental method of solving an optimization problem is based 

upon differential calculus. The objective function, however, must be continuous 

and twice differentiable. This technique, though very simple and straightforward, 
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is not very useful and hence is not generally used. 

2.4 One Dimensional Search Techniques 

In most of the optimization problems, the range of the variable within 

which the solution lies is known. This information is very useful for one dimen-

.sional search techniques which are best applicable to unimodal functions. A 

function which has only one extreme point in a given interval is called a unimodal 

function. Two unimodal functions 

f (x) A 

a 
a 

FIGURE - 4 UNIMODAL FUNCTIONS 

are shown in figure 4. For a unimodal function, if the function value is given 

at two points which are on the same side of the optimum than the point which 

is nearer to the optimum gives better value of the objective function. A unimodal 

function can be nondifferentiable and/or discontinuous. If it is known that a 

function is unimodal in a given range, the interval can be reduced to the required 

degree to bracket the optimum point. 

A number of methods are available which can be classified as search 

methods. These include technique of exhaustive search in which the function 

is evaluated at a number of points, and sophisticated methods like Fibonacci 

method and Golden Section method etc. Here only Fibonacci method is being 
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discussed. 

2.4.1 Fibonacci method 

In this method, the function to be optimized is evaluated at the specified 

number of points. This method can not locate the exact optimum point but 

only upto the required accuracy. A sequence of numbers, called Fibonacci numbers 

is used to select experimental points in this method. These numbers follow a 

sequence in which the first two numbers are one and thereafter each next number 

is sum of two previous numbers. 

F0= F1 =1 

Fn = Fn-1 + Fn-2 n=2,3.... 

The resulting sequence is 

1,1,2,3,5,8,13,21 )34  ,55,89,144,233  

Let the initial interval of uncertainty U0  in particular problem be between a 

and b, and the number of experiments to be conducted be n. Now the first two 

experimental points are placed at x1  and x2  such that 

FIGURE - 5 FIBONACCI METHOD 

x2 = b - U
1 
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where Fn-2 U
l Uo Fn 

Let it be a maximization problem. If the function value at x1 is greater 

than that at x2  then the region beyond x2  is rejected and the new uncertainty 

interval is from ato x2otherwise the region upto x1  is rejected and the uncertainty 

interval is from x1 
to b. The new uncertainty region is given by 

U l = Uo - U l
*

-
- Uo

-Fn -2 Uo 
Fn 

Or 

( 1 

U =u 
Fn-1 1 o 

Fn-2  
Fn 

...(26) 

One experimental point already exists in this interval and the new experimental 

point is placed at a distance U2 
from this point where 

* 
U =  n - 3  U 2 

Again a part of new uncertainty interval can be rejected using the assump-

tion of unimodality. In this way the uncertainty interval goes on reducing and 

the procedure is terminated after the required number of iterations is over. 

2.5 Unconstrained Optimization 

In the one dimensional search methods discussed in the above article, 

search is made parallel to the coordinate axis. Due to this, the convergence 

of the algorithm is slow. Sometimes, the method may not even converge or 

the rate of convergence becomes slow as the optimum point is approached. 

To avoid this problem, the search direction is taken as the direction in 

which the objective function decreases(or increases) most rapidly. The class 

of methods which use this strategy is known as pattern search methods. 
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In these methods, usually local exploration near the starting point is 

made first to learn the behaviour of the objective function in the region around 

the starting point. This helps in pattern development. Next, moves are made 

along the most advantageous direction. 

Among the available methods, two basic methods, Simplex method and 

Powell's methods will be discussed in this section. 

2.5.1 Simplex method 

Although the names ate similar, this method is different than the Simplex 

method for linear programming problems. A Simplex is a geometric figure formed 

by (n+1) points in n-dimensional space. Thus a triangle in two dimensions is 

a Simplex and a tetrahedron in three dimensions is Simplex. If the vertex points 

are equidistant, the simplex is called regular. In this method, the objective 

function value is compared at the vertices of a simplex and then progress towards 

optimum is made using three kind of moves-reflection, contraction and expansion. 

Let us consider a triangle, a simplex in two dimensions as shown in figure 6. 
X3 

X1 
Xo X2 

FIGURE - 6 REFLECTION IN A SIMPLEX 

Xr 
The objective function is evaluated at three points xl, x2, and x3. Let this 

be the minimization problem. As a result of comparison, let x3  be the point 

where the function value is maximum. Hence, it is most likely that the point 

opposite to x
3 

will have a smaller value of the objective function. So a new 

simplex xi, x2, xr 
 is formed by reflecting the point x3  with respect to the 

face x1,x2. 

To get the coordinates of, point xr
,first the centroid of all points except 
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the one at which objective function is maximum, is computed. 

Defining 

x
h  = max f (x.) 

1=1...n+1 
where x

h is the point having maximum objective function value and 

1 n+1 
X o n .E 

1=1 
ik h 

x = (1+ x ax 

...(28) 

...(29) 

...( 30) 

where a> 0 is the reflection coefficient. Generally a is taken equal to unity. 

It may be seen that with the available information, movement from x3  to x
r 

 

will be most favourable. 

In some' cases, for example when the simplex straddles a valley, the objec-

tive function value may be same at x3  and x
r  and we may enter in a loop. In 

such cases, instead of reflecting the point having highest function value, the 

point having second highest function value is reflected and the process is cont-

inued. 

If the objective function value at the reflected point is better, we may 

expect it to improve further by moving ahead in that direction This step is 

known as expansion and the coordinates of expanded point are given by 

x
e 

= r xr  + (1-r) x
o ( 3 1) 

Where r> 1 is called the expansion coefficient. Its usual value is two. 

If expansion step is successful, the new simplex is taken as xl, x2  and x
e 

and the process of reflection is again taken up. If, however, the expansion step 

is not a success, this point is not considered and we start reflection by consid-

ering xl, x2, x
r
. 

If the point x
r  obtained as a result of reflection is worst than all the 

points on simplex except xh, it does indicate that probably we have gone too 
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far in that direction. In such cases, the simplex is contracted as follows 

xc = xh (1- )xo 
( 3 2) 

where x
c 

is the vertex obtained from contraction and s is contraction coefficient 

0 < S < 1. Generally S is assumed 0.5. The method is assumed to have converged 

when the standard deviation of the function at the (n+1) vertices of the current 

simplex is less than prespecified tolerance ( c). Mathematically, if 

n + 1 

Q = [f (x
i
.) -f (x

1 1/2 ...(33) 
1=1  

n+ 

the procedure is terminated. The progress of a simplex procedure on a quadratic 

objective function is illustrated in figure 7. 

2.5.2 Powell's method 

It is a very powerful and simple method based upon search directions. 

This method is a method of conjugate directions:The conjugate is defined in the 

following paragraph. 

Let A be an (n*n) symmetric positive definite matrix. A matrix is called 

positive definite if all the elements of main leading diagonal are positive and 

all leading minors are positive. If any one of them is negative, the matrix is 

called negative definite. Alternatively, a matrix A will be called positive definite 

if all the values of X which satisfy following equation are positive: 

I A - XII = 0 ...(34) 

where I is the identity matrix. Now, two vectors, 5
1 

and  5
2 are conjugate to 

each other if 

S
IT

A5
2
= 0 ...(35) 

Now after familiarizing with the basic definitions ;the computational procedure 

of Powell's method is being demonstrated with the help of figure 8. 

Let -there be a two variable function which is to be minimized. We start 
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X2 

FIGURE - 7 THE SIMPLEX METHOD ILLUSTRATED ON A QUADRATIC 
FUNCTION 
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X2 

X1 

FIGURE - 8 PROGRESS OF POWELL'S METHONAfter Rao 1978) 
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from the initial point 1. The function is first minimized along xi  by moving 

(in positive x direction in this case), a finite step length, and the point 2 is 

obtained. Similarly, another step is taken in x2  and the point 3 is obtained. 

If 1 and 3 are joined, we get a pattern direction SI. Now one of the 

coordinate directions, x1  direction in the present case, is exchanged by Si  

direction and we minimize the function in this S1  direction thereby yielding 

the point 4. From this point, we take a step in the direction x2  which further 

minimizes the objective function and yields the point 5. Again another step 

is taken in the SI 
direction and point 6 is obtained. Now the second pattern 

direction is obtained by joining points 4 and 6 and a step is taken in this 
S2 

direction leading to point 7. This S2  direction is now exchanged with the previously 

retained coordinate direction x2 
and minimization is done once along each 

pattern.direction thereby yielding points 8 & 9 respectively.Now again we restart 

the minimization procedure by going in the coordinate directions as was done 

from point 1 onwards. 

It can be proved that the Powell's method will minimize a quadratic 

function in a finite number of steps. 

Besides above two methods, other important methods available in this 

category are Hooke and Jeeves method and Rosenbrock's Technique. 

2.6 Gradient of a Function 

A number of optimization methods for nonlinear optimization problems 

make use of gradient of the function. The gradient, denoted by V ,of a function 

is a vector containing partial derivatives of the function with respect to each 

of the variables. 
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... (36) 

a f/ a xn  

The property of gradient which is most useful from optimization point 

of view is that if we move along the direction of gradient, the function value 

changes at the fastest rate. Thus since we are moving on the steepest slope, 

the convergence to the optimum is quickest. The methods which use this property 

are called steepest ascent (descent) methods. Among the popular methods in 

this cateogy are Fletcher-Reeves method, and Davidon-Fletcher-Powell method. 

2.7 Constrained Nonlinear Optimization Problems 

The general representation of this type of problems is 

Min f(x) 

Subject to G. (x) 4 0 j = 1,2 m 

The constraints can be handled either explicitly or implicitly. The methods 

in which explicit consideration of the constraints is made are termed direct 

methods, and the methods where constraints are considered implicitly are termed 

indirect methods. The indirect methods are more efficient and Versatile then 

direct methods. 

For the purpose of this report, the discussion will be limited to penalty 

function methods or SUMT, Rosen's Gradient Projection Method and the GRG 

Methods. 

V f = 

 

   



2.7.1 Penalty function methods 

The idea behind penalty function approach is to convert the general cons-

trained nonlinear programming problem into a sequence of unconstrained problems 

by incorporating the constraints into the objective function. These methods 

broadly come under SUMT or Sequential Unconstrained Minimization Techniques. 

The penalty function methods can be further subdivided into two types: 

Interior Penalty Function methods and Exterior Penalty Function methods. Some-

times one more type, mixed methods is added to the list. In the interior penalty 

function methods, the objective is to retain the solution in the interior of the 

feasible region and then gradually proceed to the optimum. In contrast, in the 

exterior penalty function methods, the optimum is approached from outside 

of the feasible region. In the following article, only one of these, the interior 

penalty function method will be discussed in detail but before that one important 

aspect, i.e., the recognition of an optimum point is being discussed. The conditions, 

known as Kuhn-Tucker Conditions, are the necessary conditions to be satisfied 

at a relative optimum point. 

2.7.2 Kuhn-Tucker Conditions 

Let the objective function of the nonlinear optimization problem be F(x) 

and the constraints be gi(x), i=1,2...m. The objective function, which is a function 

of n variables, is differentiable and so are the constraints. Further, let x 0. 

The optimal solution to this problem x ,exists only if there exist variables 

x
y.

X2 ...... , such that the following Kuhn-Tucker conditions are satisfied. 

If x.> , then 3x + E.
1 

 X— —1 I * = °, a F m g* 
=. a 5c. x. 

j=1,2,  
F m 

. 1=1 1 
a  gi  I *> 0 

...(39) .z A, H x. 0, then x. 
x1 3 x. 

j= 1, 2,....n 
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3. If x i >0 then gOt1  )41 Z
n
) = b , i=1,2,—n• ...(40) 

4.If i=0 then gi  (xi,x2.—xn) bi, i=1,2,..•m m(41) 

54 x0, j = 1,2.mm 
• 

6. X * 0 1= 1,2,—m 

The first condition is necessary for an optimum if the optimal point is 

not at the boundary of the feasible region. Condition 2 is supplementary to 

the first condition when the optimum may lie on the boundary. In the third 

condition, the Lagragian multiplier for the constraint exists which means that 

the constraint is binding. Similarly, the fourth condition indicates that the corres-

ponding Lagrangian multiplier is zero or the constraint is loose. Fifth and sixth 

conditions express the non negativity of the decision variables and the Lagrangian 

multipliers. 

If the objective function and the constraints are convex then the Kuhn-Tucker• 

Conditions are necessary as well as sufficient conditions for a global optimum. 

2.7.3 Interior penalty function method 

In this technique, a new function 4. is constructed which consists of the 

objective function and constraints. This function can be 

(x,rk) = f(x) 7rk  nlz 
g.
1(x) ...(42) 

j=1 

where f(x) is the objective function, 
g(  
. x) are constraints, and rk  is penalty para-

meter. The above form of 4; function is the simplest and other complex forms 

are also used. The value of the penalty term tends to increase as the constraint 

boundaries are approached; it is small in the interior of the feasible region. 

Further, the penalty term remains undefined if the point is infeasible. Thus, 

the method requires an initial feasible solution to start with. The behaviour 

of 4>function is shown in figure 9. 
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i 

= xl 

Gi  [9(x)1 = -1/9i(x)  

FIGURE - 9 ILLUSTRATION OF INTERIOR PENALTY FUNCTION METHOD 
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The penalty parameter rk 
is greater than zero. Once its initial value 

is chosen, its value in subsequent iterations is always less than the previous 

value. Mathematically, we can express 

r
k +1 

 = C rk .0(43) 

where C < I 

Rao (1979) gives following formula for choosing initial value of r: 

F (xi) 

r 1 to 1.0 1/g. (x1) 
- .E , j  

To solve a particular problem using this method, first the (1) function is dew! 

eloped. Now after selecting an initial point, the function is minimized. For 

this purpose, any unconstrained minimization procedure can be used to obtain 

the optimal solution. If this solution is also optimal for the original problem, 

the process is terminated, otherwise a new value of the penalty parameter is 

obtained and the process is repeated. This time, the last optimal solution is 

used as the initial solution. 

Several problems come up when solving a problem by penalty function 

method, e.g., determining an initial feasible solution and suitable value of penalty 

term and its subsequent reductions. Due to them, these methods are not very 

popular nowadays. 

2.7.4 Rosen's gradient projection method 

This method comes under the broad category of methods of feasible direc-

tion. In a way, the idea is same as in the unconstrained minimization alongwith 

incorporation of inequality constraints. First an initial feasible point is chosen. 

The directions in which further movement from this point is possible are of 

two types. Movement in some directions may violate one or more constraints 

and hence these directions may be infeasible. The other possibility is the move- 
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ment in those directions which are feasible i.e.po constraints are violated 

consequent to the advancement. Among the feasible directions, the objective 

function will improve in certain directions which are called usuable feasible 

directions. This method is very effective if the constraints are linear though 

it can also be used to solve arly nonlinear programming problem. In this method, 

the negative of the objective function gradient is used to find the usable feasible 

direction. 

Let the optimization problem be of the form 

Min F(X) ...(45) 

Subject to A X -b = 0 ...(46) 

where Xis n dimensional vector and the number of constraints is m. For 

simplicity, the constraints are assumed linear. 

Suppose we are at a point X which is feasible and hence AX-13,-0. Now 

we want to step to a nearby feasible point (X+dX) along the path of steepest 

descent. As this point is also feasible, 

A(X+d X)-b=0 

Elence Ad X=0 

Now we want to move along a path ds to maximize the rate of change 

of the objective function. -This can be expressed as 

dF 1 3F 1T dx 
ds - [ x j ds 

-(49) 

where a F/a x= V F (x)  

dx l dx2 
dxn ...(51) dx  

ds - ds ds 

The Lagrangian formed to maximize the above rate ot change is 

L dx,k X, Xo dFl; dx x T A  dx 
ds ds ds ds 

dx 
s ds 

[ 1 ... (52) 
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Differentiating it 

V L dx/ds = F 
x 

dx - 2 X 0 + A X  = 0 ds (53) 

or 

dx 
= ( 3± + AT )/2), o ds 3 x (54) 

dx and V L = A - 0 X ds ... (55) 

dx Tdx V LA 0  = 1- () 
n ...(56) 

Substituting for dx/ds in the equation (55) gives 

ar AT A) — + ) 
(ax 

/2X
0 
 = 0 ...(57) 
 

Since the search direction is normalized according to equation( 54),x0  

will not be zero. 

Hence 

AV F + AA TA = -(58) 

Or = - (AAT)-1A V F ...(59) 

Substituting this value in equation (54) 

dx 
ds [ VF + AT (-AA111 A VF 1/2 A0 

= [ I - AT( AAT)-1 A] VF/2 
0 

= P V F/2 A 0 ...(60) 

where P = I - AT (AAT)-1 A ... (61) 

Matrix P is called the projection matrix and A0  can be regarded as the 

scaling factor. The matrix P projects the vector V F on the subspace defined 

by the constraint set. It is assumed that the constraints are independent so 

that columns of matrix A are linearly independent and hence (AAT) is nonsingular. 

Starting from initial point xi, we move to the new point xi+1  along the 

direction S(=dx/ds) as 

x. = x. + X $ 1+1 ...(62) 
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where x is the step length. The algorithm is terminated when optimality is satis-

fied. 

As mentioned earlier, this particular technique is not very effective in 

case the constraints are nonlinear in nature. The most popular technique of 

solving general nonlinear programming problems perhaps is a technique based 

on reduced gradient concept. It is called Generalized Reduced Gradient (GRG) 

technique. The computational requirements for GRG are significantly less than 

the other met‘ods. For example, it has been reported that the ratio of comput-

ational (requirement for GRG and interior penalty function method is around 

one-sixth. 

2.7.5 Generalized reduced gradient method 

The Generalized Reduced Gradient(GRG) technique is an extension of a 

previous technique proposed by Wolfe to solve a nonlinear optimization problem 

in presence of nonlinear constraints. 

Let the problem be of the form 

Min F(X)  

Subject to g (X) = 0 i=1, neq .—(64) 

g(x) 41n+i 
 i= neq+1 m ...(65) 

I.< x.< u. i=1,....n —(66) 

Here x is a vector of n variables, neq( which may be zero also) is the number 

of equality constraints, and 1 and u represent lower and upper bounds respec- 

tively. The functions F and g are assumed differentiable. 

As a first step, the problem is converted to the following form by adding 

slack variables xn+1
...x

n+m 

Min F ...(67) 

Subject to gi(A - xn+i,  0, 
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I. < u < 0, i=n+1, n+m i 

I. = u. = 0; i = n+1,....n+neq 

1.= 0; i = n+neq + 1,....n+m 

The last two equations represent bounds for the slack variables. The vector 

of natural variables can be split into two partitions, basic and non-basic (similar 

to what is done in Simplex method for linear programming). Let XB  be the 

vector of nb basic variables and xN  be the vector of (n-nb) nonbasic variables. 

The binding constraints can be written as 

g(XB, XN) - 0 ...(69) 

where g is the vector of nb binding constraints. The basic variables must be 

chosen such that the nb * nb basis matrix is nonsingular at a point —>c (which 

satisfies all the constraints). The binding constraints given by equation (69) 

may be solved for XB  in terms of XN  valid for all points in the neighbourhood 

of -x. Thus the objective function, can be expressed as a function of XN  only 

and the problem reduces(in the neighbourhood of x) to the following problem: 

Min F(X
N

) . ( 7 0 ) 

Subject to 1: X
N 

u ...(71) 

The function F(X
N

) is called the reduced. objective. Its gradient, denoted 

byp F(XN), is called the reduced gradient. In GRG methods, a sequence of reduced 

problems is solved by using a gradient search method. The computational scheme 

is being described below. For the sake of simplicity, an example of two variable/  

objective function is given first. Let the problem be 

Min f(xi, x2  ) ...(72) 

Subject to h(xi  , x2  ) = 0 ...(73) 

The objective function and constraints are assumed differentiable 

d f( x) 
; t(x) 

dx, +
a f(x) dx

2 
...( 7 4 ) 

1 a 
2 

h(x)  
d h (x) 

h(x)
dx1 

a x2 
dx

2  
3x

1 
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af(x) 3f(x) a h(x)/ ax 
a x

2 
dx

1 ...(79) d x i  II 3 h(x)/ 3 x 
2 

a  9 f(x) a  f(x) ah(x) 1 -1 a h(x) 
ax1  ax,  a  x2.1 a n  

Substituting for dx2  

d f(x) = 

Or 

df(x)  
dx1 

Since the constraint has to be satisfied at a feasible point 

d h (x) = 0 ...(76) 

or 9 h(x) a n(x) 3 x d
x1 

x 
 + dx2 ...(77) 

1 2 

dx2 = a h(9/  a  x
1 

dxl 
 - 

h(x)/a x2  

The quantity d f(x)/ dx, is the reduced gradient. To generalize., the differ-

ential of a function, F(X), where X is a vector of variables which has been split 

in basic variables X3  and non basic variables XN,is given by 

Fd XB d F(X)/d XN  =. X N V X 
d ...(81) X 

Similarly, form the constraint equation, we get 

dh d XB  dh *  
d d X a5( IN NB d XN 

...(82) 

or 
-1 dX h an 

dX
N  = - ( aX ) aX

N 
...(83) 

Substituting from above equation in the equation (81) we get the following express-

ion for the generalized reduced gradient 

df(X)  
dX

N 
V X

N
F- a h -1 Bh 

F  a—T;
BN 

...(84) 

Now a search direction d is formed and a one dimensional search is initiated 

to solve the problem 
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Min F + cid) ...(85) 

a> 0 

where is point which satisfies the constraints ,X and a can be interpreted as 

a step length. 5; will be the initial point for first iteration. The search is termin-

ated if an optimal point is found or if the algorithm does not coverge. It may 

also terminate if the algorithm converges at a point where one or more constr-

aints are violated or the bounds on basic variables are not satisfied. 

In the area of nonlinear programming the GRG methods are perhaps most 

versatile and efficient. Efficient programs have been developed (though not 

widely available so far) which use this technique. Mainly due to non availability 

of programs, the use of nonlinear programming in solving the problems of water 

resources systems is somewhat limited. 

2.8 Dynamic Programming 

Dynamic programming is defined as an enumerative technique which can 

be used to obtain optimal solution to a variety of problems. The objective func-

tion need not be convex. It has also been applied to non-sequential problems. 

Some of its advantages are: 

It can find the optimal solution even when the feasible region is not convex. 

The solution can be found in cases where the variables are not continuous. 

Several problems in system design can not be realistically and effectively formu-

lated using the concept of continuous variables. 

It also provides solution to a number of problems where classic methods 

of calculus fail. 

Dynamic programming was developed by Richard Bellman. Its entire theory 

is based upon Bellman's principle of optimality. The principle can be stated 

as follows (Ref. Fig.10): Given an optimal trajectory (I-II) from point A to C, 
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- - - - II I 

FIGURE 10 - ILLUSTRATION OF BELLMAN'S PRINCIPLE OF OPTIMALITY 
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the portion of this trajectory from any intermediate point B to point C (II) 

has to be the optimal in the interval B to C. The proof can be immediately 

obtained by contradiction. In the dynamic programming formulation, the dynamic 

behaviour of the system is expressed in terms of three variables; 0 State variao-

bles which describes the system, ii) control variables which represent the decision 

or control applied and influence the process by affecting the state variables 

in some prescribed fashion, and iii) the stage variables which determine -the 

order in which events occur in the system. Generally, the stage variable is taken 

to be time. The system is described by a set of equations called system equations 

which describe how the stage variables at stage t+1 are related to those at 

stage t, on application of control variables during stage t to t+1. It can be wri-

tten in a general form as 

x(t+1) = g [ x(t), u(t), t]  

where 

x = vector of state variables 

u = control vector 

t = stage variable 

Some finite integration formula must be used to approximately represent 

the differential equation on a digital computer. The simplest can be 

x(t +60 = x(t) + g [x(t), u(t),t16t 

where 6 t= time increment over which control u(t) is applied. 

The performance criterion can be taken to be a reward function which 

is to be maximized or else a cost function which is to be minimized. The appro-

ximate finite formula for cost function can be in the form 

= 1 [ x(t),u(t), 6t + [x(tf),tf] ...(88) 

where 
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1 =s caler functional for cost per unit time , 

= .scaler functional for final cost , and 

t f = final time. 

The  constraints can be expressed as 

x e X (0 

u 

where X is the set of admissible states which can vary with time and U is the 

set of admissible controls which can vary with both X and t. The principle of 

optimality is applied to this problem to yield an iterative functional equation 

to determine minimum cost that is incurred in going to the final time from 

the present time. The minimum cost at a given state x(t) at present time t 

is found by minimizing, using the choices of the present control u(t), sum of 

cost over next time interval and minimum cost of going to final time from resul-

ting next state. Mathematically it can be expressed as 

1 (x,t) Min 1 [ x(t),u(t), tI5 t + I [x(t) + f(x(t),u(t),t) ot,t+ 6 t] ...(89) 
u 6  U 

The minimum cost function for all x and t can be evaluated by iteratively solving 

this equation with the boundary condition 

I (x, tf) = 4 (x, tf ) ...(90) 

Thus, in condensed form, the optimization problem can be stated as: 

Given - A system described by equation(86) 

constraints that x eX(t), u eU(x,t) 

An initial state x(o) 

Find-the control sequence u(o),.. u(t) that minimizes Jr while satisfying 

constraints. 

The problem can be solved by enumeration. At the given state x(o) every 
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admissible control uc U is applied and for each of them, next state is computed. 

In general, when a set of states x(t) has been defined by the procedure, a new 

set of state x(t+1) is defined by applying all u EU at all of the x (t) by 

x(t+1) = g Ex(0,u(0,t] , 

mThe cost of admissible states is computed. This continues until the final 

value of time is reached. 

Now we trace out all trajectories in state space that do not violate the 

constraints and that begin at x(o) and end at t=ti. These trajectories form a 

tree beginning at x(o), and expanding as t increases. One such tree is illustrated 

in Fig.11. It is possible to handle a large variety of constraints by this method 

and incidently,they serve a useful purpose by reducing the number of trajectories 

that must be considered. The minimum cost is evaluated by comparing cost 

for the admissible states and choosing the minimum value. The optimal control 

sequence and optimal trajectory in state space are determined by tracing back 

along the path that led to this minimum value of cost. This procedure always 

leads to an absolute minimum rather than a relative minimum. 

Inspite of all its advantages, the enumeration method leads to one major 

computational difficulty. Although constraints do reduce the number of traject-

ories , they increase exponentially as the computations move forward in time. 

Hence complex problems become unmanageable due to large computer memory 

requirements.This is what'Bellman has called 'the curse of dimensionality'. Few 

of the several modified procedures that have been developed to overcome the 

curse of dimensionality are being discussed here. 

2.8.1 State increment dynamic programming 

The optimization problem to which state increment Onamic programming 

technique(SIDP) is applied can be conveniently expressed in the continuous time 
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scale. The system equations become a set of nonlinear time varying differential 

equations : 

dx/dt = f (x,u, 

where f = a vector functional. 

A fundamental difference between state increment dynamic programming 

and the conventional procedure lies in the method for determining 6 t, the time 

interval over which a given control is applied. In conventional dynamic progra-

mming, the total time interval over which the optimization is performed is 

quantified into uniform increments, 6 t, and the optimal control is computed 

only •at these quantified values of• t. On the other hand, in state increment 

dynamic programming, this time period is determined as the minimum time 

interval required for any one of the n state variables to change by one increment. 

Thus 

x. 

f x. ,u,t)I 

where 6x
1  
.= change in the ith state varia le. 

In general at is determined by applying control until the trajectory reaches 

a n dimensional hypercube centered at the current state and with side of 

2,6xi along the ith coordinate axis. As a resualt the next state is always close 

to the present state. Thus it is necessary to store values of minimum cost func-

tion at only those quantified states which are nearer to the present state. This 

enables the state increment dynamic programming to reduce the computational 

requirement from those of conventional dynamic programming. Further, an overall 

significant saving in high speed memory requirement(the amount of data to 

be stored in order to apply the iterative functional equations at a specified 

x E  X and to  <t < tf) can be achieved by efficiently processing data. This is achieved 

by utilising the concept of blocks which are defined by partitioning the (n+1) 

Min 
6 t = i=1,n ...(93) 
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dimensional space (containing the n state variables and time) into rectangular 

sub-units. The concept and methodology of state increment dynamic programming 

has been discussed in detail by Larson (1968). 

2.8.2 Discrete Differential Dynamic Programming 

Discrete Differential Dynamic Programming (DDDP) as proposed by Heidari 

etal.(1971) is a computational technique parallel to state increment dynamic 

programming. This method is an improved form of discrete dynamic programming. 

This meothod starts with a trial trajectory denoted by x'(t), satisfying 

a specific set of initial and final conditions. The sequence of controls applied 

to obtain the trial trajectory is called trial policy. Total returns from this trial 

policy and trial trajectory over entire time horizon are obtained. Now a set 

of incremental state vectors are defined as 

A xi(t) = [ 6x.1(t) 6 x.2(t) dxii(t)... d xiii(t)] 
...(94) 

where jth component can take any one value a t, t=1,2,...k,from a set of assumed 

incremental values of the state domain. When added to the trial trajectory at 

a stage, these vectors form an n-dimensional sub domain: 

D(t) = xt(t) + Ax i  (t), i = 1,2...K ...(95) 

Here one value of a t has to be zero because the trial trajecto.ry is always in 

the subdomain. All D(t) t=1...K together are called a 'Corridor'. A corridor 

is used as a set of admissible states and optimization is performed constrained 

to these states. This leads to a new value of return. If this value is greater 

than the value obtained in earlier iteration (less in case of minimization problem) 

then the procedure is repeated from the beginning until the difference is less 

than a preassigned tolerance limit. For the next iteration, the optimal policy 

from the previous iteration becomes the trial policy and a new corridor is formed 

around it. The width of the corridor goes on reducing with each iteration to 
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have a finer policy. An illustration of this method is given in figure 12. 

The suggested method has been found to be particularly helpful in case 

of invertible systems( A system is said to be invertible if the order of the state 

vector is equal to the order of the decision vector). 

2.9.3 Stochastic dynamic programming 

Stochastic programming deals with situations where some or all the para-

meters of the optimization problem are described by stochastic variables.This 

condition is frequently encountered in reservoir operation problems because 

future inflows to reservoir are always stochastic in nature. Depending upon 

the nature of the programming problem, it is called a stochastic linear progr-

amming, stochastic nonlinear programming or a stochastic dynamic programming 

technique. Out of these three, stochastic dynamic programming has been very 

popular and there has been a proliferation of papers on it during the recent 

times. The procedure is briefly described here. 

Consider a stochastic return function 

Rt  = Rt  (x (t+1) , u(t), yt) ...(96) 

where yt  is a random variable which will be absent in the case of a determin-

istic return function. Let yt  be discrete with a probability mass function of 

The random variables yl, y2 yn  are assumed to be statistically indep- 

endent. For a fixed value of x (t+1) and u(t), we would expect on an average, 

a return of 

(x(t+1),u(0= iFt(yt)Rt(x(t+1),u(t),yt) ...(97) 

An important property of the expected return is that it statistically repre-

sents an estimate of the average return from any one trial even through it 

may not be possible to receive the amount -Rt (x(t+1), u(0)in practice. The objec-

tive function to be optimized is given by the sum of individual stage returns: 
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F (u(1),u(2)...u(n)). f.i
Rf  (x(t+1),u(t).Y.t) ...( 98) 

The following stochastic recurrence can be readily derived, Rao (1979): 

Nx(t+1)] = max E p.„(y„)Qt[ x(t+1),u(t),yt] ...(99) 

u(t) yt  " 
1 4-1 4n 

where 

and 

Qt  k (t+1),u(t),y0=Rf  Lx(t+1),u(t),yfl+F;_i  [g(x(t+1),u(t),yfn ......(

(

1

1

0

0

0

1

)

) 

 

2 .4 t. n 

Qi[x(2), u(1), y? = R1  [x(2),u(1),Y1l 

F [x(t+O]denotes the maximum expected return as a function of the input 

state x(t+1). 

Stochastic dynamic programming yields an optimal policy which self stoch-

astic except for the first optimal decision as pointed by Rao(1979). The remaining 

optimal decisions obtained in the form u
* 

(tf  _1)...0 (2) by using the recurrence 

relations can not be expressed deterministically in terms of u*(tf) until the 

random variables that precede them are revealed. 

The development of above modified techniques has considerably reduced 

the computer memory requirements. This has resulted in a proliferation of studies 

which have used dynamic programming as solution technique. This is inspite 

of the fact that the technique itself is not tailored in such a fashion that gener-

alized computer programs can be written. Still other advantages have outweighted 

this aspect. The efforts required to develop a program, particularly when it 

is used to assist the operation in the day-to-day management of the system, 

are worth it. 
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3.0 APPLICATIONS OF OPTIMIZATION MODELS TO PROBLEMS OF RESE-

RVOIR OPERATION 

3.1 Types of Models 

Several types of models have been developed to analyse a reservoir system. 

The classification of models among different types is more of academic interest. 

Each model type has its own inherent advantages and limitations and there is 

no single model which can be applied for all problems associated with a water 

resources system. 

All the available models, in general, can be classified as static or dynamic 

models depending upon assumptions about hydrologic and economic conditions. 

However, models which are static with respect to one process may be dynamic 

with respect to other processes. 

Water resources system models can also be classified as deterministic 

if the streamflows are assumed known and as probabilistic or stochastic if only 

the probability distribution of the streamflows is known. Although the stochastic 

models are more complex and require more computation time, the information 

supplied by them is more useful for analysis and due to this reason, they are 

in vogue nowadays. 

The most important classification, however, from the point of view of 

this study is whether a model is a simulation model or an optimization model. 

3.1.1 Simulation models 

Simulation, which is essentially a search procedure, is one of the most 

widely used approaches for evaluating the performance of alternative decisions 
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concerning a water resources system. The model, as developed for a digital 

computer ,consists of a series of mathematical instructions and relations repre-

senting the inherent characteristics, behaviour, and response of a particular 

system. This sequence of instructions, when carried out using historical or 

synthetic data as input ,simulates the operation of that system. The output from 

the model can then be used to analyse and evaluate the performance of the 

system. 

3.1.2 Optimization Models 

These models optimize the decision maker's choice which is expressed 

by an objective function. The choice is further subjected to a set of constraints 

which arise due to physical limitations, laws of nature, and resource availability 

etc. The solution is given in terms of specific values of decision variables which 

will give optimum value of objective function. Further, post optimality analysis 

can also be performed which will indicate how much sensitive optimal solution 

is to changes in decision variables and constraints. 

3.2 Comparison of Simulation and Optimization Models 

Using a simulation model it is possible to immediately answer the question-

what if? Popularity of simulation models is due to their flexibility and the ease 

with which they may be developed and used. Even for a layman, their output 

is easy to understand. They have been found to be effective for evaluating alter-

native configurations of river basin development,water allocation alternatives, 

and feasible operating policies. The models can be very complex and realistic 

too. The decision maker's choice can be easily incorporated in the model. These 

models, however, have few limitations. One of them is that these models do 

not provide optimal results . If the basin offers a large number of alternatives, 
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the problem of choosing best among them or selecting a set of alternatives 

which are to be further investigated in detail becomes uncontrollable in term 

of computation time and efforts required to screen the results. Secondly, although 

simulation provides great freedom to test diferent combinations of structures 

and target outputs, it does not give sufficient freedom to test different operating 

procedures. A major change in operating procedure requires re-writing, and 

testing a new programme. Finally, sampling in multidimensional space also makes 

the solutions questionable. Problems regarding adequacy, suitability, and repres-

entativeness of a sample are also not fully understood at present. 

The ol)timization methods try to find out a set of decision variables such 

that the objective function is optimized (i.e.,either maximized or minimized). 

Due to the very nature of these models, they are very much helpful in initial 

screening of several alternatives of water resources development. The models 

become particularly helpful in studying the operation strategies of reservoirs. 

The decision making choice can be explicitly expressed through objective function. 

Versatile programs can be written which can take widely varying nature of 

objective functions. Unlike simulation models, only single run of the program 

is required to obtain the optimal solution. Post optimality analysis, also called 

sensitivity analysis is an important and useful part of an optimization model. 

Here it can be determined as to how much sensitive an optimal solution is to 

changes in the value of decision variables and how it changes by loosening or 

tightening of a particular constraint by a fixed amount. Nowadays very efficient 

packages of optimization programs are available which have made their use 

more or less universal. For complex and widely varying problems of reservoir 

operation, these models have taken a big lead over other types. 

3.3 Choice of Objective Function 

The choice of objective function is a very important decision for an optim- 
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ization formulation. In the operation of a reservoir, a large number of alternat-

ives are available to the decision maker. The output from each alternative can 

be measured in terms of say, a common monetary unit or crop yield or quantum 

of energy generated etc. Now to choose a particular alternative ,it is necessary 

to order them in terms of attainment of the objective of the planner. The crit-

erian used in this ordering or ranking is called the objective function. 

Starting with the main objective of a water resource development as 

increasing national income, Maass et al (1962) introduced the notion of economic 

efficiency. According to them, a project will be called economically efficient 

if no alternative design would make any member of the community better off 

without making some other members worse off. To evaluate the economic effic-

iency, they introduced the willingness to pay criteria. The willingness of the 

people, affected by a particular project, to pay for it in terms of zero design 

(i.e., no project at all) can be measured and can be used to rank the projects. 

However, these types of criteria can be useful only in the design stage to screen 

the alternatives and are not helpful in the operation stage of a project. Never-

theless, it can be shown that all the objectives are reducible to economic effic-

iency objective. 

In spite of the importanceof choice of objective function for a problem, 

detailed guidelines are not available for its selection for a particular problem. 

Usually, the choice of the objective function is governed by the nature of the 

problem and also the computational facilities available. For example, may times 

a linear objective function is chosen because it reduces the computational efforts 

significantly and moreover, efficient computer programs are widely available 

for linear programing problems. One way of converting nonlinear objective func-

tion to a linear one is piecewise linearization. In this approach, the function 

is divided into a number of segments such that it behaves linearly in each seg- 
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ment. The number of segments depends upon the nature of objective function, 

permitted distortions as a result of this process and also the computational 

facility(e.g.time) available. A finer division will, no doubt be more precise but 

will lead to more processor time. 

The nature of the problem is another factor upon which the design of 

objective function depends very much. If the problem is of short term operation, 

the aim may be to evolve a policy which meets the targets as closely as possible. 

For example, for problems of flood control operation, objective may be to mini-

mize the flood Omage, or it may be to minimize the flows which are greater 

than the safe carrying capacity of the channel. Similarly, for conservation oper-

ation, the aim may be to minimize the deviations from the long term targets. 

Another interesting problem is the multipurpose operation of a reservoir. In 

this case the objective function should be designed such that all the purposes 

are given appropriate weight. 

For a long term operation problem, the aim is more to fix the targets 

or the maximum attainable level of power or water. This may be in the form 

of maximization of firm power or firm water etc. 

If the problem is concerned with the operation of a system of reservoirs, 

the concept of zones is frequently used. According to this concept, the aim 

is to ensure that all the reservoirs of the system are in the same storage zone 

at a given time. To achieve this, the demands are suitably divided among the 

reservoirs. This concept is similar to the concept of keeping all the reservoirs 

at the same index level. 

3.4 Application of Optimization Techniques to Reservoir Operation Problems 

A large number of studies have been made on reservoir operation problems. 

The reasons for this proliferation of studies are very clear. More stringent dem-

ands are being placed by society on existing water resources which require better 
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management for higher degree of satisficing. Furthermore, it has been very 

well established that benefits derived from the joint operation of system of 

reservoirs substantially exceed the sum of benefits obtained from independent 

operation of each of the reservoirs. 

Out of various optimization techniques discussed, two have been most 

commonly used for reservoir operation problems. These are linear programming 

and dynamic programming. Mostly dynamic programing has been used in case 

objective function is nonlinear. The user of integer programming is mostly for 

capacity expansion problems. Stochastic programming in conjunction with LP 

or DP has also been widely used. For the purpose of this study the works being 

reviewed are being classified into two broad categories: 

Linear programming techniques, and 

Dynamic programming techniques. 

3.5 Linear Programming Techniques 

The applications of linear programming to water resources systems in 

general and to reservoir operation in particular have been far and wide. But 

before discussing them,we will discuss a simple problem formulation. 

Let us consider that a reservoir is located at a particular site. The dead 

storage capacity of the reservoir is S
m in and the maximum capacity is S

max 

For the most critical year in past, monthly inflow data for the year is available 

and it is required to find out the annual firm water yield of the reservoir. The 

monthly distribution for this yield is also available, i.e., if the annual yield is 

X than its distribution among 12 months ot1X, a2X, ci3X 
 T2X  is known or in 

other words a i = 1,12 are known. 

If the water releasedfor the ith  month is R. than it is essential that this 

value must be greater than or equal to ax for that month. This can be expressed 

mathematically as 
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a.X —(102) 

This condition must be satisf led for every month. Hence there will be 

12 such constraints 

R. ;.cti  X i = 1, 12 ...(103) 

If the storage in any month is represented by Si  and inflow by I then 

according to continuity equation, the sum of initial storage and inflow for the 

.th month less release during that month will be equal to the initial storage 

for next month. All losses are being ignored for the sake of present example. 

Further, there will be twelve such constraints, i.e., 

Si- I. - R. = S. i=1, 12 ...(104) 
1 1 1 i+1 

Apart ftom these constraints, from the physical point of view, the storage 

cannot exceed the maximum storage any time. This will also give rise to twelve 

constraints of the form 

< Smax i=i, 12 —(105) 
i•  

Similarly, it must also be ensured that the storage never falls below the 

minimum permissible value, or 

Si  ;.Smin  i=1, 12 _(106) 

The important thing left is the design of objective function. As the aim 

here is to maximize the firm yield, it can be put as 

Max= X ...(107) 

The entire problem can be put here as 

. Max Z = X ..(108)  

Subject to R. > a.X i=1, 12. 

Si+Ii-Ri  = S1+1 i=1, 12 

54 S i=1 12 
max 

Si?. Smin 1=1, 12 
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R. >,0 i=1, 12 

The problem has 48 constraints. It can be easily solved using a standard 

LP package. But the number of constraints is rather large. 

It may also be mentioned that all the losses have been ignored in the 

present example. If evaporation losses are to be considered then the area capacity 

curve has to be used which is not linear in nature. One way out is to divide 

this curve in a number of segments and then linearize it in between two segments. 

This process is known as piecewise linearization. The accuracy, of course, depends 

upon the number of segments into which the entire region is divided. 

In the above example, only one year of data(12 months), was used. However, 

in practice this may never be the case. Thus, for example, if data of 10 years 

is used then the number of constraints will increase to 480. This undoubtedly 

is a large number and it increases rapidly as the number of years is increased. 

If the analysis is carried using yearly data rather than monthly then the number 

of constraints will sharply reduce but this is not very much advisable. One remedy 

is to explicitly treat the Stochasticity of the inflows by using the technique 

of stochastic linear programming. In this technique, an appropriate probability 

distribution is assumed(or fit) for the inflows. Now we take a particular reliability 

level, say 95%, and in the continuity equation, use that particular value of inflow 

which is exceeded with 0.95 probability. The modified constraint is written as 

Si + 
R. = S. 1=1, 12 ...(110) 

1+1 

where I(p) is the inflow value which is exceeded with a probability of p in the 

month i. This formulation will reduce the number of constraints to 48 with the 

added advantage that the stochasticity of inflows has been taken into account. 

Further, the sensitivity of the reliability parameter can also be studied. 

This formulation, although convenient to use, has been severly criticised. 

One criticism is about the implicit assumption that the critical flow will occur 
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in each month of the critical year. This assumption is not true in reality and 

it leads to conservative values. There is still a great controversy in the literature 

as to whether the error is really serious or not. 

After explaining the formulation of the problem in linear programming 

framework,the attention is now focussed on reported applications of this technique. 

Among the first reported works using linear programming, the study carried 

out in the Harward water program is Probably most significant. In this study, 

as reported by Maass et al (1962), a stochastic LP technique was used to find 

out the optimal reservoir operating policy. 

The total inflow in a given period was assumed to be a stochastic variate. 

It may be pointed out here that as the inflow is discretized in finer Or smaller 

units, the better is the representation of the actual condition. A too fine discre-

tization will however, significantly -increase the amount of computation. Similar 

arguments hold good while deciding about the number of time periods in which 

a year is divided for computational purposes. The number of time periods should 

be such that the streamflow and demand pattern is faithfully reproduced at 

no significant increase in the cost of computations. 

In the above model, the initial state of.  the system was defined using two 

variables _ inflow and storage. :t was assumed that there is no serial correlation 

between the inflows in succeeding periods. The constraints included the continuity 

equations(one for each period) and constraints for limiting sotrage to the maximum 

reservoir capacity in each period. The decision variable for the problem was 

draft to be permitted from storage so that the expected value of benefit may 

be maximized. The objective function was to maximize the expected value of 

benefits over entire operating horizon, for all values of storage and release. 

The consistency of LP solution was checked using queuing theory. 

Although this study was very successful, it had some limitations. The 
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model developed could be used to study operation of a single reservoir only. 

Multiple purposes could be explored only if they could he combined into a single 

objective function. Serial correlation between inflows was also not permitted. 

The number of time periods was restricted to computer memory capacity which 

was quite small in those times. The computation of hydrolectric power benefits 

poses a problem in LP models. In the above model, it was assumed that the 

energy output is a function of end-of-the period storage and water released. 

If the analysis had to be done for flood control, the assumption was that average 

flows and flood damages have a good correlation. The computations for the 

above model which was applied to a hypothetical basin were performed on a 

IBM 700 computer. 

The most important and yet most controversial application of the LP 

to problems of reservoir system has been in the framework of Linear Decision 

Rule(LDR). This rule, which was originally proposed by ReVelle etal.(1969), 

can easily be applied both in deterministic and stochastic framework. In the 

LDR, it is assumed that the release is a linear function of storage, or 

Rt. St-1 
-bt ... (111) 

Where Rt  is the release during time period t, St_i  is the storage at the 

end of period (t-1) and bt  is the decision rule parameter which optimizes the 

chosen objective function. The problem posed by ReVelle et al (1969) was to 

find the smallest reservoir which will deliver required flows under the physical 

constraints and equation(111). Rules, such as power rule, fractional rule etc. 

may perform better than LDR but the additional computational burden may 

not be worth while. The authors presented LDR in deterministic as well as chance 

constrained formulation. In the chance-constrained formulation, flows are known 

only with a certain probability. Similarly, the constraints also have probability 

values attached with them. They may be present to ensure that (i) the release 
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must exceed a minimum value with a specified probability, iii) the release must 

not exceed a maximum value with a specified probability/  (iii) the storage must 

not go below a particular value with a specified possibility, and (iv) a minimum 

amount of freeboard must be available with a specified probability. Since its 

introduction, the LDR has been modified to consider evaporation losses, hydro-

electric power benefits and extended for multi reservoir systems. 

ReVelle and Gundelach (1975) presented a new LDR in which release is 

a function of current storage as well as past inflows: 

Rt =  Str.i+  t 1t - 5 t-1 5 t-k bt 
—(112) 

where 5 t' st-1  s t
_k are constants to be determined. The authors pointed out 

that this form of LDR permits a smaller reservoir capacity than the original 

LDR. They used the condition of minimum variance of release to determine 

S weights. 

Loucks and Dorfman(1975) pointed out that the LDR models give conser-

vative results. The reason is that these models assume that critical flow and 

critical storage simultaneously occur in each period. In practice, their joint 

probability is negligible and this too depends upon the stochastic structure of 

the streamflows..They presented a LDR of the form: 

Rt 
 = St 

+A
t 

- bt ...(113) 

1 

where At 
is a coefficient. The choice A t 

= 1 gives the least conservative result 

while At  = 0 gives most conservative result. 

Houck (1979) pointed out that the conservative nature of the LDR can 

be tackled by using conditioned cumulative streamflow distribution functions 

in the model. He presented multiple linear decision rule in which the release 

were conditioned on the previous two seasons strearnflows and the storages 

on the streamflow of two previous months: The model can be easily formulated 
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m other ways also choosing the number of events on which the releases and 

storages are to be conditioned by considering the accuracy of future streamflow 

predictions, modelling approximations, and available computational facilities. 

In another framework of LDR, presented by Houck et al (1980), the hydro-

electric energy generation and economic efficiency benefits were. incorporated 

in the model. The economic efficiency was incorporated in their model as follows. 

The deterministic constraints, such as for •storage and release which are bounded 

between upper and lower limits, were replaced by chance constraints for parti-

cular reliability level a . It was assumed that the targets represent long term 

benefits and the deviations represent short term losses. If a large number of 

probability levels are chosen such that they represent entire range from zero 

to one, the cumulative distribution function of deviations can be found out. 

In a flood ..control benefit case, the target free board represents the long term 

benefits. Further, the maximum possible freeboard equals the reservoir capacity 

and the minimum is zero. In objective function, the expected flood control benefits 

can be expressed as a function of the target, the probability level and the 

excess and deficit. As the long term benefit functions are concave and short 

term loss functions are convex, they can be easily incorporated in the model. 

In case of hydroelectric power generation, the production function is 

nonlinear. It was assumed that the reservoir ,  is operated such that during a time 

period, the volume remains within a small region with high probability. The 

relationship between storage and head was assumed linear within this small 

region. The values of expected head and release were used in the benefit function. 

In. the LDR models discussed so far, it has been ,assumed that the stream-

flows in successive periods are independent. It is 'well known that this assumption 

is not correct. The inflow time series has significant serial correlation which 

does influence the required reservoir capacity and release decisions. Joeres 
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et.al  (1981) presented a generalized formulation where correlation betweer 

the inflows was also considered. They presented these LDR's: independent rule 

where the correlation between the inflows in successive periods is zero or • 

p=0, the predictive rule which assumes that -1 < p< 1, and the utopian rule or 

the case where perfect prediction is possible or IP I= 1 

Houck and Dutta(1981) compared single -LDR with multiple-LDR. They 

showed that multiple-LDR is better than single LDR. But as the number of 

rules per season increases, the size of multiple-LDR also increases although 

they remain within the computational limits. 

Loucks (1968) developed a stochastic linear programming model for a 

single reservoir optimization. The net inflows to the reservoir were assumed 

to follow a first order Markov chain. The first order transition probabilities 

were computed by observing the number of times the net inflow equalled j in 

period (t+1) after having been i in the period t, divided by the total number 

of transitions from i to all inflows j. These transition probabilities, when coupled 

with the reservoir operation policy, determine the probabilities of the transition 

of one storage volume to another. The objective function was minimization 

of sum of the expected squared deviations from the target reservoir volumes 

or discharges. Mathematically, the objective function was 

Min a (v-v )2+ (1-at) (d- ) x 
v,i,d,t t t ut.2  vidt 

...(114) 
 

where v
t 

and a
t 

are target initial reservoir wilume and discharges in period 

t 
 xvidt is joint probability of beginning with a reservoir volume v, having an 
'  

inflow i and discharging d in period t.a t  is a weighting factor expressing priority 

of reservoir volume to reservoir release in period t, such that 0 <a 
t
< 1 

further X = 1 for all t ...(115) vidt 

The probability distributions of the resulting actual reservoir volumes 

and releases were obtained as solution in addition to optimal operating policies. 

65 



This approach has one drawback when applied to real life situations. A finer 

divisions of storages and inflows in discrete units is essential for sufficiently 

accurate representation of the system. This, however, leads to a considerably 

big transition matrix which also increases in size as the number of time periods 

for computations increases. 

Houck and Cohon (1978) showed that this type of models belong to a broader 

category of stochastic nonlinear programming models. They also assumed that 

the inflows have a discrete Markovian structure. The formulation by Loucks(1968) 

was extended to a multipurpose multireservoir system. As the solution of nonlinear 

programming problems is very much difficult, the formulation was approximated 

by two LP's which iterated back-and-forth and converged to the optimum. 

3.6 Dynamic Programming Techniques 

As defined earlier, dynamic programming (DP) represents a multistage 

decision process. This technique has been extensively used for studying various 

aspects of water resources systems. One main reason of popularity of DP 

is that nonlinearity of benefits and stochasticity of inflows etc. can be easily 

incorporated in the DP formulation of a problem. Buras(1966) has given a detailed 

discussion on theory of DP and its applications to water resources problems. 

A landmark in this direction was the application of DP to maximization 

of firm power from a two reservoir system. The firm power is defined as the 

maximum amount of power that can be delivered each year 100% of time acco-

rding to some prescribed monthly distribution. The reservoirs in the system which 

was studied were in parallel. The maximum firm power that can be obtained 

by the operation of reservoirs is given by: 

max min [ E l 
(t) + E2 (t) 

R(t) t B. 

 

...(116) 
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where NO = amount of on-peak energy produced by first reservoir during time 

period t, 

E2
(t) = amount of on-peak energy produced by second reservoir during 

time period t, 

B.= a distribution coefficient for the j
th 

month, and 

R(t) = vector of releases from first and second reservoir. 

It was reported that from the point of view of computational efficiency, 

the increments to the state variables should be kept constant throughout any 

iteration and the increment size should be reduced as the iterations proceed. 

Young (1967) presented the reservoir operation problem in a control-theoretic 

framework. The technique which he has presented is called Monte-Carlo Dynamic 

Programming (MCDP). He assumed that the inflows follow a Gaussian lag-one 

Markov population. He generated 1000 traces of inflows and then the optimal 

storages and drafts were found for each of these using a forward looking deter-

ministic dynamic programming algorithm. A least square regression was then 

performed for finding optimal operating policies. The loss function assumed 

was a single stage loss which depends on the release only. Young also used 

calculus of variation to obtain an analytic solution of a. continuous time version 

of the deterministic reservoir operation problem. 

A technique, called Discrete Differential Dynamic Programming (DDDP) 

was proposed by Heidari et al (1971) to alleviate the problem of'curse of dimension 

ality'. The problem arises when the number of variables to be stored for a 

computation exceeds the size of memory of a computer. They applied the DDDP 

technique to a system of four reservoirs and showed that the optimal operation 

strategy can be successfully obtained. But again as the size of the system incr-

eases further, even DDDP is not able to manage the problem. To overcome 

this problem, Nopmongcol and Askew (1976) presented a method called Multilevel 
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Incremental Dynamic Programming (MIDP). This technique is very much similar 

to the successive approximation method in which a higher dimensional problem 

is broken in several subproblems of smaller dimensions which are then solved 

to obtain the solution. However,this technique has one disadvantage: many times 

it leads to local optimum instead of a global one. Briefly, the MIDP theory 

is as follows. 

In MIDP, the original system is decomposed into two sub-systems: one 

active and one inactive. At the first level of computations, only one component 

is chosen as active and rest are inactive. For example7in a system of ten reservoirs. 

One reservoir will be active at a time in the first level of computations and 

rest nine will form the inactive system. The objective function is optimized 

by adjusting the attributes of only the active subsystem while satisfying all 

the constraints. When no further better adjustment in the attributes of this 

active component is possible, this component is put into inactive subsystem and 

one component from inactive subsystem is made active. The computations are 

performed in similar manner as given above by adjusting attributes of this component. 

The process is repeated again until all the components have been activated 

at least once. Now the second level of computations is taken up. In this level 

also, the procedure is same except that now two components are made active 

instead of one.This two-at-a time optimization is over when all the possible pairs 

of components have become active once. The computations continue for higher 

levels until no further improvement in the performance is possible. It can be 

seen that the lower levels act as screens which eliminate suboptimal solutions 

thus leaving gradually limited region for higher levels. Further, for a high order 

problem, it is not generally necessary to go to a quite high level of computation. 

One criterion is to stop the computations when the current level does not give 

significantly better results than the previous level. The authors successfully 
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applied the MIDP technique to a hypothetical system to show its computational 

efficiency. 

Becker and Yeh(1974) developed an algorithm for optimization of real-time 

operation of a multiple reservoir system. It was assumed that various uses and 

purposes are quantifiable via a set of constraints which take care of them, 

e.g.,storage allocation for flood control purposes, for hydroelectric generation 

and for recreation uses etc. They defined the best state in each period as the 

set of reservoir storages which possess the largest total stored potential energy 

relative to the installed power houses. One attractive feature of the work was 

that they used a LP-DP formulation in their study. The LP formulation was 

used to determine the optimal reservoir releases and storage states for each 

period of the total time interval of interest. It had an objective function which 

minimized the stored potential energy losses. The stored energy in the reservoirs 

was expressed in terms of the states of reservoirs and the corresponding energy 

rate functions. The LP algorithm was used to generate solutions for different 

values of the on-peak energy generation constraint and corresponding alternative 

paths from starting vector to ending vector space. Then a DP formulation 

was used to select from these alternatives an optimal path from any period 

i to each of the incremental energy levels of period (i+1). This can be done 

by choosing the alternative which maximizes the sum of components of the 

end-of-period storage vector. The cumulative energy was chosen as the state 

variable for the DP algorithm while the feasible energy constraint for a period 

formed the decision variable. The final result was a policy which maximized 

total on-peak energy generation over and above contract levels and produced 

a satisfactory starting state for the next set of periods to be considered. The 

algorithm was illustrated by an application to the Central Valley Project of 

California. 
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Hirsch et al (1977) evaluated synergistic gains from integrated operation 

of a water resources system. Synergistic gain is defined as gain in benefits.  

due to joint operation of a system of reservoirs, in excess of the benefits from 

optimal individual operation. These gains can be divided into two components: 

deterministic and stochastic. These gains are captured by employing operating 

policy which attempts to minimize the spilling of water from any reservoir 

when there is a storage capacity available elsewhere in the system. Operating 

rules like space rule etc. proposed by Maass et al (1962) can be used to accomplish 

it. It was shown that synergistic gains were significant when daily decisions 

were taken instead of monthly since short time step allews the rule to react 

to the changes in relative sizes of inflows. 

3.6.1 Stochastic dynamic programming techniques 

A better insight of the reservoir problem is obtained if one considers 

the stochasticity of the inflows in the problem formulation. The DP algorithm 

can be adapted in two ways to incorporate this stochasticity. 

One of them is called Monte Carlo Dynamic Programming (MCDP) suggested 

by Young (1967) which has been described earlier. An alternate procedure is 

one which was proposed by Butcher (1971) where stochastic behaviour of inflows 

is considered explicitly. 

Butcher considered one month as the basic time unit for inflows. Any 

other smaller time unit may also be considered but this will increase the dimen-

sionality of the problem. The sequence of monthly streamflows was regarded 

to be connected by twelve sets of different transitional probabilities to form 

a non-stationary Markov Chain. It was also assumed that tne system is ergodic, 

i.e., the steady state of the reservoirs system is independent of the 

starting state. The storage contents of the reservoir s and the flow q 

were assumed to be state variables and the release or draft d as the decision 
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variable at any stage. The optimal policy formed by these drafts is assumed 

to be converged when the values of d's repeat for all values of stage variable 

i, as i becomes larger. This methods of determining the optimal operating policy 

is called a 'Policy-iteration routine'. The ergodicity of the process is essential 

for use of policy-iteration routine. The objective function used in his study was: 

[E P (qi  /q)[((d)+1 f. (s ) 
I Tit- i-1 

...(117) 

where 

f.(s.,q 1  
. )= expected return from the optimal operation of a system which 
1+ 

has i time periods to the end of the planning period, 

s. =. the volume in storage at the start of the ith  time period, 

q i  = the inflow to the reservoir during the ith  time period, 

d= release from the reservoir during current time period, 

. 
R(d)=return obtained by releasing a quantity of water d in the i 

 th  time 

period, 

P(q 
.th 

i  q i+f ) = transition probability connecting the flnw in the time 

period with the flow in (i+l)th  time period, and 

r = the interest rate. 

It may be mentioned that for a stationary Markov Chainthe optimal policy 

will change with the changes of interest rate though .the changes may be small. 

The above procedure was successfully applied to a reservoir system by Butcher 

(1971) 

3.7 Multiobjective Optimization 

Water resources planning problems deal with the allocation of water among 

several uses. Traditionally, planners have used a single objective for explicit 

economic analysis which tries to maximize net benefits. However, the development 

of system analysis techniques has also made multiobjective analysis techniques 
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popular. Before proceeding further, terms like multipurpose, multiobjective and 

multiattribute etc. are defined. 

Multiple attribute decision problems deal with choosing among a set of 

alternatives which are described in terms of their attributes. Choosing a parti-

cular alternative from a group by such attributes as initial cost, size, capabilities, 

OMR costs and economy, is a typical example of multiple attribute decision 

problem. Most of the techniques dealing with these type of problems require 

the decision maker's preference among values of a given attribute and also 

across the attributes. 

Multiple objective decision models require preference information about 

the decision maker's objectives and relationship between objectives and attributes. 

Preferences among attributes are derived from the preferences among objectives 

and the functions relatingattributes to objectives. In these models, an alternative 

can be described either in terms of its attributes or in terms of the extent 

to which it achieves the objectives of the decision maker. For example, the 

decision maker's relevant objectives may be safety against floOd,recreation 

facilities ,dependable water supply etc. A multiobjective model would require 

priorities on values of cost versus capacity and also the linkages which relate 

the extent to which initial cost, size etc. contribute to dependability due to 

these relations . The multiobjective models are more complex than the multiatt-

ribute models. These two are, however, same when there is one-to-one relation-

ship between attributes and objectives. 

The term multipurpose means a project or implement for several purposes 

like irrigation flood control and power etc. These can be designed to serve a 

single objective, e.g.,increasing the income of a region. Similarly a navigation 

project which is single purpose project may be aimed towards objectives of 

increasing regional income and national economic growth. Thus terms multiobje- 
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ctive and multipurpose are not synonyms ; several purposes can be aimed 

towards one objective and one purpose towards several objectives. But it often 

happens that the multiple purposes for which a project is planned are not comp-

limentary in nature and the linkages or functional relationships among the purposes 

the objectives are not clearly known. In such cases, the multiple purposes 

themselves may be treated as multiple objectives. 

Because of involvement of a vector in the objective function, the technique 

of multiobjective optimization is also calledivector optimization'. The problem 

can be stated as 

Maximize F(x) = Maximize [ f I  (X) f2(X) fn(x) ...(116) 

Subject to gj
.
(X).; 0, j=1, 2  

where 

F(X) = vector valued objective function, 

X = an N dimensional feasible vector of decision variables, 

fi(x)= n objectives functions which are components of F(X), and 

. g(X)  = set of constraints. 
 

A decision X*  is said to be noninferior solution if there does not exist 

another R such that 

fi(R) fi(X*), i=1 n —(119) 

Strict inequality should hold for at least one i value. The case of two objectives 

is represented graphically in figure 13. 

The curve AE represents the boundary of the set of feasible alternatives 

and is called net benefit transformation curve or TC. Points which lie between 

TC and origin are called feasible points and those outside are called infeasible 

points. A point M between origin and TC is worse than at least one point on 

TC. For example, point M is a feasible point but is worse than points B and 

C. The value of 12(X) can be still increased moving from M to C keeping f1(X) 
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same. Similarly f2(X) can also be increased by moving from M to B without 

affecting f i(X). Curve AE is called non-inferior set. Each point on the curve 

DE represents one non-inferior alternative to decision maker. The preferences 

of society are represented by indifference curves. The optimal point will be 

at the tangency of the highest attainable indifference curve (IC2 in present 

case) and IC. 

It is clear from above discussions that to find out the optimal solution, 

first net benefit transformation curves and social indifference curves need to 

be derived. However, it has been pointed out in many studies that indifference 

curves are very difficult to draw for practical applications. 

Non -inferior solution set can be generated by two techniques. In first 

approach called Parametric approach, vector objective function formulation 

is replaced by 

Max E w. f. (X) 
i x = 1  1 1  

subject to 

gi 
(X) 40, j=1,2, m ...(121) 

where w is vector of weighting coefficients 

W = [W1 w2 wn  

with 
n 

w.30 and Z w. = 1 ...(122) 1 j=1 I 

The problem is solved parametrically for different combinations of 

w. 

In another approach, called constraint approach, all except one of the 

objective functions are replaced by constraints as follows: 

Max f. (X) —.(123) 

Subject to 
g 
 . (X) 4 0 , j=1,2 m ...(124) l 

f (X) j=1,2.,....m and j i 
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= 1,2 n,j i are the minimum tolerable levels of (n-1) objectives. 

The . values can be varied and their impact can be studied. Similarly, the el 
ith objective f(X)  can be replaced by jth objective and the solution procedure 

can be repeated. The method can map the entire non inferior solution set 

even when it is nonconvex. 

The methods described above are suitable only when there are two 

or three objectives. Several other methods have been developed to solve more 

complex problems. Haimes and Hall (1974) developed a very powerful technique 

called Surrogate Worth Trade-off Method. Another technique which is gradually 

becoming popular is Goal programming. These two techniques are being dis-

cussed here. 

3.7.1 Surrogate Worth Trade-off Method 

It was pointed out by Major (1969) that the line which passes through 

the point of tangency of non inferior set and the social indifference curve 

is a surrogate for preference with respect to the two objectives. The negative 

of the slope of this line represents marginal trade-off among these objectives 

and is called weight. These weights represent marginal importance of the 

society for the objectives (which also depends upon the degree of fulfilment 

of objectives at the point from which the marginal departures ace measured.) 

Referring to the constraint method, the Lagrange multipliers related 

with (n-1) objectives as constraints may be zero or non-zero. If Lagrange 

multiplier is non zero for a constraints, that particular constraint does limit 

the optimum. Non zero Lagrange multipliers correspond to noninferior set 

of solutions while zero Lagrange multipliers correspond to inferior set of 

solutions. Moreover, the set of non-zero Lagrange multipliers represents the 

set of trade-off ratios between the principal objective and each of constrain-

ing objectives. 
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The trade off function between ith and jth objective function is denoted 

by T(x)  and is defined as: ij 

Thus 

T1 (X) = dfi(X)/df i(X) 

where dyX) = n a f i  00 
a xi< dxk 

T..(X) _ ( v X f i  (X), dX) 

(Tx fi (X) , dX) 
The functions T(X)  have the property that ij 

Ti(X) = 1, if i =j 

(X) = 1/T) for all i,j 

Rewriting constraint method formulation as: 

Max 1. (X) 

...(125) 

...(126) 

...(127) 

...(128) 

Subject to f. (X) 4 e. j=2,3....n ...(129) 

g(X) & 0 k=1,2 rn 

where 

as 

where 

e . = 7.(x) + = 2,3  
1 1 

...(130) 
0 j=2,3, m 

_ 
fi(X) = min f i(X) 

Now the generalized Lagrangian L to the system can be formulated 

L = f. (X) + 1.1(  gk  (X) + n  X..(f.(x)_e) ...(131) 
k=1 j=2 

k, k=1, m and A 1), j=2,3 n are generalised Lagrange multipliers. 

The notation A denotes that A  is the Lagrange multiplier associated (in 

the E constraint vector optimization problem) with the jth constraint where 

the objective function is f i(X). Denoting by X the set of all xi i=1,2....n 

that satisfy the Kuhn-Tucker condition in eqn.(131) and by n the set of all 

Lagrange multipliers that satisfy the Kuhn-Tucker conditions, the Kuhn-Tucker 
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conditions' for statonary values of X, p k  and A (k=1....m,j=2 n) which are 
ij 

of interest are: 

(f.(X) - e i) = 0 j=2,3  ...(132) 

. 0 , j=2,3   
ij 

This holds good only ifAii = 0 or f. (X)-c. =0 or both. The case xij=0 

represents that constraint is not binding. The case A 0 represents a bind 

or active constraint for which it can be shown that 

A ( ] = _[ - at(x)/a t(X) ...(133) 
.tj el)  

j,i,j=1,2 n 

where A ( e. )] Lagrange* multiplier for active constraint associated with ij[  

specific value of •• 
el 

The above relationship is valid only when the jth constraint is active. 

It can be shown that active and nonactive Lagrange multipliers have direct 

correspondence with noninferior and inferior solution sets respectively. 

As objectives i and j may be non commensurable, it may not be possible 

to compare the worth of A f$ X), with the true worth of A fi(X). A surrogate 

w ,orth function .. i j=1,2....n, i j, can be defined as an ordinal monotonic 
wil,  

function satisfying following 

Wii> 0 w f(X) ij marginal units of . X are preferred over one margi- 

nal

f( 

 unit of f(X) given the level of achievement of all 

objectives. 

W.. = 0 when ij marginal units of f1(X) are equivalent to one marginal 

unit of f(X) given the level of achievement of all objectives. 

.w .<0 w f(X) ij marginal units of f. X are not preferred over 
ij 1(  

one marginal unit of f . (X) given the level of achievement 

of all objectives. 

OThe optimal solution is reached when 
w 

. = for all values of i and j, i 
ij 
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One striking feature of SWT method is that the surrogate functions 

which relate the decision maker's preferences to the non-inferior solutions 

through the trade-off functions are constructed in the functional space and 

then transformed into the decision space. Here non-commensurable objective 

functions can be handled quantitatively. The method is computationally feasible 

and tractable. 

Cohon and Marks(1975) reviewed and evaluated various multiobjective 

programming techniques. Following three criteria were chosen by them for 

comparison: 

The technique must be computationally efficient and relatively feasible. 

It must foster the explicit quantification of trade-offs among objectives. 

It must provide sufficient information so that an informed decision 

can be made. 

Among the various techniques considered by them were Weighting and 

Constraints method, Goal programming, Electre-method, Surrogate Worth 

Trade-off method, and Step method. They concluded that when there are 

fewer than four objectives, a generating technique such as Weighting method 

or Constraint method should be used inorder to capture the essence of the 

multiobjective problem. When there are four or more objectives a technique 

which restricts the size of the feasible region such as Surrogate Worth Trade-

off method should be used. 

3.7.2 Goal programming 

Based upon previous discussion, it can be concluded that most real 

life problems have more than one objective. Further,many times these objec-

tives may be conflicting in nature. In the optimization techniques generally 

used to solve the problem, one objective is sometimes treated as primary 

and others are treated as constraints. The optimum solution of the problem 
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must satisfy all constraints. Further, all constraints are considered as equally 

important, If any one of the constraints is not satisfied at a particular point, 

that point is called infeasible. It might be that the particular constraint has 

been violated by a very small margin and the objective function would have 

been significantly higher otherwise at this point then the value found. There 

are very good chances that this fact would be missed unless, say in case 

of linear programming, a sensitivity analysis is performed carefully. The impor-

tant question to be pondered over is whether an important alternative should 

be dropped just because it has been declared infeasible. For example, a 

reservoir has to be constructed which is required to always supply 100 units 

of water to a city. Suppose we have one alternative which is otherwise very 

much suitable but during one month, it can only supply 99 units of water. 

Solving this problem with linear programing would label this alternative as 

infeasible because lower bound is violated once. However!  it will be agreed 

that to reject this choice would be an unwise decision. Goal Programming 

is very much useful in this type of cases. 

Goal Programming is an extension of linear programming. Problems 

involving one or more goals can be solved using it. In many reservoir operation 

problems, the goals are conflicting, like in case of multipurpose reservoir 

operated for irrigation and flood control. The goals may also be incommensura-

ble which means that they can not be measured in same units. First, it is 

required to arrange these goals in hierarchy, i.e.,in order of their preference 

by putting top priority goal first, and so on. It would be desirable to satisfy 

the top priority goal first and then to take up next priority goal. Generally, 

it is very difficult to rank the goals in cardinal order. The Goal progoramming 

allowes for an ordinal solution to the problem. 

The technique of Goal progoramming has been very much useful in 

modern management too. It has been variously pointed out that nowadays 
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the aim of management is not to optimize but to satisfy. An optimizer goes 

for the best possible outcome. While a satisfier tries to attain satisfactory 

level ed multiple objectives. Goal programming approach is based upon these 

concepts. 

The deviations from attainment of each goal are represented by two 

types of variables: one represents positive deviations and other represents 

negative deviations. In Goal programming formulation the idea is to attempt 

to minimize these deviations. 

In the Goal programming notation, any variable, which may be positive, 

negative or zero, can be represented as the difference of two positive variables, 

i.e., 

 

...(134) 

where x = x if x 0 

x+ = 0 if x-c 0 

x- = -x if x 0 

x- = 0 if x 

It is also evident from the above that 

 

 

x . = 0 ...(136) 

Let us consider that a hypothetical reservoir is to be constructed at a site 

and the goals representing cost of construction, minimum flow requirement and 

flood control benefit are expressed by 

all x l a12 x2 ± a13 x3.4 bl ...(137a) 

a21 x l a22 x2 + a23x3?„ b2 ...(137b) 

a31  x1  + a32x2  + a33  x3 b3 ...(137c)  

Let us introduce three new variables x,y2  and y3  such that 

Y1 a ll x l a12 x2 + a13  x3  -b1 •••(138a) 

Y2 = a21 x l a22 x2 a23 x3 - b2 ...(138b) 

81 



...(139a) 

(139b) 

... (139c) 

Yi >0  

Y2 = Y+2' Y-2 ° 

Y+' t  Y3 =  3  - .3 )y; _„„ “;1  

y3  = a31  x1  + a32  x2  + a33  x3  - b3  

and 

Now let us assume that the penalty for exceeding first goal is C1, 

for shortage in second goal is C2  and for shortage in third goal is C3. Hence 

objective function and constraints can be written in the following form: 

Min Z = CI + C2  y2-  + C3  y-3 ...(140) 

Subject to 

ail  xi  + ai2  x2  + ai3  x3  - (y+1  - y-/ ) =131  

a12 x1 + a22 x2 + a23 x3 - (y+2- Y-2 ) =  b2 

a31  x. +a32  x2 +a33 x3  - (y+  i 3 213) = b3  

...(141a) 

...(141b) 

...(141c) 

+ - 
X y.. >u, > y. 

1 
> U 

1 e 1 /  

i = 1, 2, 3 

This problem can be easily solved by Simplex method used for solving 

linear programming problems. 

As pointed out earlier, it is easy to arrange the goals in ordinal way 

rather than cardinal way. It may be pointed out that in cardinal ranking,a goal 
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with priority factor 3 is three times important than goal with priority factor 

1, while in ordinal ranking it only means that first goal is mere important 

than second without implying any relative degree of priority. In such problems, 

the deviations about the goals are ranked according to pre-emptive priority 

factors, Pi  (i.1,2 n). These factors have the relationship that Pi  >»P2» 

P
3 >>> P . Thus lower order goals are considered only when higher order 

goals have been satisfied. 

In many situations, two objectives or goals may have same priority. 

Under these circumstances, weightage factors are assigned among the same 

priority goals. These weights can be estimated using benefit-cost ratio of 

each objective. Let the priority of minimizing y i+  and y-2  in the above example 

be C1. Then the objective function will look like 

Min Z= C y + C 31 -  C 1 1 1 2 3 3 ...(142) 

Now we can assign different weights to these two objectives( which 

have same priority). The new objective function would be 

Min Z = W1  C1  y + W 2C2y-2  + C3  y3 ...(143) 

where W I and W2 are weights. 

Recently Can and Houck(1984) applied goal programming for realtime 

operation of Green River Basin System which consists of four multipurpose 

reservoirs. The effectiveness of this technique was compared with a linear 

programming model. They chose a piecewise linear convex penalty function. 

The coefficients of penalty were different for different segments of the funct-

ion with smaller penalty for deviations in the vicinity of the target and higher 

values in the extreme region. The objective of linear programming formulation 

was to minimize the sum of penalties. Two dimensional information is required 

in linear programming model-the boundaries of different segments and the 

penalty coefficients for each of them. In contrast to this, in goal programming 

model, one dimensional information is needed only. The user simply specifies 
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the preferred goal. It was observed that the operation policy given by goal 

programming model resulted in better operating decision. The use of goal 

program is more simple than the linear program because it is less data intensive. 

As the estimation of penalty coefficient is very different and further, it 

may vary from person to person, it introduces subjectivity in problem formula-

tion. This deficiency is not present in goal programming formulation. 
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4.0 CONCLUSIONS 

Linear Programming has been a widely used and useful tool for solving 

problems of water resources systems. Its application is growing & better algorithms 

are being developed and computer programs are available for more and investi-

gators . LP can easily tackle problems with high dimensionality and can give 

global optimal. One of the most explored framework of application of LP has 

been in the form of Linear Decision Rule. Over the past years, LP is being 

increasingly used in stochastic framework. 

Dynamic Programming is another technique which has been extensively 

used for problems of our interest. Interestingly, it has also been used in conjun-

ction with LP in some cases. DP does not• have any restriction on the nature 

of objective function and constraint except the separability condition for objective 

function. However, there are mainly two factors which limit its application. 

Due to its inherent nature, generalized algorithms for DP are not available. 

Thus one has to develope and test his own program for a particular situation. 

Further, dimensionality becomes a tedious problem for bigger systems. Nowadays, 

efforts are directed towards multiobjective optimization and development of 

routines for real-time operation problems. 
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