TR/BR-20/99-2000

INVESTIGATION ON THE CAPABILITY OF ARTIFICIAL
NEURAL NETWORK FOR ESTIMATING
EVAPOTRANSPIRATION FROM
MINIMUM WEATHER DATA

uTE
s‘ 1 0‘8

mﬁmw&mﬂ

NATIONAL INSTITUTE OF HYDROLOGY
JALVIGYAN BHAWAN
ROORKEE - 247 667 (UTTARANCHAL)

1999-2000



Preface

Evapotranspiration is one of the most basic components of hydrologic cycle. It affects the
water balance from the time water falls upon the tand as precipitation until the residual
reaches the ocean. Evapotranspiration, which includes evaporation of water from bare soil
surface and transpiration by vegetation, continuous to be of foremost importance in water
resources planning and management, and in irrigation development. Evapotranspiration data
are essential for estimating irrigation water requirements. They also are useful for estimating
the municipal and industrial water uss, in sizing waster water reuse system, and in estimating
water use from mountain watersheds, safe yield of ground water basing, and siream flow
prediction is river basins. Numerous formulae have been developed that rélate
evapotranspiration and climatological data based on experimental data collected by engineers
and scientists. However, most of these formulae are more or less empirical, owing to the
highly complex non-linear nature of the evapotranspiration process, and require data that are
not widely avaitable. The science of estimation of evapotranspiration would benefit, if a model
could be developed for computing evapotranspiration using minimum weather data. Such a
model can be addressed through system theoretic approach, where the internal physical
process need not be explicitly explained. Recent advancements in the field of non-linear
system modeling through the use of artificial neural network could be employed for
developing such a model. The approach has the advantage of the capability of ANN to
reproduce the unknown relationship existing between a set of input-oulput variables
describing the process.

This report ‘Investigation on the capability of arificial neural technique for estimating
evapotranspiration from minimum weather data’ presents a research study conducted to
estimate evapotranspiration through artificial neural network technigue. The study has been
conducted by Sri. K. P. Sudheer, Scientist ‘B’ with the assistance of Sri. D. Mohan Rangap,
Technician Gr. Il under the supervision of Dr. K. S. Ramasastri. '

(K.S. RAMASASTRI)
DIRECTOR
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ABSTRACT

Most of the current hydrologic, water management, and crop growth model require an
accurate estimate of evapotranspiration (ET), for reliable applications. A large number of
methods for calculation of ET from weather data have been developed and tested for varying
geographical and climatological conditions. However, most of these methods require weather
data that are not widely available. A recent series of technical papers have discussed the
capabilities of ANN to approximate any continuous input-output mapping to an arbitrary
degree of accuracy. Accordingly, a research study was conducted to estimate ET from most
widely available weather data. Three combinations of input data were considered and three
different ANN modeis were developed. One of the models developed requires only average
temperature as input and was estimating daily values of ET with 99% efficiency. The
performance of ANN models was evaluated against that of popular ET estimating ﬁethods,
and was found performing superior o others. The study demonstrated the applicability of
ANN technique in accurately estimating ET from minimurm weather data.



Chapter 1
Introduction

Evapotranspiration (ET} is a major component of the hydrologic cycle and is involved to some
degree in nearly all hydrological studies. It is an especially important factor in planning and
developing river basins, water resources and irrigation management. Evapotranspiration
forms the foundation for planning and designing of most irrigation projects. it is usually the
starting point in determining the surface and subsurface water storage requirements, the
capacity of the water delivery system, and general operation practices.

Detailed measurements of ET or collecting data for estimating ET are time consuming and
expensive. Some of these measurement methods are soil water depletion {Robins, et. al,,
1954, Jensen, 1967, Jensen and Wright, 1978), tanks and lysimeters (Harrold, 1968;
Aboukhaled, et. al., 1982). However, these methods are not employed in common owing to
their requirement of extensive experimental work. The tremendous and continuing need for
evapotranspiration data has resulted in numerous methods for estimating ET. Researchers
are required to estimate ET using historical meteorological and cropping conditions or to
predict future ET. Both of these involve meteorological data, but predictions are based on
expected values of the meteorological and cropping data. Some of these works, which are
widely referred to, are of Doorenbos and Pruit (1974), Svehik (1987), Rao et. al. (1871) and
Schuliz (1971). Doorenbos and Pruit (1974) indicated that modified version of the Penman's
formula gives best estimation of ET, but also recommended the radiation, Blaney-Criddle and
pan evaporation methods for different ciimatic conditions. Rao et. al. (1971) and Schultz
(1971) recommended both the Penman and Blaney Criddle methods for reliable estimates
over India. Hargreaves and Sammani (1985) suggested a simple equation for estimating ET
based on temperature and extra terrestrial radiation. Many of these methods consider only a
few variables since estimates were often needed where limited meteorological data were
available. Also, most of the early applications, as well as some continuing applications,
involved the use of long-term mean weather data.

However, most of these methods estimate the reference crop ET as defined by Doorenbros
and Pruitt (1974) and requires these values to be converted into actual crop
evapotranspiration values by multiplying with the crop factors. The value of crop factors vary
from region to region and one need to establish this crop factor values for employing these
methods in estimating the crop ET. '



Since the process of evapolranspiration is highly complex and non-linear in nature, any
altempt to model the actual crop ET wouid be requiring extensive experimental work and
data. Very few research works have been reported that describe a procedure for estimating
the actual crop evapotranspiration. One of these methods is the linear time series model,
which are employed to generate or forecast the actual crop ET from a historic series of data.
Recently, significant progress in the field of non linear pattern recognition and system controt
theory have been made possible through advances in a branch of non linear system theoretic
modeling called artificial neural network {ANN). An ANN is a non-linear mathematical
structure, which is capable of representing arbitrarily complex non-iinear process that relates
inputs and outpuls of any system. In the hydrological context, as in many other fields, ANN
are increasingly used as black-box simplified models (Bishop, 1994). For hydrological
applications, ANN models can take advantage of their capabillty to reproduce the unknown
relationship existing between a set of input variables descriptive of the system.

This reports demonstrates the applicability of ANN approach in developing effective non linear
models for estimating evapotranspiration from widely available metecrological data. The
model does not explicitly represent the internal process of evapotranspiration. The model has
been developed for rice evapotranspiration data. The report also presents the comparison of
rasults from ANN model with those estimated from popular ET estimating meathods.



Chapter 2
Artificial neural network: Background and scope

The architecture of ANNs is motivated by models of biological neuron networks, which
recognize pattern and learn from their interactions with the environment. The highly
sophisticated human brain, which contain more than 100 billion neurons and trillions of
interconnections, is able to learn quickly from experience and is generally superior to any
existing machine in tasks involving recognition, learning and control. It should be pointed out
that the structures of most current ANNs are extremely simple and the capabilities are quite
poor when compared to biological neuron network. Nonetheless, since the 1950s, many ANN
structures have been proposed and explored.

The ANN models have been widely applied in various fields of science and technology
involving time series forecasting, pattern recognition and process control. The ANN structure
has been mathematically proven to be a universal function approximator that is capable of
mapping any complicated non-inear function to an arbitrary degree of accuracy. Since late
1880s, ANN has been successfully used to model a variety of different functions. The network
fs able to intelligently learn these functions through an automatic training process. However,
many issues related to the network architecture are still not well understood. Many
researchers seem to view ANN as a black box approach that is unable to provide important
and useful insights into underlying nature of the physical pracesses (Judith, 1990).

An ANN attempts to mimic, in a very simplified way, the human mental and neural structure
and functions (Hsieh, 1993). It can be characterized as a masslvely parallel interconnection of
simple neurons that function as a collective system. The network topology consists of a set of
nodes (neurons) connected by links and usually organized in a number of layers. Each node
in a layer receives and processes weighted inputs from previous layer and transmits its output
to nodes in the following layer through links. Each link is assigned a weight, which is a
numerical estimate of the connection strength. The weighted summation of inputs to a node is
converted to an output according to a transfer function {typically a sigmoidal function}. Most
ANNs have three layers or more: an input layer, which is used to present data to the network;
an output layer, which is used to produce an appropriate response to the given input; and one
or more intermediate layers, which are used to act as a collection of feature detectors.

The ability of neural network to process information is obtained through a learning process,
which is the adaptation of link weights so that the network can produce an approximate
output. In general, the learning process of an ANN will reward a correct response of the



system to input by increasing the strength of the current matrix of nodal weights. Therefore,
the likelihood of producing similar output when the same inputs are entered in the future will
increase. An incorrect response from the system is discouraged by adjusting the nodal
weights so that the system will respond differently when it encounters similar inputs in the
future (Msieh, 1993). The learning process may be supervised or unsupervised based on the
availability of target output. in supervised learning, inputs proceed through the network and
produce an output. The difference between this output and target output represents an error,
which is then propagated back through the network to train it. In unsupervised learning, the
network automatically detects important features and organizes the input data into classes
based on these fealures. More information about neural networks can be found in Lawrence
(1991).

The most widely used and researched structures are multi layer feed forward networks
(Rumelhart et. al., 1986), self-organizing feature maps (Kohonen, 1982), Hopefield networks
(Hopefield, 1982), counter propagation network (Hecht-Nielsen, 1988) and radial basis
function network (Moody and Darken, 1989). Of these, the radial basis function network is
addressed in this repor.

2.1 Radial basis function neural network

The radial basis function network employs combined supervised and unsupervised learning in
the same network. The most common idea is to have one layer that learns in an unsupervised
way, followed by one (or more) layers trained by back propagation. The network architecture
examined by Moody and Darken (1989) has been employed in the present study. The hidden
units in the Moody-Darken network are neither linear, nor sigmoidal; instead they have

normalized Gaussian activation functions of the form:

_expl~(e—p)' 20 ]]
5 )= S exple - m) 207]

(2.1)

where ¢ is the input vector itself. The Gaussians are a particular exampie of radial basis
functions. Radial basis networks consist of two layers: a hidden radial basis function layer and

an output linear neuron layer. The network architecture is presented in Fig 2.1.

The network functions as follows. Suppose a particular input vector £ lies in the middle of
the receptive field for unit j, so g¥ = 4;. \f the overiaps between the receplive fisids are

ignored, only hidden unit j will be activated, making it the only “winner” One could simply
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choose the output weights leading from that unit to be W, = &7 (for each i), which wilt

produce the target pattem «f,."‘ at the cutput assuming linear output units. If another input lies

say, between two receptive field centers, then those two hidden units will be appreciably
activated and out put will be the weighted average of the corresponding targets. In this way
the network is expected to make sensible smooth fit to the desired function.

The unsupervised part of leaming is the determination of the receptive fiold centers u ; and

weights o ;. Appropriate i’s can be found by any vector quantisation approach including the

usual competitive learning algorithm (Hertz at. al., 1991). The o’s are usually determined as
ad hoc choice, such as mean distance to the first few nearest neighbor u's. The performance

of the network is not very sensitive to the precise values of the o's.

Moody and Darken tried their method out on the extrapolation problem for the Mackey-Glass
equation and found that the present method, with Gaussian receptive fields, aliows one fo fit
an arbitrary function with just one hidden layer (Hartman, 1990).



Chapter 3
Evapotranspiration Estimation

The network of similar architecture (radial basis), explained earlier has been employed in this
study to estimate the daily evapotranspiration for rice crop. The main task in developing any
ANN model is identifying the input vector to the network so as to produce the output. A
detailed review of the ET estimation technique clearly reveal that ET value is dependent on
temperature, humidity, solar radiation and wind speed. Accordingly, these weather
parameters have been considered in the present modal development,

3.1 Neural network model

The weather parameters considered in this study were temperature, relative humidity, wind
speed, sunshine duration and pan evaporation. The daily values of all these parameters have
been considered in the study. Various combinations of these parameters were considered as
input to the model. The combinations considered were, (i) average temperature, relative
humidity, wind speed and sunshine duration [hereinafter referred to as ANN(1)]; (ii) average
temperature, wind speed and reiative humidity (hereinafter referred to as ANN(2)]; and (iii)
average temperature alone [hersinafter referred to as ANN(3)]. Since data was available for
only one season, part of the data was used in training the network and batance for validating
the model.

The input vector was standardized using the following function (Romesburg, 1984).
7 = Xij _Cminj
? Ci-C

maxj min)

3.1

where, Z; is the standardized value of the input variable Xj; Cmay @nd Cpp, are the maximum
and the minimum of j variable in all observations. The main reason for standardizing the data
matrix is that the variables are usually measured in different units. By standardizing the
variables and recasting them in dimensionless units, the dissimilarity between objects are
removed. The daily data for two months were used to train the network and the third month's
data was used for validation.

The report evaluates the ANN model developed, by comparing with the results obtained from
other models as well as with the actual lysimeter measured data. For the present study, the
Penman, radiation Blaney-Criddle, and pan evaporation methods were selected for inter-
comparison as well as for comparison with the ANN model. Brief description of the Penman,

radiation, Blaney-Criddle pan evaperation and neural network methods are given below.



3.2 Penman method

The climatic data required for the Penman method are mean temperature in °C, mean relative
humidity (in %) or vapour pressure (in mm}, total wind speed at 2m height (in km/hour), mean
actual sunshine duration {in hoursiday) or incoming short-wave radiation Ain equivalent
evaporation in mm/day), maximum possible sunshine duration (in haurs/day), measured or
estimated data on maximum relative humidity {in %) and mean day time wind speed at 2 m
height {(in m/s). The equation for estimating reference evapotranspiration {ETpen) is:

ET,,, = C,[WR, + (1~ w).flu).(e, — ¢,) (3.2)

where
€, = saturation vapor pressure;

ey = actual vapor pressure in the air:

€4 = e, . RH/M00; {3.3)
f(u} is the factor corresponding to the wind speed and is defined as,
flu) = 0.27(1 + U/100) {3.4)

R, = total net solar radiation in mm/day;

u = wind speed at 2 m height

w = temperature and altitude dependant weighting factor; and
C, = adjustment factor for ratio for UapUnighe, RHma, and R,.

A value of 1.5 can be assumed for Uday/U,.igm as recommended by Doorenbos and Pruitt
(1974} in computing the value of Cp.

3.3 Radiation method

The data required are mean air temperature {Tmean)» ratio of actual to maximum possible
sunshine duration {n/N) or incoming short-wave radiation, mean relative humidity (RH,unean)
and total wind speed (Ug,,). The estimate of evapotranspiration ET is given by:

ET,, =C,(wR,) {3.5)

where R, and w have the same meaning as before, and C, depends on RHmean and Ugg,.
3.4 Blaney -Criddle method

The climatic data required are RH,y,, Ugay, NN, Traen and percentage of daytime hours during
the period considered over that of the year (p). Evapotranspiration can be estimated as

ET,c = A+ B.p(0.46T,_._ +8) (3.6)



where A = 0.0043 RHpi, VN - 1.41; and
B = a factor depending on RHp,, /N and Uggy.

The Blaney criddle formula is believed to underestimate the ET at elevated sites because of
the lower air temperature, Doorenbos and Pruit (1974) therefore incorporated an elevation
correction in the original equation to give:

ET,. = A+ B.p(0.46T,,, +8).C, (3.7

where C, is the elevation carrection factor given by:
C, = 1+0.1 * (Elevation in m)/1000 (3.8)

3.5 Pan evaporation method

Doorenbos and Pruitt (1974) relate pan evaporation to ET using empirically derived
coefficients (K,) which take into account the climate, pan environment and crop type. ET can
be obtained by:

ET,, =K, E,, (39)

where Egg, = pan evaporation in mm/day and

K, = adjustment factor that depends on mean relative humidity, wind speed and ground cover.
The value of K, depends on season too and the reported value is near around 0.8 in summer
and 0.6 in winter.

World Meteorological Organization (1966) suggested a correction factor of 1.14 to the
observed value of evaporation, where the pans were covered with screen and this was
applied in the present study. The values of K, have been taken from Doorenbros and Pruit
(1974) and Frevert et. al. (1983). The value of R, in equation (3.1) was calculated from the
relation:

R,=0.75R,-Ry (3.10}
where R, is the net long wave radiation. Since measured values of R, were net available,
they were obtained from the equation:

R, = (a+b niN} R, (3.11)
where R, is the extra terrestrial radiation.

The values of ‘2’ and ‘b’ were calculated by a regression of published mean monthly values of
R against n/N {india metearologicat department, 1981; Mohan, 1891). The ‘a’ and b’ values
differ somewhat from the values of 0.25 and 0.50 respectively when no data is available. R



eqg and /N as well as the values of e, R,, w, C, and C, were taken from Doorenbros and
Pruitt (1974).

3.6 Data base

The climatic data as well as the actual measurements of ET used in this study were obtained
from the agricultural research farm of Kerala Agricultural University, Tavanur (India). Actual
evapotranspiration data for rice crop was found from a lysimeter study performed in that area.
The lysimeter experiment data from an experiment conducted in the research farm for a short
term variety rice crop (Triveni) for a full season (October 1989 to January 1990) has been
employed in the study. The climatic data, necessary for calculating reference crop ET using
the selected methods, were taken from the agro-metearological station located inside the
research farm. The station is located at 10° 53 30" north latitude and 76° east longitude. The
data was available for a period from October, 1989 to January 1990 and has been used in
this study.

The results of study are described and discussed in the next chapter.



Chapter 4
Results and Discussion

The foregoing discussion of neural network approach has been employed to estimate the rice
crop evapolranspiration from various combinations of meteorological data. A detailed
methodology of the computing technique has been described in the previous chapters. This
chapter presents the results pertaining to the results obtained from the study. The results are
organized in the following way: evaluating the ANN approach for estimating the rice ET from
minimum weather data, comparison of effect of various input combinations to the network in
its efficiency; comparison of ANN model with other popular models.

4.1 Evaluation of ANN models

Visual comparison of lysimeter-measured rice evapotranspiration and ANN model estimates
for three models, described earlier, are presented in Fig. 4.1 to 4.3. These figures inciude
daily values for the year 1989-30 (October-January season). Visual evaluation of ANN models
reveals that both ANN(1) and ANN{2) models (Fig. 4.1 and 4.2) failed to estimate the peak
values of evapotranspiration effectively. This may be because the training range of data did
not include the full peak values. At the same time, ANN(3) performed satisfactorily, as Is
evident from Fig. 4.3. The ANN(3) model, though was trained for the same range of data as
for the other two models, it had an additional input of time variable so as to recognize the time
series. Normalized day number was added as input to the ANN(3} model. On the contrary, no
significant change in evapotranspiration estimates has been observed while the temporal
characteristic variable was added to the other two models.

4.1.1 Statistical analysis

Though a visual inspection of the observed and computed evapotranspiration values expiains
the capability of ANN to represent the ET process in a reasonably accurate manner, the
effectiveness of the model is to be understood through statistical analysis of the results.
Linear regression analysis was used to test the agreement and variations of neural network
estimated evapotranspiration with lysimeter measurements. Two regression equations were

evaluated. The first model was of the form:

ET, =a+b(ET,,,) {4.1)
where ET, is lysimeter measured evapotranspiration; and ET., Is the particular
evapotranspiration estimated from ANN models.

The second regression model was of the form:

ET, = b(ET,

ann )

(4.2)

10
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where, the zero intercept was forced through the origin. The value of coefficient ‘b’ in equation
4.2 could be used to indicate relative conversion ratios.

The hypothesis that the coefficient ‘a’ in equation 4.1 is significantly different from zero
(regression through origin) was tested according to the procedures defined by Steele and
Torrie (1960). The values of ‘a’ was not significantly different from zero for any of the models.
Therefore equation 4.2 was used to compare the fit of the various ANN models evaluated.

Table 4.1. Regression coefficient and standard errors of estimate for daity
evapotranspiration {observed versus computed)

b r SEE RSEE Efficiency
ANN{1) 0973 0930 0943 0905 0.984
ANN{2) 0954 0.920 1.071 0945 0.982
ANN{3) 0990 0.980 0.030 0.030 0.990

The results of the regression analysis using equation 4.2 are presented in Table 4 1. Each set
of columns in Table 4.1 are regression coefficient 'b’, correlation coefficient 'r’, standard error
of estimates {SEE), raw standard error of estimates (RSEE) and the efficiency of the mode!.
The standard error of estimates is an estimate of the mean deviation of the regression from
observed data. It is defined as:

SEE = (4.3)

~

where Y is observed {lysimeter-measured) evapotranspiration; and Y is the regression
estimated lysimeter evapotranspiration using equation 4.2. The sguare of the standard error
of estimate is an unbiased estimate of the true variance about regression with {n-2)° freedom
(Steele and Torrie, 1960). The fourth column in Table 4.1 is the raw standard error of estimate
(RSEE) of the direct comparisons of lysimeter-measured evapolranspiration to ANN
estimated evapotranspiration. The RSEE term (Allen, 1987} is an indicative of how well each

method estimated with no local or statistical correction {(2=0 and b=1).

An evaluation criterion proposed by Nash and Sutcliffe (1970) was also employed to evaluate
the performance of each model. The criterion is defining the efficiency of simulation as:

> (ET, - ET,, )’
> (ET, -ET,,,)’

where ET, and ETa,, are as defined earlior and ETy,, is the observed mean during the period,

Efficiency =1.0 - {4.4)

The values of efficiency of computation for each model are presented in Table 4.1.

12



From Table 4.1, it is apparent that both ANN(1) and ANN(2} models need further refining as
can be observed from the high value of standard error of estimate. The ANN(Z) mode!
performance was satisfactory and all the evaluation factors agree to this conclusion. Even
though the ANN(1) and ANN(2) models compute the evapotranspiration values efficiently {as
indicated by high efficiency) their correlation coefficients were considerably low compared to
ANN(3) model. This emphasizes the need for various evaluation criteria to test the
performance of any modet. Table 4.2 depicts the mean weekly observed and computed
evapotranspiration values averaged over a period of 7 days since beginning. This table is

presented lo visualize the model performance when mean values only are considered.

Table 4.2. Mean weekly evapotranspiration values {October 10, 1989 to January 9, 1990)

Lysimeter ANN(1) ANN(2) ANN(3)
Measured  Computed % Computed % Computed %
value Error value Error value Error
244 244 -0.07 30 -23.36 2.44 -0.30
3.07 3.07 -0.03 3.07 0.00 3.06 0.21
5.34 5.34 0.01 5.34 0.00 5.34 -0.01
6.80 6.77 0.38 6.83 -0.44 6.79 0.01
8.06 7.86 2.47 7.76 3.62 8.06 0.00
8.70 7.85 9.77 8.15 6.36 8.69 0.12
10.20 10.30 -0.94 8.86 13.21 10.21 -0.11
8.94 8.47 5.27 8.44 5.58 8.94 0.02
8.48 8.05 5.09 7.90 6.83 8.48 -0.04
7.17 7.16 0.06 7.15 0.21 7.15 0.23
6.42 6.44 -0.33 6.53 -1.70 6.44 -0.24
6.12 6.12 -0.03 6.32 -3.23 6.12 0.03

4.2 Comparison of ANN mode! with other popular models

From the foregoing analysis it is established that an ANN(3) model is very well capable of
estimating the crop evapotranspiration from weather data. However, the performance of these
ANN models is to be checked over other commonly employed techniques, so as to evaluate
the advantage of this approach over existing technigues. This was achieved through
comparing the rice evapotranspiration estimated using existing techniques with that estimated
from ANN madel. These values were compared with the actual measured lysimeter values

too and are described below.

The crop factor values of rice to convert the estimated reference crop evapotranspiration
values to actual crop evapotranspiration values were not available for the study area. At the
same time, lysimeter measured evapotranspiration values were available. Hence in the
present study, the values of crop factors were estimated assuming that the Penman’s method
gives a better estimate of reference crop evapotranspiration. The Penman method was

13



selected as the base since a number of researchers had reported that the method is very
‘efficient (Shouse et. al., 1980; Subrahmanyan and Rao, 1985; Kizer et. al., 1990) in
estimating the reference evapotranspiration. Penman's method is probably the most
comprehensive approach to estimate ET and takes into account almost zli of the factors,
which are known to influence ET. The computed reference crop evapotranspiration using the
other three methods (radiation, Blaney-Criddle and pan evaporation) were converted to actual
crop evapotranspiration (ET,.,) using the derived crop factors (Fig 4.4). Since ET estimates
using Penman method were used as a reference, a comparison with this method would have
no meaning and hence was not carried out. The results of radiation, Blaney-Criddle, pan
evaporation and ANN models were compared with Penman estimates and statistically
analyzed.

4.3 Comparison of effectivaness of estimation methods ’

Daily ETyce values from the radiation, Blaney-Criddle, pan evaporation and ANN methods
were computed for the period October 1989 to January 1990 from the corresponding climatic
records and the crop factors. The daily values of ET,, computed from all the methods
considered in this study are presented in Fig 4.5, along with the actual lysimeter measured
data.

Visual comparison of the estimates by the different methods reveals that the ANN modet was
highly efficient to estimate the rice evapotranspiration. The Blaney-Criddle and radiation
methods were having the similar trends as that of actual values, but both under estimated the
values throughout the period of study. However, the ET.. values estimated from pan
evaporation data were not comparable and the modet was not performing well, as is evident
from Fig 4.5.

The ratios of actual evapotranspiration to the values estimated from these four methods are
shown in Fig 4.6. The figure clearly demonstrates the inferiority of pan evaporation method
and the superiority of the ANN method for estimating ET,e.. The figure also depicts the
similarity in seasonal trends of the four models.

4.3.1 Statistical evaluation of results from various modeis

As stated earlier, the visual inspection may have a subjsctive effect in the conclusion and
hence to overcome this effect, statistical evaluation of the results were carried out. Comparing
the computed results with actual measurements in the same area can test the suitability of
each of the above methods in estimating evapotranspiration. Such comparison can be
reached through evaluation criteria based on specific statistical parameters. The evaluation
criteria used in this work have included the procedure adopled by Jensen (1974), Burman et.
ak. (1975), Hargreaves and Samani (1982), and Salih and Sendil (1984). At least two of the

14
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following parameters have been used in evaluating the models: the accuracy of seasonal
estimate (ET %); the root mean square of the difference between the measured and
estimated values (RMS); the smallness of the intercept {A) of the correlation line; the
coefficient of regression (R) of the measured versus estimated values; and the standard
deviation of the ratios of measured to estimated value. Efficiency of the method for estimating
the evapotranspiration was computed using the equation suggested by Nash and Sutcliffe
(1970},

Table 4.3. Values of evaluation parameters considered

Actual ANN Blaney-Criddle Radiation Pan
Evaporation
Mean 6.828 6.829 £6.196 5.500 5.396
Standard Deviation 2344 2.344 2.253 2.146 2.020
R square 0.999 0.923 0.933 0.673
R value 0.999 0.960 0.965 0.821
Efficiency 1.000 0.850 0.605 0.294
Covariance 5.428 5.013 4,799 3.838
RMS value of error 0.030 0.903 1.464 1.958
Y-intercept 0.001 -0.110 -0.537 0.568
Standard deviation of 0.007 0.106 0.095 0.229

ratios

Table 4.3 presents the values of the above evaluation parameters. All the statistical
parameters in the table agree to the efficiency of the ANN model to estimate
evapotranspiration. From Table 4.3, it is very clear that the pan evaporation method failed to
estimate the ET ., efficiently, as can be observed by the low efficiency (29.4%) and high RMS
value of error (1.958). The coefficient of correlation for all the methods were acceptable and
this fact leads to the need for considering- other statistical parameters also to assess the
performance of any model. The results of regression analysis are shown in Fig 4.7, in a
dispersion diagram. The covariance value of the actual and predicted values are used to
check whether large values of one set are associated with large values of the other (positive
Covariance), whether small values of one set are associated with large values of the other
{negative covariance), or whether values in both sets are unrelated (covariance near zero).
The covariance analysis in the present study leads to reject the pan evaporation method for
computing rice crop evapotranspiration.
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Chapter 5
Summary and Conclusions

A neuratl network mode! was developed and analyzed to estimate the daily values of rice crop
evapotranspiration from minimum meteorological data. A radial basis function network was
employed in the study. Three combinations of weather data were considered as input to the
ANN structure. These combinations were selected based on a detailed review of research
work in this area of study. The results from each of these models were compared with actual
lysimeter observations and it was found that the ANN model with temperature as sole input

neuron estimated the lysimeter measured crop ET effectively.

The study attempted to estimate the actual crop evapotranspiration from minimum weather
data and resuited in an ANN model, which makes use of only average temperature data alone
to estimate the actual ET. The effectiveness of this model was evaluated using various
statistical indices. The results of this model were compared with various existing technigues.
The analysis led to the conclusion that the ANN models were performing superior to all
existing techniques for computing the actual evapotranspiration. However, the study was
pased on a single season lysimeter data and more research work may be required to
reinforce this conclusion.
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