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PREFACE

Floods in India cause frequent breaching of canals throughout India. Due to the
high seasonal variability of rainfall and due to cyclone in coastal India flood discharges

cause many occurrence of breaches causing loss of life and severe damage to property.

Study of breach of a canal is relatively a new study as compared to dam breach,
which is a well-researched field. The analysis of the problem is complicated due to the
dynamics of flow within the canal. One-dimensional analysis of canal breach has been
carried out in NIH. The limitations of the above model due to the one-dimensional
analysis of the problem is hoped to be overcome in two or three dimensions analysis.

Wavelet element method is a new approach to modelling. It is a fast developing
field with promise of exciting and varied applications in engineering and also hydrology.
The analysis and the framework for the work of simulation have been carried out in this
report and the work of stmulation has 1w be carried out on this basis. This work 1s a
pioneering work in Hydrology.

This study has been carried out by Dr.C.Rangaraj, Scientist "B, Fiood Studies Div
ision, under the supervision of Dr. S. K. Mishra, Scientist 'E', Head, Flood Studies
Division. With enhanced capabilities of computation with higher speeds and bigger
storage on computers it is hoped that better simulation using higher dimensional models
will realistically model the protlem of canal breach.
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ABSTRACT

Canal breach modelling is of great significance in open channel hydraulics. A
limited amount of literature parallel to dam break analysis is available. In this report, 2

methodology is suggested based on wavelet element method, a recent breakthrough.

Wavelet element method and Wavelet transforms is a new field (The concepts
were developed by mathematicians in the last 10 years). The subject is expanding at a
tremendous rate in varied directions. [t is now that the concepts are being used in
engineering. “he initial applications are in signal processing and in data compression.
The solution offered by wavelet transforms to the FBI data storage problem of storing
fingerprints has dramatically shown the usefulness of wavelet analysis. The theoretical

basis of dual and bi-orthogonal systems is presented.

Wavelet analysis is a method to separate the data into different frequencies and
systematically study each component with a resolution matched to scale. They have
distinct advantages over the Fourier methods. Wavelet method of analysis arose to

remedy the shortcomings of Fourier analysis.

Wavelet element method combines the spectral methods with wavelet transforms.
A bi-orthogonal wavelet system is obtained. Equations of motion and the boundary
conditions require to be adapted to the multi-resolution paradigm. In this report, the
wavelet element method is developed for hydrological applications purposes, in general,
and modelling a canal breach in particular. To this end the fundamental concepts
available elsewhere are reviewed, synthesised and discussed comprehensively and canal
breach method is described in steps for future pragmatic application. The major finding
of the complex mathematical development is that it can prove to be vital in hydraulic and

hydrological applications in future.
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INTRODUCTION

Study of breach of canal occurs frequently in several parts of the country during
floods. A field study of the effects of cyclone was undertaken in Orissa revealed that
canal breach multiplied the damaged caused by cyclone. A one-dimensional study of
canal breach was under taken in a recent report by National Institute of Hydrology.
However, one dimensional modelling has severe limitation in that the velocity, pressure
distributions and consequently the extent of diversion of flow through the breach remains
to be determined.  Further the effect of unsteady flow into the canal needs to be
simulated. Research in this area is not as advanced as the research on dam break floods
have been. However, the study of the phenomena of canal breach is relatively a new
research field and needs attention by hydraulicians and hydrologists. A two or three

dimensional model requires efficient method of computation,

The possibility of running full turbulent simulations at high Reynolds numbers is
at present beyond the reach of present methods of simulation. The spectral method
provides a very accurate numerical filter so that very high wave number energy is
retained in the computation, so that it can be calculated as turbulent energy.

In hydraulics spectral methods (for example using sin and cos functions as the
basis set within a Galerkin approach) were rarely attempted due to a major impediment of
matrix ‘remaining full’ in a step prior to the solution. Quoting A.M.Davis (Coastal,
Estuarial and Harbour engineers reference book. --1993 from 'super three dimensional
models' in the article Quasi - three-dimensional modelling using mixed finite-difference
and spectral models --- "By using the Legendre polynomials the one of the matrix to be
derived from the flow equation remains full". The problem in electronic and electrical
engineering was fo a certain extent solved by the use of ‘Fast Fourier Transforms',
subsequent te which the problems could be solved millions of times faster. Wavelets are
a fundamenta) breakthrough. To explain in a very simplified language --- wavelets are a
new kind of sin and cos functions generated, which do not have the infinitely long tail.



The key concept in wavelet analysis is analysis according to scale. The overall
features are identified and later the details are analysed -- which is somewhat similar to
how the human vision function. It decomposes complicated signals into small number of
elementary waveforms which are localised both in time and frequency. They are
particularly adapted to non-stationary functions - that is those functions whose frequency

content changes with time.

Concepts of Fourier Transforms (different from Fourier Series but related to it)
and Wavelet transform are closely related. We seck every time to define the
corresponding concept in Wavelet Transform to that which occurs in Fourier Transforms.
Transforms are either used to solve problems intractable in the "natural domain (time or
length{x)) or to obtain further information from a natural data. For example the time
series of rainfali, could be better understood in terms of the frequency and its temporal
location of it. Frequency content of a function reveals another dimension of the data. For
example a simple piece of music has intensity or volume (amplitude), times at which it

occur and the tone (function of frequency).

One more dimension of information in Windowed Fourier Transforms and
Wavelet transform. In a sense they convert a function of one variable into two. The catch
is that the independent variable say time and frequency are interrelated -- the ' frequency
cannot be measured instantaneously. The precise measurement of frequency and time is
incompatible. Sharp localisation in time and frequency are mutually exclusive. Contrary
to popular opinion Heiseberg's uncertainty principle is not restricted to quantum
mechanics -- it is a general property of functions.

Wavelet element method combines the wavelet ideas with the Galerkin
formulation to solve differential equations. The Matrix which results is full when the
spectral method using Fourier transform is used to model the flow equations. Due to the
compact support when the wavelet basis functions are used the matrix which results can
be expected to be sparse.



WAVELETS

A transform represents a function in another domain. Many times the new domain has a
physical meaning. The Fourier transform captures the frequency information in
function.

Kemel of the transformation:

All transforms could be represented in the following form:

b
F(w) = [K(xw) f(x)dx (0
where K(x,w) is a function fixed for a transform. The kernel of the Fourier Transform
pair is
K(t, [) = "™ = cos(2nft) £ iSin(2nfty witha=-o and b=w (2)

The kemel of the wavelet transform changes with the wavelet chosen.

One of the iimitation of Fourier series is that it is unable to distinguish stationary
and non stationary function. Stationary function is a function whose frequency
component does not change with the independent variable. Consider the
functions(Figs.1&2):

Dy, (x) = cos(mx)+cos(2mx) G<Sxs520

Dy.(x) = cos(mx) 0<x<510 3)
! cos(27x) 10 < x <20

Fourier Transform are distinctly different from Fourier series. The fourier

transform of y, and y;
F(fy = [y e™dx (4)

will give the existence of particular {requencies but not their location in space/time

(henceforth called independent variable or V), If a function contains two frequencies






- T T
P T T T T T e — e L Ll - - _
T -
N
- - T
- =
e
——
_—
——

18

16

14

12

10

X
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separated over V Fourier transform does not analyse the response for input containing
frequencies separated over V. In a Fourier transform the function to be analysed is
assumed to be stationary. i.e, ail frequency components exist at all V's. An independent
variable-frequency representation of the function is that which is necessary.

Windows were tried in Short Time Fourier Transforms (STFT) initiaily to remedy
the short coming of Fourier transforms. The ‘window' function is zero outside a range of
independent variable (example, g(u) = (1+cos(zu), -1 <u#<1; and g(u) is zero
elsewhere) weighs the function over a specific location of the independent variable for
transformation. A function g, , (1) = ¢"™ g(u ~ t) parameterized by all frequencies w and

independent variable t form a kind of a basis function for a Hilbert space i.e., L3(R).
Defining a function of both the variables, frequency and independent variable,

}"(a;,!) = }', (@) = }e‘“mf, (u) duwhere f,(uy=gu-1)f(n) and g(u—t) is the

—=

complex conjugate of g(u) shifted by time t; }‘(a),t) is well defined even though f(u) may

not be well defined at individual points(f(u) could be modified on a set of measure Zero).

It is because the function f{(w,?) written as the inner product <g,,, /> is a kind of

correlation between g, (u)and f(u)and correlation is generally well behaved than
cither one of the functions. Further, by Schwarz inequality }(m,t) = |<g,.f>

dlg,. | iff - _)-‘(cu,r) is bounded. Therefore the windowed transform behaves better

than the function itself or the Fourier transforms in the mathematical sense. Further
Wavelet Transforms (WT) were developed to overcome the resolution problems
associated with STFT. Wavelet transforms provide a independent variable-frequency
representation of a function. The concept corresponding to the phase has to be changed to
that of "power spectrum' as the natural data being dealt with is relatively random or with
‘noise’. Here the concept of phase loses all meaning. It is the form of square of the

Fourier transform.



Admissibility criteria:

The admissibility criteria requires that the wavelet must be a small wave. The
wavelet function must wiggle around the independent vanable axis. For the wavelet
transform to have its inverse and Parsevals theorem ( See appendix 1) to be applicable is

that it is necessary that it should satisfy the admissibility criteria:

Iwave!et function = 0 (3)

It follows from the requirement that 0 < Iﬁ |w[*< oIt is seen that the local mean

—n

value of the function is automatically subtracted in the wavelet transforms.
Need for wavelet transforms:

Probiem of resolution does not exist for a Fc;urier Transform. Neither frequency
resolution nor V resolution exists for FT. Exact values of frequencies are known and the
value of the function is known at every instant of V . However the cross resolution, the V
resolution in the frequency domain, and the frequency resolution int the V domain are nil,
since no information about them is possible. Faultless frequency resolution in the FT is
obtained because the kernel which can be thought of as a window, which is integrated
for all V from minus infinity to plus infinity. In STFT, the window is of finite length and
it covers only a portion of the function, which makes frequency resolution poorer. Exact
frequency components that exist in the function are not known. Information of the
frequency is spread over a band. If the width of the window is extended from -w to +oo it
reduces to a Fourier transform, which gives perfect frequency resolution, but not the

location of the frequency in the independent variable axis.

A function is said to be stationary if its frequency content does not change with
time. In Fourier transform the function is implicitly assumed to be stationary for all times.

In order to obtain the stationarity, a short enough window is required, in which the



function can be assumed to be stationary. As the window is made narrow V resolution

gets better but the frequency resolution gets worse.

Multi-resolution analysis:

Before 1986 the analysis (computation of f)would have to be made directly by
integration. Multiresolution analysis is a radically new method for performing analysis
and synthesis. This method is completely recursive and ideal for computations. Refer

section "Example construction of wavelet". Beginning with a function sampled at regular
intervals of At =1 > 0, {* = {f Yooz f* is split into blurred out version at coarser scale At

=2t and detail d' at scale At =1 . Bach detail can be written as superposition of wavelets
and the mother wavelet is determined by the blurring process.  After N iteration the
original function can be written as £ =+ d' + & + ..+ d". Wavelets use narrow
window for higher frequencies and wide window for low frequencies resulting in a
adequate independent variable resolution at high frequencies and adequate frequency
resolution at low frequencies. Multiresolution analysis begins with a scaling function
from which the wavelets are determined. Table 1 gives the summary of frequency and
independent variable resolution characteristics of windowed Fourier transforms and
wavelets. It should however be noted that the process of fixing the size of window is
automatic in the algorithm itself. The unexpected existance of such wavelets, which form
an orthonormal basis is the reason for its current popularity. Quoting M.B. Abbot and
D.R.Basco (1) who compares the process of good numerical simulation with radio
amplifier with good frequency response: "...... Our aim in computational fluid dynamics
is to design numerical techniques that reproduces as many as possible of these

‘sounds'...."



TABLE 1- SUMMARY OF FREQUENCY AND INDEPENDENT VARIABLE
RESOLUTION CHARACTERISTICS OF WINDOWED FOURJER TRANSFORMS

AND WAVELETS
Size of | V resolution Frequency Frequencies Frequencies
window resolution analysed in analysed in wavelets
Windowed Fourier
Transforms
Narow | Adequate Inadequate Single size Higher
inadequate Adequate of window is used Lower
for all frequencies
for a analysis
Examples of wavelets:
Mexican Hat Wavelet
It can be expressed as
Me(z) = (22-De™"? (6
or with its energy normalised
1 P
S ) m
The Morlet wavelet
Mo(t) = ¢ /* (cosat +isinat) @®)

o is a factor which determines the size of the window.




WAVELET ANALYSIS AND SYNTHESIS

Wavelet Analysis:

Wavelets analysis is called multi-resolution analysis. Central to the analysis is the
concepts of operator theory, Bi-orthogonality, dual spaces and an understanding of
Hilbert spaces. Powerful methods of linear algebra can be extended to operators and

functions by this understanding.

Scale Support Translation and Resolution:

The concept of scale is the starting point in gencration of wavelet transforms.
Mathematically if the independent variable is multiplied with a constant, the function is
stretched or shrunk. In wavelet analysis since the scale parameter frequently appears in
the denominator the opposite is true in all such cases. It is inverse of frequency. Since the
wavelet itself is not analysed but a function is analysed using a wavelet the concept of
scale is guite natural. Acceptable scale resolution means unacceptable frequency

resolution and vice versa.

Support refers to the size of the transforming window in comparison with the
‘window' of a Fourier transform which is infinite. If a window vanishes outside of the
finite interval [a,b] it is then called ‘compacily supported’ and denoted by supp[a,b].
Usually it refers to the base width of the window.

Translation refers to the location of the window. It has the same units as V.
Resolution means to investigate which spectral component exists at any given
interval of V WT allows for variable resolution. High frequency component in a

function is located with a narrow window. A coarse view is taken and later finer scales

are then chosen. Each is translated over the function and transformed.

10



The process of wavelet transform can be expressed as

« =T

WTY (5.5)= [yow" (=) dt ©)

where, a matrix of the transformed function is obtained with one direction corresponding
to the translation with a given scale and the other due to change of scale.

Wavelet synthesis:

When the admissibility criteria is satisfied synthesis becomes possible. Generally
the bases will be orthogonal, bi-orthogonal or will be of type 'frames’. Bi-orthogonal
basis refers to the condition that two sets of basis are orthogonal to each other but not to
themselves. If for a problem orthogonal basis cannot be determined then bi-orthogonal
basis are used. Even that failing frames are used. However orthonormal basis allow easy
analysis and synthesis.

The inverse transform of a continuous wavelet transform is

90 = o [[eesw s (10)

v oar

11



DISCREET WAVELET TRANSFORM
Sampling theorem:

The sampling theorem states that, under certain conditions, it is possible to
recover the intervening values of a sampled series accurately. The sample set is fully

equivalent to the original set provided the function is band limited.

If function f{x) whose Fourier transform is zero where |s| > s, it is band limited.
With any waveform there is always a frequency beyond which the spectral contributions
are negligible. Band limited functions have the property they are fully specified by values
spaced at equal intervals not exceeding 0.5/s,.

! f(x)lll(-E-) = Y f(nr)6(x—nr) (11)

Information of f{x) is retained only at the sampling points at x = nz.

It is proposed to reconstruct the function from the sampled points (f{x)111(x/1))
when the sampling theorem is proved. Since,111(x/t) - t111(rs) it corresponds to a row
of impulses at spacing 1/t. By the replicating property of 111 function with a function
(function appears in replica at unit intervals along the entire length of axis)

fEIMNGx/7) = £111(m)* F(s) (12)
F(s) is recoverable (If there is no overlap with the neighbouring transform, which is true
for a band limited function and 1/t > 2s, which in turn implies that the sampling interval
T <(1/2) (1/s.)) by multiplying t111(ts)*F(s) by 11(s/2s,). The sampling interval should
be lesser than the half the period of sinusoid of frequency s, Hence, f{(x) is obtained as
the inverse transform of this product. Critical sampling is when t = (1/2) (1/s.), when,

2
2s,

111(25,%) f(x) > (%) 111(==)* F(s) (13)

Filtering in the spectrum corresponds to interpolation in the function domain,
Since recovery involves the multiplication of the transform by 11(s/2s.) the equivalent

12



operation in the function domain is convolution with the function 2s, sinc (2s.) which wilt
yeild f{x) from the series of impulses 111(x/7)f{x). The process involves taking a serial
product. When the interpolation precess needs to be repeated the values of sinc x suitable
spaced proves to be beneficial.

Rectangular filtering:

Assume that the critical sampling interval 1" = 1/(2*s;) = 1 when s. = 1/2, if it is
required to remove spectral components exceeding the limit s, it corresponds to
multiplying the transform by 11(s). Numerically it will be an approximation represented

by the summation _
T = @I sine 2] (14)
f: = F(s)*[r111(z)*11(s)] (15)

It is important to determine the coarseness of the tabulation interval allowing to
sufficiently approximate the desired integral f{x)*sinc x (A function whose transform is
cut off). Trying t =1, Z; = f{x) ; there has been no filtering. Trying 7= 1/2

212 = SO *[111(2x)sinc x] (16)

EZZ=F(s)*[—;—111(—;-)*u(s)] (17)

In other words a band limited function is a function, t), which has no spectral
components beyond a frequency B Hz; that is, F(s) = 0 for [s} > 2B. The sampling
theorem states that a real function, ft), which is band limited to B Hz can be
reconstructed without error from samples taken uniformly at a rate R > 2B samples per
second. This minimum sampling frequency, s = 2B Hz, is called the Nyquist rate or the
Nyquist frequency. The comresponding sampling interval, T = 1/2B (where t = nT), is
called the Nyquist interval. A function band limited to B Hz which is sampled at less than
the Nyquist frequency of 2B, i.e., which was sampled at an interval T > 1/2B, is said to
be under sampled. With the Nyquist sampling rate in the V scale plane the frequency of

13



sampling (which allows reconstmction of the original function) is given by the relation

N;S; = N5, where N's are the sampling rate and §'s are the scales.

1t should be noted at this time, however, that the discretization can be done in any
way without any restriction as far as the analysis of the function is concerned. If synthesis
is not required, even the Nyquist criteria does not need to be satisfied. The restrictions on
the discretization and the sampling rate become important if, and only if, the function
reconstruction is desired. Nyquist's sampling rate is the minimum sampling rate that

allows the original continuous V function to be reconstructed from its discrete samples.

The distinction between the Fourier transform, Fourier series and discrete
Fourier transform should be appreciated. Similarly there are continuous wavelet
transform, semi-discrete wavelet transforms and discrete wavelet transforms. The
critical point to be noticed is that the sampling rate is automatically adjusted to the scale

in discrete wavelet transform.

AV -scale representation of a digital function is obtained using digital filtering
techniques. CWT is a correlation between a wavelet at different scales and the function
with the scale (or the frequency) being used as a measure of similarity. The continuous
wavelet transform was computed by changing the scale of the analysis window, shifting
the window in V , multiplying by the function, and integrating over all V's. In the
discrete case, filters of different cutoff frequencies are used to analyze the function at
different scales. The function is passed through a series of high pass filters to analyze the
high frequencies, and it is passed through a series of low pass filters to analyze the low

frequencies.

The resolution of the function, which is a measure of the amount of detail
information in the function, is changed by the filtering operations, and the scale is
changed by up-sampling and down-sampling (sub-sampling) operations. Sub-sampling a
function corresponds to reducing the sampling rate, or removing some of the samples of
the function.

14



For example, sub-sampling by two refers to dropping every other sample of the
function. Sub-sampling by a factor n reduces the number of samples in the function n

times.

Up-sampling a function corresponds to increasing the sampling rate of a function
by adding new samples to the function. For example, up-sampling by two refers to adding
a new sample, usually a zero or an interpolated value, between every two samples of the
function, Up-sampling a function by a factor of n increases the number of samples in the

function by a factor of n.

DWT coefficients are usually sampled from the CWT on a dyadic grid, i.e,, s0=2
and t 0 = 1, yielding s=2j and t =k*2j. The procedure starts with passing this function
(sequence) through a half band digital low pass filter with impulse response h[n].
Filtering a function corresponds to the mathematical operation of convolution of the

fenction with the impulse response of the filter.

A half band low pass filter removes all frequencies that are above half of the
highest frequency in the function. For example, if a function has a maximum of 1600 Hz
component, then half band low pass fiitering removes all the frequencies above 500 Hz.
The unit of frequency is of particular importance at this time. In discrete functions,
frequency is expressed in terms of radians. Accordingly, the sampling frequency of the
function is equal to 2p radians in terms of radial frequency. Therefore, the highest
frequency component that exists in a function will be p radians, if the function is sampled
at Nyquist’s rate (which is twice the maximum frequency that exists in the function); that
is, the Nyquist’s rate corresponds to p rad/s in the discrete frequency domain. Therefore
using Hz is not appropriate for discrete functions. However, Hz is used whenever it is
needed to clarify a discussion, since it is very common to think of frequency in terms of
Hz. It should always be remembered that the unit of frequency for discrete time functions
is radians. Afier passing the function through a half band low pass filter, half of the

samples can be eliminated according to the Nyquist’s rule, since the function now has a

15



highest frequency of p/2 radians instead of p radians. Simply discarding every other
sample will subsample the function by two, and the function will then have half the
number of points. The scale of the function is now doubled. Low pass filtering removes
the high frequency information, but leaves the scale unchanged. Only the sub-sampling
process changes the scale. Resolution, on the other hand, is related to the amount of
information in the function, and therefore, it is affected by the filtering operations. Half
band low pass filtering removes half of the frequencies, which can be interpreted as
losing half of the information. Therefore, the resolution is halved after the filtering
operation. Sub-sampling operation after filtering does not affect the resolution, since
removing half of the spectral components from the function makes half the number of
samples redundant. Half the samples can be discarded without any loss of information.
The function is then sub-sampled by 2 since half of the number of samples are redundant.
This doubles the scale.

16



EXAMPLE CONSTRUCTION OF A WAVELET

For each nonnegative integer j let V' be the vector space of piecewise constant functions

i_
on [0,1) with possible breaks at 1z 21

VAT TR Then the 2’ functions ¢; defined by

$(2-)) 0<is2/ -1 form a basis for V.. We get an infinite ascending chain of vector

spaces V' cv' c....v"" ¢ ..... each of which is an iuner product space with respect to the

1
tnner product <f,g> = I f(t) g(t)d:. The wavelet space @' is then defined to be the
4]

orthogonal complement of V' in v"*'. The functions z/(x) = 2(2/ ~i) for 0<i<2/ ~1
form a basis for @'. For any j, v = V'@ao’®o'...... Goi’ (Orthogonal direct sum
decomposition)

¢:{ 1 on[0,1) (18)

0 Elsewhere
Consider the histogram shown in Fig.3 on top. The dyadically scaled and translated

scaling function @7 =(2’x- i). The mother wavelet(called Harr wavelet)

[ i onf0, %)

2(x}= (19)

-1 on[%,l)
0 Elsewhere
The wavelet basis functions are (Fig.3)
2 =x(2'x- ), (20)
Example of hydrological data compression:

Let @ be an NxN matrix. A transform operation gives
¥ = WOw 21)
It is possible to obtain a matrix using wavelets which produces a transform matrix ¥
that is sparse and with most of its large magnitude elements concentrated in a small
region of '¥. It is "energy compaction" by transformation. In the example given below 37
units of input data and 25 units of transformed data (with threshold chosen to be zero) is

17
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greater than or equal tc 5. The ratio (25/37)of compaction is 0.68. Also, 25 units of input
data and 11 units of transformed data is greater than or equal to 10, The ratio (11/25)of
compaction is 0.44. Further it is possible to set to zero those elements which are small in
magnitude(thresholding). The inverse transformation then recovers the original matrix
without much distortion. It should be noted that the first case presented in the example
has threshold equal to zero, and there is no "Thresholded transform data”. Considering
the fact that rainfal? data are random, the accuracy of reconstruction is remarkable as seen
in Figs. 4, 5 and 6. Figs.4,5 and 6 have varying values of threshold equal to 2,4 and 8
respectively. The corresponding “Thresholded transform data” shows an increase in the
number of zeros. The wavelet explained in this section, was historically the first wavelet,
is very simple and suitable for explaining the theory; and even better results can be
obtained by using better wavelets.

This wavelet is applied to a string of rainfall data (which is random) in the Ganges
catchment. Though the wavelet is simplest the results are very encouraging. Below is
presented the original data, thresholded data with the reconstructed data:

Input data — 64 values

19 0 0184 35 73 0 02

24 23 84 32 50559100 23
21.8 8.1 22.2 27.5 2.3 132 10.5 244
325 164 04 50 25334 120 .2
608 103 0 13 74 1.0 66 11.7
31.2 36.7 125 1.9 92 7.1 106 7.2
43 14 27 34 0 41 06 329
65.0 583 299 246 167 58 0.6 i1.3
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Fig.4 Rainfall data with reconstruction by wavelets
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Fig.S rainfall data with reconstruction by wavelets
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rain

________________________ reconRain Threshhold = B

40

Fig.6 Rainfall data with reconstruction by wavelets
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Threshold= 0

Transformed data

12.973 -1.936 -3.488 -1.441 -3.638 1.725 -1.081-10.175
1.162 -7.113 3.650 .775 5.713 6.025 -3.225 17.925
-4.125 2.650 -1.725 12.150 -4.950 -4.850 10.875 5.925
17.450 -2.475 13.375 -0.375 -0.1 -7.350 17.2 2.650
0950 9.2 -1.9 -0.1 0.050 2.6-25.450 3.850

6.850 -2.650 -5.450 -6.950 8.050 -2.3-15.450 5.9
25.250 -0.650 3.2 -2.550 -2.750 5.3 1.050 1.7

1.450 -0.350 -2.050-16.150 3.350 2.650 5.450 -5.350

Reconstructed data

19 0 0184 35 73 0 0.2

24 23 84 32 50559 10.0 2.3
2]1.8 8.1 222 275 23 132 105 244
325 164 04 50 25 334 120 02
60.8 103 0 13 74 1.0 66 11.7
31.2 36.7 125 1.9 92 71 106 7.2
43 14 27 34 0 41 06 329
65.0 58.3 29.9 24.6 16.7 5.8 0.6 11.3

Threshold= 2.
Transformed data

12.973 -1.936 -3.488 -1.441 -3.638 1.725 -1.081 -10.175
1.162 -7.113 3.650 0.775 5.713 6.025 -3.225 17.925
4.125 2.650 -1.725 12.150 -4.950 -4.850 10.875 5.925
17.450 -2.475 13.375 -0.375 -0.1 -7.350 17.2 2.650
0950 92 -1.9 -0.1 0.050 2.6-25.450 3.850

6.850 -2.650 -5.450 -6.950 8.050 -2.3-15.450 5.9
25250 -0.650 3.2 -2.550 -2.750 53 1.050 1.7
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1.450 -0.350 -2.050-16.150 3.350 2.650 5.450 -5.350

Thresholded transform data

12973 0 -3.488 0 -3.638 0 0-10175

0 -7.113 3.650 O 5.713 6.025 -3.225 17.925
-4.125 2.650 0 12.150 -4.950 -4.850 10.875 5.925
17.450 -2.475 13.375 0 0 -7.350 17.2 2.650
0-92 0 0 0 2.6-25450 3.850

6.850 -2.650 -5.450 -6.950 8.050 -2.3-15.450 5.9
25250 0 3.2 -2550-2750 53 0 0O

0 0 -2.050-16.150 3.350 2.650 5450 -5.350

Reconstructed data

1.723 1.723 0.773 19.173 B8.498 8.498 3.198 3.198
6.011 6.011 8.611 3.411 6.936 57.836 11.936 4.236
22.011 8311 22.411 27.711 2.511 13.411 10.711 24.611
35.386 19.286 3.286 7.886 6.936 37.836 16.436 4.636
61.386 10.886 1.236 1.236 7.986 1.586 7.186 12.286
29.623 35.123 10.923 0.323 6948 6.948 6.948 06.948
-0.427 -0.427 -0.427 -0.427 -3.377 0.723 2,777 29.523
61.623 54.923 26.523 21.223 13.323 2423 -2.777 7.923

Threshold = 4,

Transformed data

12.973 -1.936 -3.488 -1.441 -3.638 1.725 -1.081-10.175
1.162 -7.113 3.650 0.775 5.713 6.025 -3.225 17.925
4,125 2.650 -1.725 12.150 -4.950 -4.850 10.875 5.923
17.450 -2.475 13.375 -0.375 -0.1 -7.350 17.2 2.650
0.950 -9.2 -1.9 -0.1 0.050 2.6-25.450 3.850

6.850 -2.650 -5.450 -6.950 8.050 -2.3-15.450 5.9
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25250 -0.650 3.2 -2,550 -2.750 5.3 1.050 1.7
1.450 -0.350 -2.050-16.150 3.350 2.650 5.450 -5.350

Thresholded transform data

12973 ¢ 0 0 ¢ O 0-10.175

0-7113 0 0 5713 6.025 0 17925

4125 0 0 12.150 -4.950 -4.850 10.875 5.925
17450 0 13375 0 0-7350172 0

0-92 0 0 0 0-25450 ©

6.850 0 -5.450 -6.950 8.050 0-15.450 5.9
25250 0 0 0 ¢ 53 0 O

0 0 0-16150 0 0 5450 -5.350

Reconstructed data

8.848 8.848 7.898 26.298 12.973 12.973 12.973 12.973
5.861 5.861 5.861 5.861 6.786 57.686 7.936 7.936
14.873 1.173 17.923 17,923 2.673 13.573 10.873 24.773
31.898 15.798 2.098 2.098 3.448 34348 12.948 1.148
61.386 10.886 1.236 1.236 7.261 7.261 7.261 7.261
32373 32373 10923 0.323 6.948 6948 6.948 6.948
2.798 2.798 2.798 2.798 -4.552 4.552 -6.2 26.298
58273 58273 23.873 23.873 10.673 -0.227 -0.127 10.573

Threshold = 8.

Transformed data

12.973 -1.936 -3.488 -1.441 -3.638 1.725 -1.081-10.175
1.162 -7.113 3.650 0.775 5.713 6.025 -3.225 17.925
-4.125 2.650 -1.725 12.150 -4.950 -4.850 10.875 5.925
17.450 -2.475 13.375 -0.375 -0.1 -7.350 17.2 2.650
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0.950 -9.2 -1.9 -0.1 0.050 2.6-25.450 3.850

6.850 -2.650 -5.450 -6.950 8.050 -2.3-.15450 5.9
25.250 -0.650 3.2 -2.550 -2.750 5.3 1.050 1.7
1.450 -0.350 -2.050-16.150 3.350 2.650 5.450 -5.350

Thresholded transform data

12973 0 0 0 ¢ 0 0-10175
0 000 0 0 017925

0 0 012150 0 010875 0
17450 013375 0 0 0172 0O
0-92 0 0 0 0-25450 0O

0 0 0 0 8050 0-15450 0
25250 0 ¢ 0 0 0 O O

0 0 0-16.150 0 O 0 O

Reconstructed data

12.973 12.973 3.773 22.173 12.973 12.973 12.973 12.973
12,973 12.973 12,973 12973 -0.327 50.573 0.823 0.823
12.973 12.973 12,973 12.973 12.973 12.973 12.973 12.973
31.898 15.798 2.098 2.098 -2.477 28.423 12,973 12.973
55.673 5.173 -4.477 -4.477 12973 12973 12.973 12.973
26.348 26.348 -0.402 -0.402 12.973 12.973 12.973 12.973
2798 2.798 2.798 2798 2.798 2.798 -13.352 18.948
58.273 58.273 23.873 23.873 5.223 5.223 5223 5223
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STEPS FOR APPLICATION OF WAVELET TRANSFORMS TO CANAL
BREACH

The assumptions of physical model, capability of computational algorithm and
knowledge of experimental results are inter-dependent in a complex simulation.

Model:

The two equations which govern the incompressible flow phenomena are:

8)Continuity equation

% .o (22)
ax,
b)Navier Stokes equation
— * 2
gq"-+U U, _-12p + U, v (23)

a o, p o  oxax

where U; are the components of velocity, P* is sum of pressure, a surface force and yh the
gravity body force. Einstein's convention of summation is used, which is tenms of
repeating subscripts are summed.

The saint venant equations, the depth averaged (using shallow water theory),
describing the two dimensional unsteady flows may be written in vector form as

H+Uy+V, 4§ =0 24)
h uh vh 0
where, H ={uh [3U=\h+1gh’ |3 V=| wh S=|—gh(S,, ~S,) (25)
vh uvh n +1gh? ~gh(S,, ~S,)
nt u N+ nt v it +2
and §, —mran - Sy F —agar (26)
Ch C? h
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Application of wavelet element method:

The construction of multi-resolution systems and wavelets on general domains in
RY is a crucial issue for applying wavelet methods to the numerical solution of operator
equations such as partial differential and integral equations.

Tensor products of scaling functions and wavelets are mapped to the sub-
domains in which the original domain is split. By matching these functions across the
inter-element boundaries, globally continuous bi-orthogonal wavelet systems are
obtained, which allow the characterization of certain function spaces and their duals. The

coefficient matricies obtained will be sparse.
Boundary conditions:

For free surface flows considering a steady flow might not lead to much
simplification. For steady flow, the equations are elliptic and boundary conditions must
be specified on ail boundaries. Typical values of boundary conditions specified are the
values of the variables or its gradients. Known boundary conditions mean that the
variables are known apriori. Velocity at the boundary is either to be determined form
experiment or from apriori expected behaviour - such as critical flow occurs at the
breach or that no flow can take place across a solid boundary. But the exact location of
the critical section poses a problem and it needs 1o be investigated if a work around can
be found.

The gradient boundary condition for the case of free surface flows using Navier

Stokes equation are:
normal: - P+ + 2V§5 @n
ox,
waction: | 0z 2 (28)
o, | ox,

in which n indicates normal to the boundary, t indicates tangential to the boundary and v

is the kinematic viscocity
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Commonly, to avoid the complex problem of specifying boundary conditions,
goveming equations are integrated across the depth and "depth averaged” equations are
considered. The assumption is that the length of horizontal dimension, say length of
wave, is much greater compared to depth -- hence interestingly many commonly
encountered non-shallow wave situations, like a deep or narrow canal, may sometimes
give misleading solutions with the application of this method.

In hyperbolic systems, like the Saint Venant equations above, errors present in
the specification of the boundary conditions are propagated throughout the domain. The
cause of many an instability in computation lies here. Initial conditions of all the
independent variables are specified throughout the domain. For a solid boundary the no-
slip condition v/u = tan 0 where § is the angle between wall and the x-axis.
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SCOPE OF APPLICATIONS IN HYDROLOGY

Wavelet transforms can have very wide applications in hydrology. The data
compaction needs of the hydrological applications us expected to have great promise.
The classical example of data storage is that of the FBI which had to use wavelet methods

to store the data of finger prints. A few parameters are sufficient to describe a curve.

The literature and research on wavelets are growing by leaps and bounds and it

does promise to have wider applications in hydrology in future.

30



CONCLUSIONS:

1)

2)

3)

4)

3)

6)

7

The key concepts of wavelet transforms is presented. Information of a function could
equivalently be specified in the original domain or in the frequency domain. There is
a one to one relationship in the Fourier Transforms between these two domain.
Fourier transforms are in capable of andlysing data with non-stationary (data whose
frequency component changes with time) components.

Wavelet and windowed Fourier transforms introduce another dimension into the
understanding of the data. This is comparable to catching the tone or shrillness of a
voice apart from capturing the intensity. The necessity of the method of analysis as
compared to the conventional Fourier analysis becomes inescapable in real time
understanding of data. It should be noticed that Fourier analysis can be thought of as
post mortem analysis of data --as one has to wait till the data stream ends(meaning of
integration between - to +e0).

Windowed Fourier analysis is a fixed resolution analysis as compared to Wavelet
analysis, which is a multi-resolution analysis. Low and high frequency components of
a data set is rationally analysed differently.

The mathematical concepts of dual and bi-orthogonal basis which forms the backbone
of the wavelet theory is derived from the fundamentals. It should be noticed that how
compact the statement appear in the new frame work. Compactness of the derivations
are required in reducing unnecessary clutter and to drive home and visualise the
meaning of derivations. Dual bases are presented and the important concept of
resolution of unity is derived from it. Further, bi-orthogonal bases are presented.
Finally, Hilbert spaces are presented which links up the vectors and functions on a
firm basis.

Singular value decomposition is presented which allows to determine the inverse of
all matricies.

Very recently Wavelets have been used in the analysis of operator equations. Such a
representation allows the solving of equivalent equations where the number of

operations are reduced. Wavelets sense the structures within that data and functions,
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thus representing them in reduced size. Wavelet element method is one of such
applications.

8) Concepts of scale, support, translation, uncertainty and resolution used in wavelet
transforms are.explained. Algorithms of Wavelet analysis and synthesis are presented.
The wavelets chosen for each application will be different and it has been proved that
some wavelets cannot be expanded in terms of elementary functions,

9) Discreet wavelet transform has been explained. Sampling theorem has been expalined
in detail. The mathematics necessary for their comprehension has been given as
appendix.

10) Steps for application of wavelet transforms to canal breach has been presented.

11) Wavelet method of analysis offers great promise for its application in hydrology and
hydraulics
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Appendix 1
DUAL AND BI-ORTHOGONAL BASES, FOURIER SERIES, TRANSFORM , W
FT AND IMPORTANT CONCEPTS OF MATRIX ALGEBRA

For understanding Wavelets in detail , it is necessary 1o review the fundamentals
from a mathematical language so that the concepts and operations are presented in a
concise form in terms of set theory. The preliminary background is important because
even the first definition of wavelet transform incorporates the concepts of translation,
scale etc., and that of multi resoiution. It is to be noted that complex sets need to be
considered for the development of theory of wavelets. 1t is because even for analysing
real objects complex methods are simpler than real methods -- complex exponential form

of Fourier series is simpler than using real form in terms of sines and cosines.

The sets R and C denote the set of all real and complex numbers. RM denotes the
set of all ordered M-tuples of numbers which is usnally written as column vector. A
basis for CV is the collection of vectors {b1,bz.......... by} which are linearly independent
and any vector in CY can be writien as a linear combination of them. If u € C¥ then u™

is the m™ component of w.

Given M,N € N a function F from M to €N is defined by specifying a rule that

assigns a vecior F(n) € CY to each vector u € CM. The set of all such functions is
denoted by L{CY , €. L(CM, C") is also denoted by F < CN and also by F:C¥— C™.

By such a notation linear operators are identified with matricies. The basis vectors {b,b>

The set Cy consists of row vectors with N complex entries. The corresponding
basis {B', B ...B§ called the “dual basis' of {bi,bz.......... bn}, is constructed below.
N
The expression U = Zb“u" specifies a unique vector weC™ for any basis {bi,by ...
n=1

by}, which is not necessanly orthogonal. For each n B"(w,) is defined 1o be equal to the
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n* component of u, i.e, B"(.) = u”, where u, is the vector u expanded with respect to the
standard basis.

The vectors basis {B', B®..B"} spans Cy:.
Proof: Let F,, scalar coefficients be defined by F(b,)eC

Fu=F(u=ibﬂu" )=iF(b,,)u" =iFnu' =(iF_B")u (29)
[ ] =1

a1 n=i

hence,

F=YFB" (30)

et

An example of resolution of unity or identity in terms of pair of dual basis is:

S8 =1 - (31)

n=1
The operator b,B" projects any vector to its vector component paraliel to b,. The sum of

these projections give the complete vector,
If {d,} be another basis in C" and if {D"} be its duat basis,
N
>dDp =1 (32)
n=1
then,
N N N N
" =Bu=R"w=B")"d,D* u=B" Y d,w' =Y (B"d,)w" = ) T} w* (33)
k-4 k=1 (13 [ ]

*T' therefore is a NxN matrix of transformation.
Inner products, adjoint operator :
The standard inner product in C" is defined as

N “-—n
<n,v> = Zu ¥, nve CY (34)
n=1
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where, u" and v" are the component of u and v w.r.t. standard basis. # denotes the

N
complex conjugate of u. The norm of vector u is defined to be |[uf| = <u,u>= Z| u .

Any inner product should satisfy the following fundamental properties

(P) Positivity: |ju]| > 0 forallu >0 (35)
(H) Hermiticity : <W,V > =< WV,U > (36)
(L)Linearity: <u,cv+w> = c<n,v>+<u,w-> (37N

The physics convention (opposite to the mathematical convention) chosen thus makes the
scalar product linear in the second factor. It is anti-linear in the first factor

<CUHW, V> = o <uV>H<W,V> (38)
Another example of inner product is the weighted inner product

N .
<@V>= Z H,u v'  where g, >0 (3%9)
n=1
Hence the concept of orthogonality and length are dependent on the choice of the inner

product.

Adjoints are a powerful concept in linear algebra. The concept extended to

functional spaces is as follows: The adjoint of an operator Fe C} is an operator F e C)|
such that

<u, F* v > = <Fuv> for all ueC* and veCN (40)
If {a,a; ... am},{bi,b2 .o, bn}are chosen as bases such that they orthonormal
with respect to the chosen inner product.
N M
Fan=) b, F. and F b=) a,(F’)’ (41)
n=1 =1
F" = <b,, Fa,> and (F*)7 =<8, F by> (42)
(F*)" = <Fap, b>=<b,,Fa_ > = Fn 43)

The matrix F* is the Hermitian conjugate the matrix F.
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Representation of inner product as an actual product:

On the one dimensional space C, choosing standard inner product
<c,c>=¢ ¢’ (44)
and regarding u as an operator u C" defined by uc=cu then the adjoint operator u’ €

Cy determined below:
By the definition of the inner product (10)

<e UV =cu'v (45)
<eU'V>=<Uc,V>=c < U,V > (46)

From Eqgs. 17 and 18
<, v>=u'v 47)

Dirac called u” as 'bra' v as "ket'. The above derivation is basis independent but depends

on the choice of inner product.

It can be shown that
F'=F (48)
(GF)'=F'G" (49)

Every "linear functional' (Defined to be F € C}) can be written as F =u” for a

unique vectoru € CN and u =F",
Bi-orthogonality:

Each B*eC" determines a unique vector b* defined to be (8%) e ¢V

<b*,b>=(b")'b=B"by= 5" : (50)
since it can be easily shown that
Bby=5] : (51)

The vectors {b*} form another basis of CY
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The above relation is called the DUALITY RELATION. Eq.42 states that bases {b"} and
{b,} mutually bi-orthogonal. From the relation B" =(B*)" = (b*)" and from Eq.31

N
> b (b") =1 (52)
n=1
This gives the expansion of any vector in terms of b,
N
u=Ybu' whereu=(b")u=<b" u> (53)
n=l
Taking adjoint of Eq.52,
N *
dbb, =1 (54)
nnt
N -
u= )b, whereu,~(by)v =<by u> (55

- #=l

When the given basis is ortho normal with respect to the inner product

ib,,b,,’ =] (56)

=1

with the usual expansion of vectors u"=(b,)u = <b, ,u>
Functional spaces and Hilbert spaces:

A generalisation of the concept of vectors is presented below:
Letn = {1,2,3.....N} be the set of integers and fiq -> C . The generalisation is from the
fact that the functioo is now specified which assigns a complex number f(n) to each n €
r. The set of all such functions is denoted by C". A one to one correspondence is
established between C" and CN by writing f{n) as column vector u; € M such that (up)"
is defined to be f(n). Further let S be an arbitrary set and let £:S ->C, Defining vector
operatrons in C* by (cf)(s) = ¢ f(s) and (f+g)(s) = f{s)+g(s) for seS. Then C5 is a complex
vector space. If S is infinite dimensional it becomes a infinite dimensional vector space.

For example C* is vector space of all possible, including non-linear, functions fR->C.

Most ideas of linear algebra can be extended to C if suitable restrictions are

placed on function £ The inner product and the norm are defined respectively by
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<tg>= 3 7(n) g(n), fge C- 7

i

Il = <68>= Y| f(») (58)

=
One solution to the problem of convergence of series associated with infinite dimensional
vectors is to consider only the subset of functions with finite norm.
N is defined to be {feC”: ||fjf* <} (59)
lIF+gl] S)fitHigl < co by triangle inequality (60)
With the inner product as defined N is called the space of square summable complex

sequences AX(Z).

Two problems exist for extending the analysis to infinite dimensions for

continuous S with the inner product as defined below:

<fg>= ]m gl f,ge C* (61)

-t

- 2
Il =<te>= f|re) d (62)

1)The Reimann's definition of integral fails

2)The positivity condition fails
The first problem is remedied by recasting the integral in the Lebegue sense, which is
based on the concept of measure, which in turn is the generalisation of concept of length.
The second problem is solved by generalising the concept of function to include sets of
functions and to regard two measurable functions f and g as identical if the set of points
on which they differ

D = {teR:f{t)=g(t}} (63)
has measure zero. N is called the space of square-integrable complex valued functions on
R and is denoted by L*(R).

A Hilbert space is any vector space with the inner product satisfying the

conditions of Positivity, Hermiticity and Linearity and moreover complete in the sense
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that any sequence {fi,f; ...} in R for which {|{;-f|} - zero when m and n both tend to

converges to some f eX in the sense that ||f-f|| -> zero as n tends to co. Examples of

Hilbert spaces are A*(Z) & I*(Z).
Supported square integrable functions on R;

A function belonging to L’[R] is said to be supported in the interval {ab] , supp f
cfa,b], if the set of points outside [a,b] at which f{t} not equal to zero has zero measure.
It is denoted by L[a,b]. It is the subspace of L*(R) and is itself also a Hilbert space.
Given an arbitrary function feLX(R) , f has compact support if supp [a,b] for a bounded
interval [a,b] — R.

Adjoint operator generalised to Hilbert space setting:

Consider two Hilbert spaces X and and a function A:X-> 3, a is linear if

A(cf+g) = cA(D+A(g) foralic eC and f,geN (64)
A is then called an operator. A function on a infinite dimensional Hilbert spacetobe a
operator reguires apart from linearity the requirement that it be bounded

(<Clif)| ; C> 0 for all fe X (65)
The vector he N regarded as a linear map h:C-> X defines a linear functional on ¥

h’:R->C by h'g defined to be <h,g> forall g € N

h’ is also bounded , since

I’gl = [<h,g>] <[l Ilgl (66)

Let ¥ and 3 be Hilbert spaces and A: N -> J be a bounded operator. Then there
exists a unique operator A" 3> N satisfying

<hA'k>=<Ahk> forallh e N and ke 67
Further the adjoint of adjoint is the original operator

A=A : (68)

and

(BA) =A'B’ (69)
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Mathematical representation of Fourier series and integrals:

The Fourier series is concisely written

f=13ee (70
where T is the period e,(t) = ¢”*™7 are the harmonic nodes. Let g(u) be a function with
supp g < [-T,0] and defining

fiW) = g -0)f () (71)
the windowed Fourier transform is defined to be

Fony=£,0) = [e £, w)du (72)
Defining gu(u) = e""““s(:t)

f@n=g, f (73)
The corresponding reconstruction formula is

f == ffes Fonta (74)
Frames:

Generalised frames is a general method of analysing and reconstructing functions.
It is a tool by which many wavelet like analysis can be developed, studied and compared.
Theory of frames generaliscs the concept of resolution of unity. A basis gives rise to
resoultion of unity but not every resolution of unity comes from a basis. It is a key idea
in the wavelet analysis. If H be a Hilbert space and let M be a measure space with
measure i, a generalised frame in H indexed by M is & family of vectors Hy defined to
be that each element of Hy, hm belongs to H and m belongs to M; such that

a) For every f belonging to H the function }calledthetmnsﬁormoffdeﬁnedby

J(m)y=<h,,f >, is mcasurable.
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b) There are a pair of constants 0 < 4 < B <o such that for every f belonging to

H; A, <47 1< Bl
Nl-Conditioned Matricies:

When many equations need to be solved simultaneously, the effect of round off
may cause large effects on the results. In certain cases as in Fourier transforms the results
are particularly sensitive to round off --- such systems are called ill-conditioned. Number
of computations needs to be kept to a minimum by various means like L-U
decomposition or FFT.

Singular value decomposition(SVD):

A symmetric matrix A can be expressed as A = UDU™ where D is diagonal and
U is orthogonal Uj Eigen vectors of A. and a; are Eigen Values of A. Singular Value
Decomposition generates this for arbitrary maticies. In other words every matrix can be
inverted with SVD.

Let A <[ a}] be a NxN matrix , 4.4, be its eigen values.

Arranging the eigen vectors in columns in the Matrix B = [ﬂ}], a NxN matrix,

lipr]= 4. iy )= 4.5 and b |= 5)

e:8;]= 2,8 i=12..N (76)
or arranging the eigen values in a NxN matrix in a diagonal matrix A where

A =2, an

AB=B)\ (78)

B! AB=) (79)
Also, if A is symmetric, then the eigen vectors are orthogonal

B'B=1 (80)
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Theorem 1 of SVD:

Given a MxN matrix A there exists an MxN diagonal matrix D together with orthogonal
square matricies U and V such that A =UDV”

If r= rank of A Matrix D can be so arranged so that the only non-zero entries of D
are the positive square roots d,, dy . d, of the non-zero eigen values of AA'(known as
singular values of A) listed in non-decreasing order down the principal diagonal of D.

The colurns of U(reciprocal of V) form a full set of eigen vectors of AAT.

The above theorem is true for all kinds of matricies A.

Definition of pseudo inverses:

If D=[d] is a MxN diagonal matrix, the elements of pseudo inverse D* =

[ A%, ] of D has the shape NxM, and its elements are givenby A), =1/4
Theorem 2 of SVD: Every matrix is invertible

If A = UDV' is a singular value decomposition then A* = VD* U". In the special
case when A is a square matrix and invertible then the pseudo inverse A° reduces to the
ordinary inverse A™
The corollary of theorem 2 is that every set of equations are solvable, since an inverse

always exists.
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Detailed concepts and relationships of Fourier series and transforms:

Representation of function as a sum of Even and odd functions
Any function can be represented as a sum of even and odd function
f(x) = E(x)+O(x) where E(x) = E(-x} and O{x) = -0O{(-x)
Proof:
f{-x) = E(x) - O(-x)
Solving for E(x) and O(x)
E(x) = (1/2Xf(x) + f(-x))
and

O(x) = (1/2)(f(x) - f(-x))
Convolution:

Convolution is defined as

Wx) = [fegx-u)du = f()*g)

(81)

(82)

(83)

84

(85)

This particular form of h(x) has the important property of x-shift invariance. If, h(x) =

f(x)*g(x) then,
f(x-a) * g(x) = h(x-a)

Denoting by bars the Fourier transforms:
f*g=f ¢

&=f * g

feg = g*f {Commutative property)
f*(g*h) = (f"g)*h (Associative property)
f*(g+h)=*g+*h (Distributive property)

f*g*h=f g k
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f*@h=f (g * b (93)

[(f*@)dx = [f()x + [gx)ax ©4)
Parseval's theorem:

If p(x) is real and periodic with period T
Ti2 ] 0
[ PP de=a} +23 @ +5,7) 95)

-T2 Pl .

1
T

where the a's and b's are the Fourier series coefficients for p(x)
Serial product:

It is known that a polynomial A (Zax') multiplied by polynomial B(Zb;x") results
) k
in a polynomial C(Zcix') where, ¢, = Za,b,_‘ ; k=0,1,2..... Now the coefficients could
=0
be written in terms just its coefficients in their proper place. It is noticed that convolution
of two functions (Function g(x) is arranged in reverse order corresponding to g(x-u)

which, indeed is plotted reverse in g(u) vs. u plane with line of symmetry at x/2)

W) = [feG-wdn = f(x)*g(x) ©96)

in terms of their discrete values is very similar to the above process of serial product of

polynomials. If two functions f{x) and g(x) are represented by:

o £ [t 97

$g, 8 Gpoen) (98)
the serial product, {4, 4,......} is defined to be

{fge figit/fg Jgat+f8+ 80} ©¥9)
The i™ term is
gﬁg._; - (100)

47



In terms of Matrix notation:

U fi fofu} (o)
{20 &1 g8} (102)
$hy By, ) (103)
BT [ 06 0 0 0 0 0]fg]
B ||A o O 0 0 0 0)l1g
. H fi fo @ 0 0 0 :
=. fi i i 0 0 Off. (104)
Jo - L K S O 0]lg
! 0 fu g fZ f.l f;J 0 0
o] 1O 0 f - i i S]LO
Special Functions:
Rectangie function of unit area
0 |x|>1/2
O =412 |xE1/2 (105)
1 |x|<1/2
Displaced rectangle function of height h, area hb and centered at ¢
0 |x—ci>b/2
hn(";c)= 172 |x—cl=b/2 (106)
1 lx~cl1/2
v'I(x/1) is a rectangle function of height ©" and base  of unit area
Triangular Function:
0 [x]>1 .
AlxY = 107
(x) {1———|x| |x]<1 (107)

Heaviside's unit step function:
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[0 x<0
H{x)=41/2 x=90
1 x>0

[{(x) = H(x+1/2) -~ H(x-1/2)
Ramp function:

0 x<0

R(x)={x x20

R(x) = xH(x)
R(x)= ]H (u)du

R'(x) = H(x)

Convolution with H(x) means integration:

HX*x) = [ f@H(x-uw)du = ]f(u)du
Or,

Flx)= %(H(x) * £(x)

-1 x<0
s X =
BMX=Y1 x>0

sgn x = 2H(x)-1
Sinc x

sinmx

sinc x =

sinc 0 =1
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(116)
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sinc n = 0 n = non-zero integer

]-sinc xde=]

Isincaxdx=i
& la|

Six=jmdu
s u

Sm:r= Ism"du
x  Jou
Si mox
$INC X = -
The integral of sinc x
H(x)*sincx = fsincu du = = + 22
i 2 =
Square of Sinc x

. 2
.3 sinax
sin¢’ x =| ——

x

sinc? 0 =1

sinc’ n = 0 n = non-zero integer

Isincz x dx=1
Impulse function:

?J(x) dx =1
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azn

(122)

(123)

(124)

(125)

(126)

(127)
(128)

(129)
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where, 5(x) = 0, x=0

- L% x
_lé(x)dx—rm)o_!r (s

Sifting property is

[sC0s ds= £
[6(x-a)f(x) dx = f(a)

[ fx~a)dx = f(-a)

5()* f(x) = f()* o) = L&)

2
J(x)d(x) = f(0)* 5(x)

]-J(x)x dx=0
x3(x)=0
Though
Y nan =0 forallx
£ -> Otxf (';) ] - or Xi
Lt I _ l
I S

and the limit of the minimum value = -1/2

Null function:

0 x=0
8°(x) =
@) {1 x=0

‘]]5°(x)|dx=0
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0 0
8- =5"(x)={1 'T”t _ Kroneker delta
i=j

111(x) = ié‘(x —n)

Aty

111(x)=0 x#n

Periodic sampling property:

@D = 3/ m6G-n)

H=—a

Replicating property:

(142)

(143)

(144)

(145)

The function f(x) appears in replica at unit intervals along the entire length of x

axis

ME* ) = 3 /G-n)

==

111(x)o1t1(s); D refers to the Fourier transform pair

111(ax) = i J(x—g)

1
lal =,
111(-x) = 111(x)
111(x+n) = 111(x) n integral
111((x-1/2) = 111(x+1/2)

x+1/2
J‘m(x)dx=1

n=-1/2

11{x) = %5(x+%)+%5(x———;~)

1 I, 1 1
Il(x) = 55(1’ + '-2')— 55(1—' E)

Useful Fourier transforms:
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Fourier Transforms exhibiting symmetric properties

F(s) = [f(x)e™™d
- J(x) > F(s)
f(x) = or IF(s)e*“"’“ds

F(s)= sinc x e dx =TI(s)

sinc x o I1(s)

sinc® x o A(s)
e™ o ™
158(s)

cos(zx) o 11(s)
sin(zx) O fll ()

11 (x) o ism(as)

Fourier Transforms exhibiting nonsymmetric properties

1
iz = S(s——
€ (s 2)

1 .
5 _—— i F -
(= 2):}9

Similarity theorem:

1

If f{x) has the Fourier Transform F(s) then f(ax) has the Fourier transform

8

—F()

fal

a

g3

(154)

(155)

(156)
(157)

(158)
(159)
(160}
(161)

(162)

(163)

(164)

(165)



A more symmetrical version of this theorem is(As each function expands or
contracts it shrinks and grows vertically and the advantage is that the integral of the

square remains constant in the power theorem):

If f{x) has the Fourier Transform F(s) then | a|"'? f(ax) has theFourier transform
1 5
W F (;) (166)
Shift theorem:

If f{x) has the Fourier Transform F(s) then f{x-a) has theFourier transform
e F(s) (167)

Power or Parseval's theorem:

(700 8 @)x = [F(s) G (s)ds (168)
Rayteigh's theorem:
flrerdc= R ds (169)

Fourier Senes

For a g(x) such that the following integrals exist:

1 T2
a= [sts a7
=T
12
a,= 2 [etcosmpists am
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b, =

|~

:E(x)sin(ZMﬁ)t&
the series _

40+ 3 (@, cos(2amfi) + b,sin2mfs))
converges to.t-he limit

%[g(x+0)+g(x—on

Therefore,

2 T/l 2
—ih = - e
a, =19, T Ig(x)e

~ri2

- 3 T X\ 2o
= T_l O )e ™ dx
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