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PREFACE 

Our understanding on the flow behaviour in open channels is primarily based on 

the popular St. Venant's equations since their inception. The application of Chezy's and 

Manning's friction laws to these equations had been of wide controversy. Most of the 

theoretical works consider Manning's friction whereas the practical applications consider 

Manning's friction more appropriate. The former, however, is more suitable to the 

laminar flow conditions and the latter to the turbulent nature therefore, the Manning's 

applications are widely preferred and have also resulted in satisfactory applications. 

The present work is an attempt in this direction to carry out an analysis for the 

Manning's friction and to determine the flood wave propagation characteristics. Its 

application does not only lead to a significant variation in the propagation characteristics 

but also leads to widening of the applicability horizon of the approximate kinematic and 

diffusion wave models in lieu of full dynamic wave model. 

This report entitled SHALLOW WAVE PROPAGATION CHARACTERISTICS 

IN OPEN CHANNELS is prepared by Sh. SURENDRA KUMAR MISHRA, Scientist C 

of this institute. This report would help better understand the flow behaviour in open 

channels which is of concern not only to the hydraulicians but also to the practicing 

engineers. 
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ABSTRACT 

The St. Venant's equations still represent the state-of-the-art for simulating the 

transient flow in open channels and hence forms the basis of our understanding on the 

channel flow behaviour. Ponce and Simons(1977) first derived the analytically the wave 

propagation characteristics in wide rectangular open channels using linear theory under 

the assumption that the Chezy's friction holds good, and the stage and discharge waves 

are of sinusoidal form. Based on their works Ponce et al.(1978) developed depth specific 

criteria for identifying wave kind occuring in the channel using the flow and channel 

characteristics. 

Since the Manning's equation is preferred to Chezy's by practising engineers, the 

works of Ponce and Simons (1977) and Ponce et al.(1978) on shallow wave propagation 

in open channels using Chezy's friction are re-analysed in Manning's perspectives. Its use 

in the development of the applicability criteria for kinematic wave model decreased 

dimensionless time periods from 873, 171, 83 to 707, 139, 67 corresponding to 99, 95 and 

90 percent accuracies, respectively. In case of diffusion wave model, the ratio of 

dimensionless time period to Froude number comes out to be 22 as against 30. The 

applicability horizon of these models is widened and the efficiency of the Muskingum-

Cunge method is judged. 
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INTRODUCTION 

In most of the practical applications, Manning's friction formula is preferred to 

Chezy's (Chow, 1959; Giles, 1977; Streeter and Wylie, 1983; French, 1985; Ponce, 1989). 

However Ponce and Simons (1977) having agreed to above, applied Chezy's friction 

because of its intrinsic non-dimensional property and derived shallow wave propagation 

characteristics in open channels using linear perturbation theozy. Later, Ponce(1989) 

applied Manning's friction for determination of the celerity and diffusive characteristics 

of diffusion waves only. With the aim to make the analysis consistent with the practical 

applications, these characteristics have been analysed for complete long wave spectrum 

using Manning's friction law. For defining the threshold Froude number for the 

attenuation characteristics of the primary waves of dynamic wave, use of Vedernikov 

number (Chow, 1959; Ponce, 1991), independent of friction laws, has been emphasised 

over Froude number. 
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THEORETICAL BACKGROUND 

The linearised St. Venant's equations (Liggett, 1975) for Manning's friction are 

written in the form of perturbed variables as below: 

u — d du' M I  +h  °hl 
 ax ° ax at 

au' du' ah' 12 i' - 4 h' --+u 1=0 at ax dx ° uo  T ho  

where u' and h' are small perturbation about normal flow velocity uo  and normal flow 
depth 110  respectively; So  is the bed slope; g is the gravitational acceleration; and x and 

t are the time and space coordinates,respectively. The application of Chezy's friction 

law replaces the coefficient 4/3 by 1.0 in Eq. 2. for wide rectangular channel the 

Manning's friction formula is given below: 

U = (1/n) h 2 / 3  Sr 1
/ 2 

(3) 

where u (=Ito  + u'), h (=ho  +h'),n and Sf  are the flow velocity, depth, Manning's 

roughness and friction slope, respectively. Postulating velocity and depth variation 

with x and tin the following fonn(Ponce & Simons, 1977). 

(u'/ u) = exp [1(a.t-P0] (4) 

(hi/ ho).h exp 
(5) 

and substituting in Eqs. 1 and 2 results in a coefficient matrix the determinant of 

which is kept equal to zero to arrive at a characteristic equation. 

402-2( plamp+ita2-a2-(10/ 3) taj =0 (6) 

 

 



which is similar to that derived for Chezy's friction by Ponce and Simons (1977). Solution 

for p can be obtained using elementary comlex algebra. The important definitions of the 

dimensionless terms used in the Eqs. 4 through 6 and elsewhere in the text are described 

below: 

Definitions 

er =( 2n/ I) L0= wave number  

PR  =(277- Lop (Tiro)  

pt = amplitude propagation factor  

t=x1 Lo  = space coordinate  

= t ( up/ Lo) = time coordinate  

Lothel So  = reference channel length 

t = (T u0)= = celeriO,  

e,.= = relative celerity 

where the head dro ps by h,  

 

 

8 = PR) = logarithmic decrement  

= 7(u01 LO) = time period  

 F„ = uol ahT, = Froude Number 

MI the terms with superscript ^ are dimensionless. The L and T are wave 

length and time period of the wave (wave celerity c= UT), respectively. The e and S 

describe respectively the translation and attenuating chara-cteristics of the wave. 

Positive e shows the downstreem movement and negative, the upstream movement. 

If S sets in and if negative, the wave attenuates and dies away. 
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FEATURES OF MANNING'S FRICTION BASED ANALYSIS 

The propagation characteristics of the postulated wave models (Ponce and 

Simons, 1977), whose formation depend on the inclusion of the terms described in Eq. 

2, are summarised in Table 1. This also includes the results worked out using Manning's 

friction. The salient features are: 

The celerity of kinematic and diffusion waves increases. 

The deviation in the celerities, due to the application of two friction laws, 

gradually vanishes as the wave number approaches the gravity wave region, where 

it vanishes completely (Fig.!). The a, is independent of the a at F0  =1.5. For 
Chezy's friction it is at F0  =2.0. 

For a given wave number & and Fo  (< 1.5) the application of Manning's friction 

results in lesser attenuation (Fig. 2) of the primary waves of dynamic wave than 

that due to Chezy's friction. However, for F, > 1.5 , the convene is true ( Fig. 

3 

A summary of propagation characteristics (Table 2 ) shows that the threshold 

F, defining the attenuating characteristics of primary waves sets in at 1.5 (for 

Manning's friction) instead of 2.0 (for Chezy's friction). The primary waves 

attenuate at F0  <1.5 and amplify at F0  >1.5.These waves neither amplify nor 

attenuate at F0  -=1.5. 

The Vedernikov number V (= xy/ a,; where x is the exponent of the hydraulic 

radius in the uniform flow formula, and y is the shape factor of channel section 

which is 1.00 for wide rectangular channels). It is apparent from Fig. 1 that the 

values of a, for Chezy's and Manning's friction in kinematic wave region are 1/2 

and 2/3, respectively. Using either of the friction formula and suitably substituting 

the values, the Vedernikov number sets in at 1.00. In the gravity wave region too 

it is 1.00 for both F0  = 2.0 (Chezy's friction) and F0  = 1.5 (Manning's friction). 

Further, it can be shown that the primary waves always attenuate at V < 1.00 and 

amplify at V > 1.00. At V=1.00 these neither attenuate nor amplify. 
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APPLICABILITY OF KINEMATIC AND DIFFUSION WAVE MODELS 

The applicability criteria are analysed using the shallow wave propagation 

properties derived for the Manning's friction. The analysis follow the same procedure 

adopted by Ponce et at (1978). The results are compiled in Table 3. For the kinematic 

wave model the criteria are derived for 99, 95 and 90 percent accuracies. A comparison 

of the results shows that the values of the dimensionless time period f are significantly 

reduced (for Manning's friction) from those derived for Chezy's friction for the above 

accuracies. For the kinematic wave model the modified applicability criteria at 95 percent 

accuracy is given by 

no — 139 (18) 

For the diffusion wave model the analysis for applicability criteria is carried out and 

presented in Fig. 4. The plot ;t.  /Fo  Vs e(81  - 8 2 )  for both Chezy's and Manning's 

friction laws shows that the whole spectrum due to the latter is shifted to the right of 

the former (i.e. decreasing f / F0 ) . The postulated value of ii F0  =22 (also compiled 

in Table 3) for -± 5 percent inaccuracy. This is lower than that arrived at by Ponce et 

al (1978). Thus, the modified diffusion wave criterion is given by 

(19) 
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TABLE 1. PROPAGATION CHARACTERISTICS OF SHALLOW WAVES 

WAVE TYPE 

6 

and 

ad 

RESULTS OF' LINEAR ANALYSIS BASED ON 

CHEZY'S FORMULA 

(Ponce & Simons, 1977) 

MANNING'S FORMULA 

(Present) 

Kinematic 

Wave (I term of 

Eq. 2) 

tk  3/2 5/3 

5d 0  0 

Diffusion Wave 

(I+II terms of 

Eq. 2) 

e d  3/2  5/3 

sa -277{ (x/ 3) -24r (36/10) 

Steady Dynamic 

Wave (1+11+111 

terms of Eq. 2) 

tie 14-(2-e2  F(2, 1/[4+ &2 F] 1+[8_36,2  F,2,. 1/112+ 3 '62  Fo4  ] 

s., -2-rrier (2+Fo2  i/[6-4,2  F: (1- F,2, A -27r Per (3+ 2F:]/[20-362  n(1- Ft! )1 

Dynamic Wave 

(All terms of 

Eq. 2) 

ti 1 + Rc+ Ay2y2 1 + [(C+ A)/2]112  

e2 1-[(C+A)/2] a  

; -Zr [(+E]/I1+DI -27r f(+EVI1+DI 

57  -21r [( +E]/  I 1-D I -27r [c+Evii-DI 

Gravity Wave 

(II+III+IV 

terms of Eq. 2) 

es 1±0/F0) 1±(1/F0) 

; 0 0 

NOTATIONS ( 1/ (fr F!) 1/ (&F) 

A 1/F: -(2  1/F!, -(2  

B ( 4/3( 

C [A2+132]n  1A2+131'12  

D f(C+A)/2F1  

E [(C-A)/2]1/2  

Subscripts 1 and 2 refer to Primary and Secondary waves, respectively. 



TABLE 2.CELERITY AND ATTENUATION CHARACTERISTICS OF DYNAMIC WAVE 

FROUDE 

NUMBER 

PRIMARY WAVE SECONDARY WAVE 

c, 81  c, 32 

(a) (b) (a) (b) (a) (b) (a) (b) 

F. < 1 + + 

Fa  = 1 + + - - 0 0 - - 

Fo  = 1.5 + + - 0 + + - 

Fo  = 2 + + 0 + + + - 

Fo  > 2 + + + + + + - 

Downstream celerity + ; upstream celenty -; Attenuation ; amplification + 

(a) Chezy formula based (Ponce&Simons(1977); (b) Manning formula based (Present) 

TABLE 3. APPLICABILITY CRITERIA OF KINEMATIC AND DIFFUSION 

WAVE MODELS 

WAVE MODEL ACCURACY CHEZY BASED 

(Ponce&Simons,1 

977) 

MANNING 

BASED 

(Present) 

Kinematic Wave e s, = 0.99 i- 873 i: .a. 707 

e s° = 0.95 i- ?: 171 it 139 

e 84 =0.90 i: a•83 f _>.:67 

Diffusion Wave e  (81-8d) , 

1 -±: .05 

itiF„ .a. 30' */F0  a• 22' 

* postula ed values 
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EXAMPLE APPLICATION 

An example problem of a sinusoidal wave travelling in unit width rectangular 

channel is considered for sensitivity analysis. The considered input values are: peak 

inflow (q 1 )=200 cfs/ft; base flow ( ) = 50 cfs / ft; reference flow ( qo  ) =125 cfs / ft; 

time period (time base, Tb, of the sinusoidal wave)=96 hrs; bed slope of the channel 

(S)= 1 ft / mi ; Mannings roughness (n)=0.0297; and length of the reach (I., r ) = 500 

mi. Ponce et al (1996) showed that the considered wave was diffusion wave. The 

sensitivity analysis of the variable of Eqs. 18 and 19 using the Manning's formula (Eq. 

3; suitably modified for FPS system of units) is carried out and the results are plotted in 

Figs 5 and 6. In Eq. 19, the ratio of + and Fo  is most sensitive to So  and least to qo  and 

n whereas in Eq. 18, the I is as sensitive to variation in n as in So  and Tb. Increase in 

Tb and/or So  tends to change sharply the diffusion wave towards kinematic wave. 

However, the increase in n shows a reverse trend. As a corollary, the smoother channel 

bed favours the development of kinematic wave. In both the Eqs 18 and 19, the Tb has 

less bearing on f or /F0  than the So  . 

For the applicability of kinematic and diffusion wave models the example 

problem is hypothetically extended to the limiting zones (Figs. 5 and 6). The computation 

for the left hand sides of Eqs. 18 and 19 comes out to be 140 and 23, respectively and 

thus confirm the waves to be kinematic and diffusion as shown in Table 4. These selected 

typical examples, summarised in Table 4, are applied to the Constant Parameter 

Muskingum-Cunge (CPMC) method of routing and the results are compared with those 

computed analytically. Analytical compution for peak outflow is based on Eq. 20 (Ponce 

et al, 1996) given below: 

gfo go 4- ( gPi -go) (20) 

where, qpo peak outflow (cfs/ft); and q = (qpi  +qb  ) /2 = reference discharge 

(cfs/ft). For diffusion wave the /3/ is given by 

Pit = [ 2111 ( Crb)] Vt (21) 
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in which v = q0 /(2.80 ) is the hydraulic diffusivity (Hayami, 1951); and c = (5/3) ub  for 

kinematic and diffusion waves. The time of travel (tt) is given by 

tt = L,. / c (22) 

TABLE 4. TYPICAL CASES OF KINEMATIC AND DIFFUSION WAVE ROUTING 

(Tb=96hr; 1101=200 cfs/ft; q,=50 cfs/ft; q0=125 cfs/ft; L=500 mi; n=0.0297) 

WAVE S. At Ax CPMC ANALYTICAL 

Spa tt Se,  It 

(ft/mi) (hr) (ml) (cfs/ft) (hr) (cfs/ft) (hr) 

Kinematic 3.900 2.0 20.0 197.81 53.0 196.25 53.06 

Diffusion 0.345 2.0 10.0 122.60 101.0 124.89 109.83 

A comparison of the routing results (Table 4) shows that the outflow peak, by the 

CPMC method, is in error (at ±5 percent inaccuracy) by +0.79 percent in routing of 

kinematic wave and by -1.83 percent in routing of diffusion wave. The computed time 

of travel for the kinematic wave by the two approaches are close to each other. However, 

the time of travel by CPMC method faithfully simulates the attenuation characteristics 

of both the waves, but fails to simulate the translation characteristics of the diffusion 

wave in its limiting applicability horizon. 



SUMMARY 

Propagation characteristics of the shallow waves for Manning's friction were 

analysed, presented and compared with those derived for Chezy"s friction. The 

application of Manning's friction results in 

greater celerities of all the shallow waves except the gravity wave. For kinematic 

and diffusion waves the relative dimensionless celerity is 5/3 instead of 3/2; the 

latter is due to Chezy's friction whereas the former is consistent with the 
routine practical applications. 

threshold Froude Number F. = 1.5 as against 2.0 (for Chezy's friction). The use 

of Vedemikov Number, V, eliminates this anomaly, and it sets in at 1.0 

irrespctive of the application of either of the friction formulae. 

the extension of applicability horizon of kinematic and diffusion wave models. 
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