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PREFACE 

Stream aquifer interaction has been studied in greater details in 

recent years. There are two aspects of the process, the exchange 

of flow during the passage of a flood wave and the effluent or 

influent flow during lean flow period. The groundwater flow during 

the passage of a flood remains in an unsteady state where as the 

flow during the lean flow can be regarded as steady. The steady 

recharge from or discharge to a stream can be evaluated using 

analytical approach for idealised stream aquifer system. Rigorous 

groundwater modelling considering the anisotropy and non 

homogeneity of the system and the time varying boundary conditibn 

can predict the flow in complex stream aquifer system. 

The recharge from a partially penetrating stream can also be 

predicted from the observation of piezometric level in the 

vicinity of the stream. In the present study the parameter that is 

required to find the seepage from a stream has been derived. Using 

this parameter , the stream stage and piezometric level at a 

piezometer in the vicinity of the stream the recharge from a 

stream can be computed for steady state groundwater flow 

condition. 

The present study on assessment of recharge from a partially 

penetrating stream has been carried out by Dr.G.C.Mishra, 

Scientist F as a part of the work programme of Ground Water 

Assessment Division. 

A517"-<3\11-- 
(S.M.Seth) 

Director 
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ABSTRACT 

The exchange of flow between a stream and an aquifer can be 

estimated solving the differential equation governing the flow 

using either an analytical or a numerical method. Solution of 

Laplace equation, which satisfies the boundary conditions 

prevailing at the flow domain boundaries, enables quantification 

of steady state seepage from the stream . For unsteady state 

condition Boussinesq's equation is solved satisfying the initial 

and the boundary condition. Using analytical methods the exchange 

of flow is obtained as a nondimensional term. To obtain the 

numerical value, the different terms such as hydraulic 

conductivity, storativity, and potential difference and stream 

geometry factor which appear in the dimensionless term are 

required to be quantified. 

Using conformal mapping technique an expression of steady 

state seepage from a partially penetrating stream has been derived 

in this study. The expression relates the seepage to the potential 

difference at an observation well and the geometry of the flow 

domain. The conductivity can be estimated from dilution technique 

if the gradient of the flow line at the observation well is 

monitored. 



1.0 INTRODUCTION 

The exchange of flow between a stream and an aquifer can be 

estimated solving the differential equation governing the flow 

using either an analytical or a numerical method. Solution of 

Laplace equation, which satisfies the boundary conditions 

prevailing at the flow domain boundaries, enables quantification 

of steady state seepage from the stream. For unsteady state 

condition Boussinesq's equation is solved satisfying the initial 

and the boundary condition. Using analytical methods the exchange 

of flow is obtained as a nondimensional term. To obtain the 

numerical value, the different terms such as hydraulic 

conductivity, storativity, and potential difference and stream 

geometry factor which appear in the dimensionless term are 

required to be quantified. 

The insitu hydraulic conductivity and storativity of an 

aquifer can be determined in various ways. The one which is mostly 

used is aquifer test. However aquifer test is expensive as well as 

time consuming. The hydraulic diffusivity is also determined using 

unsteady stream stages and corresponding water level fluctuations 

in an observation well. The transmissivity and storativity can not 

be identified separately from the study of unsteady flow in a 

stream aquifer system. Experimental method such as the dilution 

technique can be used to determine the insitu hydraulic 

conductivity. The dilution test is convenient and less time 

consuming. 

Using conformal mapping technique an expression of steady 

state seepage from a partially penetrating stream has been derived 

in this study. The expression relates the seepage to the potential 

difference at an observation well and the geometry of the flow 

domain. The conductivity can be estimated from dilution technique 
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if the gradient of the flow line at the observation well is 

monitored.. 

2.0 REVIEW 

2.1 Estimation of Insitu Hydraulic Conductivity: 

The transmissivity and storage coefficient of an aquifer are 

determined by analyzing its response to some known perturbation. 

The perturbation may be imparted either by artificial means, such 

as pumping, or by natural ways, such as passage of a flood in an 

adjoining stream. The first type of test, in which water is pumped 

from a well and the consequent changes in piezometric surface are 

observed, enables determination of both transmissivity and storage 

coefficient separately. The second type of test, in which the 

changes in water level in an observation well occur consequent to 

the change in stream stage, requires data collection over a longer 

time duration. Such a test in a stream-aquifer system enables 

determination of the hydraulic diffusivity only; the 

transmissivity and the storage coefficient can not be estimated 

individually (Hall and Moench, 1972). 

It is possible to determine hydraulic conductivity in a 

piezometer or single well by the introduction of a tracer into the 

well bore. The tracer concentration decreases with time under the 

influence of the natural hydraulic gradient that exists in the 

vicinity of the well. This approach is known as the bore hole 

dilution. Bore hole dilution tests can be performed in relatively 

short periods of time in a single well or piezometer. The test 

provides an estimate of the horizontal average linear velocity of 

the groundwater in the formation near the well screen. The test is 

performed in a segment of a well screen that is isolated by 

packers from overlying and underlying portions of an observational 
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well. Into this isolated well segment a tracer is quickly 

introduced and is then subjected to continual mixing as lateral 

groundwater flow gradually removes the tracer from the well bore. 

The combined effect of groundwater through-flow and mixing within 

the isolated well segment produces a dilution versus time 

relation. From this relation the average horizontal velocity of 

groundwater in the formation beyond the sand or gravel pack but 

close to the well screen is computed. The theory on which the 

computational methods are based is described in text book (Freeze 

and Cherry, 1979) and it is described below. 

The effect of the well bore and sand pack in a lateral flow 

regime is shown in Fig.!. The average linear velocity of the 

groundwater in the formation beyond the zone of disturbance is v. 

The average bulk velocity across the center of the well bore is 
— 

denoted by v.
S  

It is assumed that the tracer is nonreactive and 

that it is introduced instantaneously at concentration Co 
into the 

isolated segment of the well screen. The vertical cross sectional 

area through the center of the isolated segment is denoted as A 

which is equal to the product of diameter of the bore hole and 

spacing of the packers. The volume of this well segment is W which 

is equal to cross sectional area of the bore hole multiplied by 

the distance between the two packers. At time t>0, the 

concentration C in the well decreases at a rate 

dC A . v .0 
= 

which, upon rearrangement, yields 

dC A .v.dt 

Integration and use of the initial condition, C= Co  at=0, leads to 

* 
v - A .t• 

ln (C/C
0 
 ) 
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From the concentration versus time data obtained during bore 

hole dilution tests values of v • is computed. 

The objective of the test, however, is to obtain estimates of 
-M 

v- . This is accomplished using the relation v = v / a , where ci 

is an adjustment factor that depends on the geometry of the well 

screen, and on the radius and hydraulic conductivity of the Band 

or gravel pack around the screen. The usual range of a - for tests 

in sand or gravel aquifer is from 0.5 to 4 (Brost et al. ,1968). 

2.2 Reach Transmissivity Constant: 

Using a simple potential theory Morel-Seytoux et al. (1979) 

have derived the following expression for influent seepage from a 

partially penetrating stream. 

Q = k [( 0.5 W + e )/ ( 5 W +0.5 e) ] Ah 

in which Q is exchange of flow between the stream and the aquifer 

per unit length of stream, k = hydraulic conductivity, W is the 

wetted perimeter of the stream, e is the saturated thickness of 

the aquifer below the stream bed, th is the difference in water 

level in the stream and in an observation well which is located at 

a distance of 5 W from the centre of the stream. If the stream 

stage is higher than the water level in the observation well the 

flow will take place from the stream to the aquifer, otherwise the 

aquifer contributes to the flow in the stream. This expression has 

been used in many stream aquifer interaction studies. The term 

L k [(0.5W +e)/(5W + 0.5 e)) is known as reach the transmissivity 

which is the constant of proportionality between the exchange of 

flow and the potential difference between the stream and the 

aquifer in the vicinity of the stream. L
r 
is the length of the 

reach. 
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The reach transmissivity term can be derived rigorously using 

conformal mapping. In the present study the reach transmissivity 

has been derived for a partially penetrating stream of large width 

for a confined flow problem. 

3.0 PROBLEM DEFINITION 

A partially penetrating stream of large width forms the 

boundary of a semi infinite isotropic confined aquifer. The two 

dimensional flow is in a steady state condition. An observation 

well is located at a distance L from the stream bank in which the 

depth to water level is measured from a high datum. The level of 

water in the stream is also measured from the same high datum. It 

is required to estimate the seepage making use of the potential 

difference between the stream and the aquifer at the 

piezometer. 

4.0 ANALYSIS 

A Schematic section of the partially penetrating stream with 

large width is shown in Fig.2(a) in z-plane (z=x+iy). The complex 

potential plane w (w=0+iW) for the flow domain is shown in 

Fig.2(b). W is the stream function and velocity potential 

function, 0, is defined as 0 =-k(p/yv+y) + ct (Harr, 1962) in 

which k=hydraulic conductivity, p=pressure, 'unit weight:  of 

water, c is an arbitrary constant. The complex potential plane 

has been drawn assuming the constant c =O. According to 

Schwarz-Christoffel transformation, the conformal mapping of the 

flow domain onto the lower half of the t plane is given by (vide, 

Harr, 1962), 

dz  = 
/ (t-c)1/2(14 

t I 
i-3/2 ...(1) 
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the vertices A, B, C, and E in 2-plane having been mapped onto 

points -M, 0, c and 1 respectively of the t-plane. Substituting 

t=Reie  , dt= R eie  de and applying the condition that as one 

traverses in t-plane from e=n to 6=27 along a radius it, /490D, the 

jump in 2-plane is -iD , the constant M is found to be 

M=D /11 

Substituting (1-t)=Re', dz = - R e
ie de , and applying the 

condition that as one traverses in t-plane around point 1=1 from 

e=7 to 9.2n along a small circle of radius It, R+0, the jump in 

2-plane is -iD
' 
 the parameter c is found to be 

2 

c=1-(D /D )
2 ...(3) 

1 2 

For c < t <1, the relation between z and t is given by 

zH It E ti"/{ (14 )(t-c)"2] dt 

At t=d, z=zd; hence, 

2 -2 =L= M f [t
1/2

/{(14)(if-C)
1/2 

lit 
d c 

Substituting t-e=v
2 

the improper integral appearing in (6) is 

converted to the following proper integral. 

L 1 = f [ 2/(c+V
2 

)/(1-C-v
2 

)1 dv 
D
i 

II 
0 

The above integral can be evaluated using Gauss-Quadrature 

formula. For a given value of L, the parameter d can be obtained 

by an iterative procedure. 
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The conformal mapping of the it-plane onto the lower half of 

the t-plane is given by the Schwarz-Christoffel transformation 

dw =  
1 

Substituting, 1-t=Re
ie 
 , and dt=-Re ide and applying the 

condition that as one traverses in t-plane from e=n to 8=2n around 

point t=1 along a small circle of radius R, R+0, the jump in 

w-plane is -iq, the constant H is found to be 

1/2 
14=(q/n)(1-0 

...(8) 

For <1,<d 

w=m dinci-tw-c)1/2 1 -kh +iq 

Substituting t-c=v
2 
 in (9) and integrating 

m . -04" )10g  {(1-c )"2  +t ( 1-0"2  --t 11 1 (t -c ) 
1/2 

-kh +iq ...(10) 

Applying the condition that at t=d, w=-kh(L)+iq, we get 

k [h -h(L)1= q /n log [{(1-c)
1/2

+d )/ (1-c)
1/2

-d )] ...(11) 

Solving for ci 

q= it k [h -h(L)]/1211(111-c 4,717),(-6.7; „17 )] ...(12) 

where, h and h(L) are the hydraulic heads in the stream and at 

the observation well respectively. The flow being steady, q at any 

section is constant. The flow can be known for a known value of 

h(L), which has to be recorded at an observation well. Equation 
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(15) 

from (7) and (1) 
dw 

and dz 

(11) shows that the variation of head in the aquifer with distance 

from the stream bank is nonlinear. Equation(12) can be written as 

q= rr Ah ...(13) 

in which the potential difference ah = h
R - h(L) and the reach 

transmissivity per unit length of stream from equation(12) is 

given by 

rr= nk/ln[(-6:2+1;17 )/(-67;--4711-2)] ...(14) 

The reach transmissivity is dependent on the location of the 

observation well besides the depth of penetration of the stream. 

The gradient along the top flow line can be derived as 

follows: 

The derivative of the complex potential can be expressed as 

(vide Harr,1962) 

dw dw dt 
dz dt dz 

dw 
Replacing expression of dt 

respectively in (13) and simplifying 

dw -1/2 
a; = q/D

2 
t = u -iv (16) 

AlongCDEAthe component of velocity in y direction is 

zero. Hence, 

dw 
dz = U= 

dh 
-a  dx 

-1/2 
= q/D

2 (17) 

dh -1/2 
(k0

2
)/q = -t 

a; (18) 

5.0 RESULT AND DISCUSSION 

The variation of q/(kAh) with distance of the observation 

well from the stream bank is shown in Fig.3 for different 
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penetration depth of the stream. The reach transmissivity is found 

to vary with distance from the stream for any depth of 

penetration. The variation is linear for a fully penetrating 

stream only, otherwise the relationship is nonlinear. From the 

graph it can be seen that beyond 1.5 times the aquifer depth, the 

partial penetration has no influence on the reach transmissivity. 

Using this graph the seepage from a stream can ascertained 

provided the hydraulic conductivity, the stream stage and the 

piezometric level in the observation well are available. The 

programme for computation of q/(kb.h) is listed in Appendix I. 

The variation of gradient along the top flow line is 

presented in Fig.4 for different depth of penetration. As seen 

from the figure the gradient tends to 1 at a distance equal to 

thickness of the aquifer. For a fully penetrating stream the 

gradient is 1. 

6.0 CONCLUSION 

For steady state flow the influent or effluent flow between a 

stream and a confined aquifer can be estimated from observation of 

stream stage, piezometric level in a piezometer in the vicinity of 

the stream and hydraulic conductivity. The insitu hydraulic 

conductivity can be found from dilution test. The geometry factor 

has been derived using a conformal mapping. The method suggested 

is not applicable for unsteady flow. 

— * * 
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Appendix-1 

DIMENSION GW(100),GX(100),CQBKHI(500) 

open(1,statua='o1d't fi1e='GANE5H.dat') 

open(2,statua='news ,file='G4&NESH.out') 

nx=96 

read(1,*) D1,D2 

C PART=THICKNESS OF AQUIFER BELOW STREAM/ THICKNESS OF AQUIFER 

C D2=THICKNESS OF AQUIFER 

C D1=THICKNESS OF AQUIFER BELOW STREAM BED 

C gw(i) and gx(i) ARE GAUSSIAN WEIGHT AND ABSCISSAS 

read(1,*) (gw(i),i=1,nx) 

read(1,*) (gx(i),i=1,nx) 

PAI=3.14159266 

200 CONTINUE 

D1BYD2=D1/D2 

WRITE(2,3) 

3 FORMAT(5X,'D1',81,'D2',9X,'D1BYD2') 

WRITE(2,4)D1,D2,D1BYD2 

4 FORMAT(3E16.7) 

WRITE(2,33) 

33 FORMAT(3X,'AL',9X,'QBYKH') 

C=1.-D1BYD2**2 

DELC=(1.0-C)*0.001 

D=C+DELC 

300 CONTINUE 

SUM1=11. 

suw5=0. 

DO 100 I=1,NX 

x=gx(i) 

v=0.5*aqrt(c)+0.6*aqrt(c)*x 
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15=0qrt(c)*sqrt(c-v*v)/(1.-c+v*v) 

1(1.-C-(1.+x)**2*(D-C)/4.) 

8U141=SUM1+F1*GW(I) 

sua5=sua5+f5*gw(1) 

100 CONTINUE 

AL=D1/PAI*SUM1 

d2adl=d1/pais8ua5 

teral=sqrt(1.-c)+sqrt(d-c) 

tera2=sqrt(1.-c)-sqrt(d-c) 

tera3=alog(teral/tern2) 

qbykh=pai/term3 

WRITE(2,2)AL,QBYKR 

2 FORMAT(2E12.4) 

D=D+DELC 

IF(D.LT.1.0) GO TO 300 

STOP 

END 
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