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ABSTRACT

An important step in application of a conceptual model to a catchment is model
calibration. The objective of a calibration is to determine the model parameters such that an
acceptable match is obtained between the observed and the computed discharge hydrographs.
Two approaches are followed for calibration of a conceptual model -- manual using trial and
error and automaric using an optimization algorithm.

The aspects of the conceptual models which cause problems during automatic
calibration are : 1) Interdependence between the model parameters, 2} Indifference of the
objective function to the values of the inactive parameters, 3} Discontinuities of the response
surface, and 4) The presence of local optima.

The degree of complexity of model plays a significant role in model calibration phase.
The difficulties encountered during the calibration are closely connected to the number of
parameters typical of the model and to the greater or lesser ease of visualizing the various
parameters. There are differing views in the literature about what constitutes the adequate
data for model calibration. Both the right kind (the data which activate all the model
parameters) and right duration of data are needed for a good calibration. Besides ensuring
that the data are error free, one has to be careful about the duration of the calibration period
also, the periods of extreme events should be suitably incorporated.

Duan et al. (1992) have presented a new algorithm, named Shuffled Complex
Evolution Method (SCE-UA). It has been claimed that this methed has a very high
probability of finding the global optima. The main aim of this report was 10 apply the SCE-
UA algorithm for the calibration of a CRR model. The model reported by Jain (1993) was
used to simulate the responsc of a basin of size 820 km?. The results show that the algorithm
is able to converge to the global optimum when the computations are started from a number
of initial poinis. The main conclusion of the study is that the SCE-UA algorithm is a global
optimization method and is able to converge to the global optimum parameters when different
initial values of parameters are used. The computational requirements for calibrating a CRR
model are quite reasonable and thus the algorithm is computationally efficient.
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1.0 INTRODUCTION

A catchment is a complex system where various physical, chemical, and biological
processes take place and govern the movement of water. In practice it is difficult to model
all these processes and some simplifications have to be made either in the representation of
the system or in the processes involved or both. The most commeon simplification made is
spatial lumping and replacement of various components of the hydrological cycle by
concepmal storages. It amounts to saving that the catchment system and its inputs and
responses can be represented using the dimensions of depth and time. The within catchment
variations of inputs and parameters are ignored. As pointed out by Blackie and Eeles(1985),
due to this spatial averaging, the lumped model concept can be considered adequate only for
small homogeneous catchments. However, in practice they have been applied to sufficiently
big and heterogeneous catchments. The computational requirements of these models are
moderately small vis-a-vis the computational speeds of a typical computer now-a-days.

The conceptual rainfall runoff (CRR) modelling lies intermediatc between the
physically based models and the black box models. Generally the term conceptual is used to
describe models which rely on simple arrangement of a relatively small number of interlinked
concepual elements, each representing a segment of land phase of hydrologic cycle. The
most commonly used: element in a conceptual model is the storage. Each of these unequal
sized storage usually has one input and one or more outputs and represents a catchment
storage like detention, soil moisture etc. The linear reservoirs and channels are used for
routing. The modelling basically consists of a set of rules which govern moisture flow from
one element to another. Since this is a non-iterative accounting procedure, these models are
computationally efficient and pose very small computational requirements in terms of CPU
time and memory.

The CRR models were initially developed for small homogeneous areas. However,
they have been successfully applied to basins having wide variations in topography and
vegetation and catchment area of the order of thousands of sq. km. The input data
requirements for these models are guite modest and can be easily met with, Blackie & Eeles
(1985) provide excellent discussion on philosophy and applications of these models.

The main advantages of using a Jumped conceptual model are the following : a) The
CPU time requirement of conceptual models are quite small. The computational efficiency
of these models results from the fact that these models make use of several storages (o
represent the movement of water through different elements of the catchment. The model is
nothing but a logical procedure to regulate the inputs and withdrawals of water from these
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storages. by The requirement of other computer resources for these models are also very
small and hence some of these can be used on micre computers as well. ¢} In rainfall-runoff
studies, normally only one variable, i.e., discharge at a defined locafion is of interest. This
is the major cutput from most of such models.

1.1 Calibration of Conceptual Models

An important step in application of a conceptual model to a catchment is model
calibration. The objective of a calibration is to determine the model parameters such that an
acceptable match is obtained between the observed and the computed discharge hydrographs.
Basically two approaches are followed for calibration of a conceptual model -- manual using
trial and error and automatic using an optimization atgorithm. The parameters obtained from
automatic calibration may be further fine tuned manually to achieve an improved match from
the point of view of interest. According to Sorooshian and Gupta(1983), the purpose of
calibration may be: 1} To obtain a unique and conceptually realistic parameter set which
closely represents our understanding of the physical system, or 2) to obtain a parameter set
which gives the best possible fit between the model-simujated and the observed hydrograph.
However, from the point of view of physical modelling, a method which emphasizes both
aspects is desirable.

Four aspects of the CRR models which cause problems during automatic calibration
were listed by Johnston and Pilgrim (1976) as : 1} Interdependence between the model
parameters, 2) Indifference of the objective function to the values of the inactive parameters,
3) Discontinuities of the response surface, and 4) The presence of local optima. Sorooshian
and Gupta{1983) identified three areas which hinder the accurate calibration of the CRR
models : 1) model structure representation, 2) data and their associated measurement errors,
and 3) imperfect representation of the physical process by the model. The data which are
used in calibration may not represent the entire range of hydrologic events that the catchment
may experience and the consequent lack of activation of parameters leads to differing
sensitivities of the response surface & poor convergence properties. This problem is
accentuated since the optimum parameters are to be found in a high dimensional parameter
space. The threshold parameters, cross-correlation between parameters and auto-correlation
and hetrescedascity in the residuals also cause difficulties, Beven and Binley (1992).

Franchini and Pacciani(1991) pointed out that automatic calibration, rather than
capitalizing on prior knowledge intrinsic of the model, ignores it and thus emphasizes the
uncertainty inherent in every statistical analysis. The degree of complexity of model plays
a significant role in model calibration phase. The difficulties encountered during the
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calibration were found to be closely connecled to the number of parameters typical of the
model and to the greater or lesser ease of visualizing the various parameters. Significantly
different models produced basically equivalent resuits, with calibration time generallv
proportional to the complexity of the structure of the model. They further pointed out that
an excess of schematization causes loss of the link with the physics of the problem and of
the possibility of taking advantage of the prior knowledge of the geomorphotogical nature of
the watershed. These findings also support the age old wisdom of going for the simpler
approach to a problem if the results are comparable.

Franchini et al. (1998) compared three algorithms for global optimization of CRRs --
the Genetic Algorithm coupled with Sequential Quadratic Programming (GA-SQP), the
pattern search method coupled with SQP (PS-SQP) and the SCE-UA method. Two types of
data sct were used in the amalysis, the first generated using the model and hypothetical
rainfall (having no model and data error and termed as theoretical data set) and the second
was actual observed data of a real catchment. When the data of a single catchment was used,
it was found that the SCE-UA algorithm was the most reliable as it converged to the exact
solution in all runs when the theoretical data set was used and was the most consistent when
the real world data were used. The performance of other two algorithms was found to be
inferior. The authors also used data of a complex basin (consisting of three sub-hasins and
the gauging station located at the outlet of third sub-basin) and it was found that none of the
algorithms converged to the exact solution in the theoretical case. However, the SCE-UA
algorithm systematically converged nearest to the exact solution as compared 1o the others,
The authors concluded that the SCE-UA algorithm is the best whilc the other two are

equivalent in performance.

The results of their analysis also showed that the optimization algorithm is only one
of the factors which affect the calibration of 2 CRR model. The other important factors are:
1) The conceptual base and structure of the model, 2) The quality and amount of information
contained in the data set used for calibration, 3) The selection of the objective function used
in the optimization procedure, and 4) The definition of the feasible space of the parameters.
Further, all these aspects are highly interactive. It may be added that the importance of the
above aspects has also been highlighted in several other papers which have been referred

earlier in this section.

Regarding the factor number 2 in the above paragraph, there are differing views in
the literature about what constitutes the adequate data tor model calibration. Sorooshian and
Gupta(1983) peint out that use of more and more data is not necessarily the answer. What
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is required is the right kind of data. The term right kind of data implies the data which
activate all the model parameters. Clearly, boih the right kind and right duration of data are
needed for a good calibration. Besides ensuring that the data are error free, one has te be
careful about the duration of the calibration period too. While deciding it, one must ensure
that the periods of extreme events have been suitably incorporated.

1.2 Scope of this Report

Duan et al. (1992} have presented a mew algorithm, named Shuffled Complex
Evolution Method (SCE-UA). It has been claimed that this method has a very high
probability of finding the global optima. The objective of this report is to apply this approach
for calibration of the CRR model reported by Jain (1993). Duan et al. (1992) have given a
comprehensive discussion on the problems assoctated with calibration of CRR models. The
same is summarized here.

ook



2.0 THE PROBLEM OF MULTIPLE OPTIMA IN CRR MODELS

The problem of CRR model calibration has its own peculiar characteristics. This
chapter discusses the main features of the problem. The major source of difficulty ot the
problem is due to the existence of many optimal solutions, To tackle this problem, it is
necessary to obtain global information about parameter sensitivity and the structure of the
objective function response surface so that appropriate algorithm can be devised.

2.1 SAMPLING METHODS

Because of the highly complex and nonlinear nature of CRR models, a theoretical
analysis to obtain detailed information about the objective tunction response surtace is very
difficult. Therefore, computational methodologies that employ information sampled from the
entire parameter space, taking care (0 adequately span the space and provide a sufficient
density of coverage can be used to get the desired information.

Two procedures that are helpful in obtaining the requisite information are : {1} do a
uniform random sampling of the parameter space; and {2) select a grid spacing and do exha-
ustive gridding of the parameter space. Both these require large computer resources. These
are discussed below.

2.1.1 Uniform Random Sampling (URS} Method

The method of uniform random sampling is a primitive probabilistic approach 10
global optimization. In this method, a pre-specified nutnber of points (say N) is sampled at
random from the feasible parameter space using a uniform probability distribution. The
objective function value is computed at each point, and the point with the best (or minimum
in case of CRR models) objective function value is taken as an estimate of the optimum. The
N sampled peints contain important information about the nature and structure of the
objective function response surface. This information can be extracted by constructing
graphical projections of the sampled points after having arranged them in order of increasing
objective function value. Two useful graphical projections are: (1) X-Y plot of the distance
of each point from the optimum normalized by the parameter range (NORD) versus objective
function value; and (2) X-Y plot of parameter value (PARYV), versus objective function value.

The URS method was used by Duan et al. (1992) to study the SL.S response surface
of the SIXPAR model (a CRR meodel having six parameters) by sampling 10,000 points trom
the teasible parameter space. The piots all show a broad spread of points [rom the vern
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beginning of the ordered data set, which indicates very poor sensitivity of the objective
function te parameter variation aver the entire feasible parameter space. An interesting aspect
was that of the two "best” points obtained from the sample, the second point was far from
the "true” values, while having a function value virally indistinguishable from the first.
This hehaviour could possibly be due to insufficient coverage of the feasible space, model
structural factors, the characteristics of the data set, or some combination of the three.
However, because it was known that the sensitivity of the model output to the percolation
parameters is small relative to that of the other paramcters of the model, and that a
significant degree of parameter interdependence exists (see Gupta and Scrooshian, 1983}, the
study was repeated with the percolation parameters fixed at their true vatues. There was no
significant change in the results.

2.1.2 Exhaustive Gridding (EG) Method

The method of exhaustive gridding is a deterministic approach to global optimization.
First, the number of discretization units for each parameter range is chosen, thereby
specifying the number of grid points and their location. Now the tunction value is computed
at each grid point and is compared with those of all immediaté neighbouring points. The
location and function value of those points for which the function value is less or equal t
that of all its neighbours are recorded. These points are part of either a global or a local
optimum. This methad is computationally very intensive. For example, a two-dir:ensional
problem with a grid size of 100%100 requires 10,000 function evaluations and 78,804
function comparisons. So the method is not efficient fo find the global minimum. Moreover,
4s we move to higher-dimensional subspaces, the computational burden rapidly increases.

Tp examine the two-dimensional subspaces, a grid size of 100 x 100 was used by
Duan et al. (1992) for each pair of parameters. In addition to the case of "perfect” data (no
streamflow arror). the influence of two types of streamflow data error was examined. In case
of homoscedastic error, the error variance does not change with the magnitude of streamflow
but for heteroscedastic error, the error variance changes with the magnitude of streamflow.
The homoscedastic error variance value used was 25% of the mean streamflow value, while
the heteroscedastic error variance used was 25% of the true streamflow value, Besides the
SLS objective function, the heteroscedastic maximum likelihood error (HMLE) objective
function developed by Soragshian et al. (1983} was used so that the properties of the two
objective functions could be compared.

It was found that some of the subspaces contain quite a large number of local optima.
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The percolation parameters were found to be associated with larger numbers of local optima
than the other four parameters. The intreduction of errors into the streamflow data generally
increases the number of local optima though many local optima wete found to be present on
the response surface even when the data were not corrupted with errors. When the error is
heteroscedastic, the choice of objective function influences tie number of optima in each
subspace. The randomness in the data error significantly influences the behaviour of the
response function, with the number of local optima varying with seed value,

The objective function values obtained at each grid point were used to construct mesh
surface plots. One such plot for the model reported by Jain (1993) is shown in Fig. 2.1
which shows the presence of local optima. These plots show the comparative sensitivities of
the parameters, the regions of roughness of the response surface, and the locations of abrupt
changes in siope. In general, the response surface can be quite steep when far from the
global optimum, but is relatively insensitive to the parameters near the global optimum.
Many local optima appear near the edges of the parameter bounds, while others are scattered
in the general region of the global optimum. In addition to isolated stationary points, many
of the local optima appear in clusters. The derivatives vary in a discontinuous manner over
the feasible space and due to this, the derivative-based (Newton or quasi-Newton type) search
algorithms for parameter estimation are not likely to be very successful.

The studies reported in the literature indicate that the number of local optima in the
three-dimensional subspaces increases rapidly, This poses additional problems for local
search optimization procedures. A mixture of the following three basic patterns of the
distribution of local optima are usually observed: (1) sparsely scattered local optima, (2)
dense clusters of local optima, and (3) line optima. A great many of the local optima may
not be located close to the global optimum.

2.2 APPRAISAL OF SAMPLING METHODS
Based on the above analysis Duan et al, (1992) have identified following five major
characteristics which complicate the calibration problem in CRR models.
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Major Characteristics Complicating the Optimization Problem in CRR Model Calibration

SN Characteristic Reason for Complication

1 Regions of attraction More than cne main convergence region

2 Minor tocal optima Many small "pits” in each region

3 Roughness Rough response surface with discontinuous derivatives

4 Sensitivity Poor and varying sensitivity of response surface in
region of optimum, and nonlinear parameter interaction

5 Shape Non-convex response surface with long curved ridges

The most important of the above five characteristics is that the structure of multiple
optima exists on at least two scales. At the "large" scale, there is more than one broad
"region of attraction” into which a search strategy may converge. Such regions can be seen
very clearly in the EG mesh surface plots, while the URS method is able 1o detect such
regions in multiple parameter spaces. However, at the "small" scale, each major region of
attraction contains numerous local minima (stationary points where the first derivatives are
zero and the Hessian matrices are positive definite or posiiive semi-definite), These minor
optima occur both close to and at various distances from the best solution. The minor local
optima are not detectable using the URS method. They are also not normally visible on mesh

surface and contour plots and can only be detected by numerical analyses of the gridded data.

The large number of minor optima is the most probable reason for the inability to find
unique "optimal” parameter values. In a local search procedure, when a line optimum or a
stationary point is encountered, the optimization procedure will generally stop. Local
searches with small step size will be unable to run the maze of minor optima, inevitabiy
failing to reach the global optimum, Because many of the minor optima can be found quite
far from the global optimum, the search may terminate without even finding an approximate
solution. In addition to the presence of optima at different scales, the objective function
surface in the multi-parameter space is not smooth and has discontinuous derivatives that vary
in an unpredictable manner through the parameter space. This is the reason why derivative-
based local optimization methods do not performed well, Furthermore, it indicates that, for
any global optimization to be successful, it must not depend on smooth and continuous
derivatives either. Finally, the response surface in the region of the global optimum is not
necessarily convex; it exhibits widely varying degrees of sensitivity to the model parameters,
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and indicates the existence of a great deal of nonlinear parameter interaction and
compensation,

2.3  GLOBAI. SEARCH PROCEDURES

The methods for finding the global sclutions to muiti-optima problems may be
classified as determtnistic or probabilistic. The deterministic methods can provide a guarantee
of success. Howeyer these methods require that the function satisfy certain restrictive
conditions (e.g., continuity, differentiability to second order etc.) that cannot be guaranteed
for CRR models. Further, they are typically inefficient and slow in converging to the
optimum, Probabilistic methods involve the evaluation of the function at a random sample
of points in the feasible parameter space, followed by subsequent manipulations of the sample
using a combination of deterministic and probabilistic rules, The probabilistic methods can
guarantee convergence only in a probabilistic sense. However, they are quite efficient in
practice and have the major advantage that they do not usually impose restrictive conditions
on the nature of the function. Many such metheds can be employed when the function is
discontinuous and when derivative information is difficult or impossible to obtain. This
makes them potential candidate for the optimization of CRR models. In the following
discussion, some probabilistic global optimization methods have been discussed.

2.3.1 Adaptive Random Search Method

The uniform random sampling (URS) approach discussed previously is a probabilistic
optimizarion method which does not beneficially use any information about the nature of the
response surface obtained during sampling to dirzct the search. For this reason, several
strategies have been proposed to guide the random search adaptively toward the region of the
global optimum. One such strategy is the Adaptive Random Search (ARS) method. The first
step in applying the ARS method is to specify a feasible space in which the automatic scarch
is to be conducted. To define the feasible space, the upper and lower bounds on each of the
parameters are given. These bounds can be estimated by analysis of the hydrologic data,
from knowledge of the physiographic characteristics of the watershed and by prior experience
of working with the model. The ARS strategy is as follows :

1. Choose a focal point. This point can be the "best” point obtained in the preliminary
process of defining the parameter space, or it can be some arbitrary point such as the

centroid of the feasible space.

2. Generate a set of N points randemly distributed in the entire feasible space (for
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example, according to a uniform or normal distribution) and centered en the focal point.
Store the location of the point with the best function value.

3. Repeat step 2 a pre-specified number of times, on the ith time using the initial
parameter range divided by 10" and centered on the focal point to restrict the search space.
Each time, store the location of the point with the best function value.

4, Compare all the stored points and determine the point with the best function value.
Redefine this point to be the new focal point. Record the range level in which this point was
found.

5. Repeat steps 2-4 until the best point is found in the smallest range level a user-
specified successive number of times ({say three). This point is chosen as the optimal
parameter set.

A review of the optimization literature indicates that the ARS strategy works well for
" simple problems. The ARS algorithm, however, has been found to be neither effective nor
efficient for the problem of calibration of CRR models. Ft has been reported that after about
1000-5000 function evaluations, the marginal benefit of further sampling is quite smak. This
is because the probability of finding a lower function value diminishes as the search
proceeds. Thus the ARS algorithm is not much suited for CRR models.

2.3.2 Combined ARS/Simplex Method

As an improved strategy, a random search strategy could be used to obtain an initial
point from which a local search procedure could then be started, Ibbitt and O'Donnell
[1971]. They mentioned that the use of the outcome of a stachastic search as the starting
point for a deterministic search indicates that a sequential stochastic deterministic, search
technique would be very powerful, particularly for poor initial parameter values, Using this
strategy, the failure rate reduces considerably with only margina! increases in the average
number of function evaluations. However, the failure tate still remains high.

2.3.3 Multistart Simplex Procedure

A method for dealing with multiple optima is to run several trials of a local search
optimization method from different starting points in the feasible space. Johnston and Pilgrim
{1976) suggested that a set of parameter values should not be accepted as an optimum until
a number of attempts to make further improvements have been made, e.g. by using another
optimization method starting from this set of parameter values or numerical trials around
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these values. Several different starting points and more than one optimization methods should
be used. This global search strategy of repeating the scarch from many different locations
is called a muitistart procedure. The validity of such an approach can be demonstrated by the
following arguments. To have good confidence in the results of any probabilistic optimization
procedure, it is necessary to have a relatively small failure probability on the problem of
interest. Let us say that we tun a procedure once on a problem bepginning from some
randomly selected location in the feasible search space, and the probability of failure is Py.
If we then rerun the procedure r times from r independent randomly selected locations, the
overall failure probability will decrease according to the equation P(r) = PL1)" and this will
terd to zero as r becomes large. For example, if Py is 0.65 and if r = 12, we will get a
failure rate of less than 1 in 100.

The efficiency of the muitistart procedure varies nonlinearly with Py. The number of
restarts r required to achieve an overall failure probability of P(r) is given by r =
in{P@)}/In{P{1)}. A very large number of restarts is not required for single-start failure
probabilities Pg1) of less than approximately 0.8. However, as P41} increases above 0.8,
the number of restarts required rapidly increases thus making the procedure impractical.

The results of the multistart simplex (MSX) show that from a single-start failure
probability of approximately 65%, the failure rate with 12 restarts falls to 1 in 100. This
result is very encouraging, in view of the difficult nature of the problem. However, the
number of function evaluations required to achieve this feat (approximately 10,500) is still
high. A complex CRR model when calibrated with several years of data requires quite
significant amounts of computer time for even one function evaluation, Moreover, due to the
fact that a CRR model may have many more optimizable parameters than the SIXPAR
model, the initial failure probability P{1) is likely to be much higher than (.65, so that the
number of restarts required would be much larger than 12. It is, therefore, desirable that the
efficiency of the scarch procedure be improved.

2.3.4 GENETIC ALGORITHM

The genetic algorithm (GA) is a search procedure based on the mechanics of natural
selection and natural genetics, which combines an artificial survival of the fittest with genetic
operators abstracted from nature. It has been applied to a number of problems inctuding
search, optimization and machine learning.

The genetic algorithm differs from other search methods in that it searches among 2
populaticn of points and works with a coding of the parameter set rather than the parameter
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values themselves. It uses probabilistic rather than deterministic transition rules. In this
algorithm, a population of m peints are chosen initially at random in the search space. The
objective function values are calculated at all points and compared. From these m points, two
points are selected randomly, giving better points higher chances. The selected two points
are subsequently used to generate a new point in a certain random manner with occasionally
added random disturbance. This is repeated until m new points are generated. The generated
population of points are expected to be more concentrated in the vicinity of optima than the
original points. The new population of points, which can again be used to generate another
one and so on, yields points more and more concentrated in the vicinity of the optima.

Wang (1991} showed that a GA when coupled to a standard local search method can
provide an efficient and robust means for calibrating a CRR model. Franchini (1996)
modified the GA proposed by Wang and applied it for calibration of CRR meodels, A
description of the Wang’s genetic algorithm modified by Franchini (1996) is given below.
The three modifications are : (i) a different parameter coding system; (ii} a different criterion
for merging two distinct points; and (iii) a different criterion for the definition of an offspring
population. The first modification replaces the binary coding system proposed by Wang with
one based on real numbers. This modification has a minor effect on the characteristics of the
genetic algorithm: it simply offers the possibility of programming directly with the real rather
than binary numbers. Hydrologists are more familiar with the real numbers. By contrast, the
last two modifications have a major and positive effect on the efficiency of the procedure in
finding the general "optima/minimum" of the objective function.

Consider the function f = f(x, , x5, ..., X,) subjectto a; S x; < b, i =1,2,3, ...,
n. The aim is to define the set or vector of parameters which produces the general minimum
of the given function in the selected domain. Thus, the range of each parameter is discretized
into M points and the discretization interval is :

AX=(b-3)/(M-1) L2
The jth value of the ith parameter can easily be defined as :

=+ (3-1ax; i=1,2,3, ... j=123 . M ..(2.2)
Therefore, the code of each value of the ith parameter can be represented by j, while M"

represents the total number of peints in the search space among which the global
minimum is sought. The procedure can be implemented by the following steps :
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Set the counter i, to 1.

Select m distinct points (m = M) randomly in the search space, i.e. consider the tirst
of the n parameters; generate an integer j value at random (1 < j < M); calculate
the value of the first parameter using equation (2.2); do the same for the other
parameters. These steps identify the first point in the search space. Repeat this
procedure m times,

Find the objective function value for each point,
Rank the points so that their function values are in descending order.

Assign a probability value P, to each point (k = 1, 2, 3, ..., m), giving higher
probability to points with a lower function value. The worsi poiat after ranking has
probability p; while the best point has probability P,. The other points have a
probability ranging from p, to p,,. Wang (1991) suggested that a linear relationship
should be used :

P =P+ (Pu-py P*&k-1)/{m-1) . {(2.3)

The average probability value for all points is I/m. The probability of the best point
can be defined as p,, = C/m while the probability of the worst point can be defined
as p; = (2 - C)/m. Wang (1991) suggested that the value C = 2 should be uséd.
Smaller values of C can be used, resulting in a more robust but slower search.

Select two points (two parents) k; and k, at random from the m points already
generated, according to the probability distribution, P, (k = 1, 2, 3, ..., m).

Select two integer values i, and i (1 < i < n). If iy > i, their values are
exchanged. Each of these two ifiteger values should be considered as the index of a
parameter in the corresponding vector parameter.

Create a new point according to the following rule : from the point k, take all the
parameters whose indices i in the vector parameter are i, < i <i, ; from the point
k; take all the parameters whose indices i are i > iy and i < i;. In the new point,
the two parameters with indices i = i, and i = iy are calculaied by selecting at
random a value between the corresponding values (extremes included) observed at the
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10.

11.

two starting points (in the two parents) k; and k; (s?:e Fig. 2.2).

Cccasionally, with a small probability p*, produce an alteration of the newly created
point. To do this, choose one or more parameters at random. For each parameter of
the new point, generate a code j (1 < j = M) at random, then compute the new
value of the parameter using eq (2.2). Wang (1991) suggested the value 0.01 for p*.

il =4 12=7
Parent k1 { 4

|13|102|35| 1 | 6 |256|67|39|0.1]32|

Parent k2
|24|156]43|7 ]24|102| 7 |75|0.9|21|

Offspring
|24|156|43|5 }6 |256|46!75|0.9[21|

1 2 3 4 5 6 7 8 9 10 index i
Fig. 2.2 Generation of Offspring in Genetic Algorithm

Repeat steps 6-9 m times so that new m points are generated. These new m points
represent the offspring population and substitute the old ones but the best point of the
previous populations (the parents) is temporarily maintained as a (m + I)th point.
(@) Find the objective function value for each of the new m points.

(b) Rank the new m points so that their function values are in descending crder.

If the "best" point of the offspring is represented by an objective function value lower
than the corresponding "best" point of the parents, this latter value is permanently
abandoned and the offspring population comprises the previously identified m points.
Otherwise, the worst point of the offspring is rejected and the m points of the new
population comprise m - 1 points of the offspring with the mth point represented by
the best point of the preceding population,

Increase the counter i,,,; by one and repeat steps 5-10. The best point found so far
is always recorded. The search is terminated when steps 5-10 have been repeated n,,,
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times, i.e. when iy, = n,,.;. If the preselected population consists of m points, the
number of times the objective function is calculated is mofe = n,,,; x m (mofe =
maximum objective function evaluations). The parameter mofe can be used as a
stopping criterion in place of ng,,,.

Note that the steps described above reflect natural genetics in some respects : in fact,
for any animal species, the DNA chain of an "individual” is a mixture of the DNA chains
of its parents. Furthermore, fit parents are likely to produce fit offspring and better
performing individuals produce more offspring. The combination of selection and
reproduction steadily improves the performance level of the better individuals. In any case
the "individual" with the best adaptation remains in the population at the expense of the
weaker "individual", until an individual with superior adaptation replaces "it",

The above algerithm was applied for calibration of the Xinanjiang rainfall-runoff
madel by Franchini (1996). The seven parameters of the model were optimized. Out of 10
runs of optimization, each starting from a different set of randomly selected initial points in
the search space, eight runs were able to locate the global peak. Although the other two runs
located two other peaks, the objective values of these two peaks were only marginally higher
than, and practically indistinguishable from, the objective function value of the global peak.
Thus all 10 runs were regarded as successful by them. The number of objective function
evaluations was about 6100. This number appears to be quite high.

2.4 CONCLUSIONS

As discussed above, the problem of calibration of CRR models is unique and the
available methods are not capable of providing a satisfactory answer. The need is to design
an optimization procedure which can overcome these various difficulties. Such an algorithm
should have the following properties :

5 The algorithm must be globally based and possess global convergence properties.

B The algorithm must be able to avoid being trapped by minor optima, and it must not
require the availability of explicit analytic expressions for the objective function in
terms of its parameters or for the derivatives.

g It must be robust in the presencg of parameter interaction and non-convexity of the
objective function surface.

b} The algorithun must be efficient in the presence of high dimensionality because CRR
models usually involve a large rumber of parameters,
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The Shuffled Complex Evolution Method (SCE-UA) developed by Duan et al. (1992)
has been claimed to have a very high probability of finding the global optima. The same is
described in the next chapter.

sk Rk
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3.0 THE SHUFFLED COMPLEX EVOLUTION OPTIMIZATION METHOD

A strategy based on the use of multiple simplexes which start from random locations
of the search space, has certain desirable properties that enable it to overcome the various
difticulties encountered on the response surface of a CRR modal, A source of inefficiency
in the method is that each simplex search operates completely independently, with no sharing
of information. This is analogous to giving the same difficult problem to 12 identicaily
capable people and asking them to solve it without conferring with each other. A more
efficient strategy would clearly be for them to spend some time working independently or in
small groups and to get together now and then to share information about their progress.

Based on this notion of sharing information and on concepts drawn from genetic
algorithm, Duan et al. {1992) have developed an optimization strategy called the Shuffled
Complex Evolution (SCE-UA) method. It has been claimed that this strategy is a global
optimization algorithm. The theory of the method is discussed in the following.

The SCE-UA approach treats the global search as a process of natural evolution. The
sampled points constitute a population. The population is partitioned into several communities
{complexes), each of which is permitted to evolve independently (i.e., search the space in
different directions). After a certain number of generations, the communities are mixed and
new communities are formed through a process of shuffling. This procedure enhances
survivability by sharing of the information (about the search space) which is gained
independently by each community.

Each member of a community {complex) is a potential parent with the ability to
participate in a process of reproduction, A subcomplex selected from the complex is like a
pair of parents, except that a subcomplex may consist of more than two members. To ensure
that the evolution process is competitive, it is necessary that the probability that "better”
parents contribute to the generation of offspring is higher than that of "worse" parents. The
use of a triangular probability distribution ensures this competitiveness. Nelder and Mead’s
[1965] procedure is applied to each subcomplex to generate most of the offspring. This
strategy uses the information contained in the subcomplex to direct the evolution in an
improvement direction. In addition, offsprings are introduced at random locations of the
feasible space wnder certain conditions to ensure that the process of evolution does not get
trapped by unpromising regions. This is analogous to mutation in response to stress that can
occur in biological evolution. Each mutation also helps to increase the amount of information
stored in the sample. Finally, each new offspring replaces the worst point of the current
subcomplex, This ensures that every parent gets at least one chance to contribute to the

- 18 -



reproduction process before being replaced or discarded. Thus, none of the information
contained in the sample is ignored.

The processes of competitive evolution and complex shuffling inherent in the SCE-UA
algorithm help to ensure that the information contained in the sample is efficiently and
thoroughly exploited. They also help to ensure that the information set does not become
degenerate. These properties endow the SCE-UA method with good global convergence
properties over a broad range of problems. Thus, given a pre-specified number of function
evaluations (fixed level of efficiency), the SCE-UA method has a high probability of

succeeding in its objective of finding the global optimum.

The computations begin with a population of points sampled randomly from the
feasible space. The population is partitioned into several communities, each containing
(2n+1) points where n is the dimension of the problem. Each community is made to evolve
based on a statistical "reproduction” process that uses the "simplex” geometric shape to direct
the search in an improvement direction. At periodic stages in the evolution, the entire
population is shuffled and points are reassigned to communities to ensure information
sharing. As the search progresses, the entire population tends to converge toward the
neighbourhood of global optimum, provided the initial population size is sufficiently large.
The algorithm is discussed in more detail below.

3.1 THE SHUFFLED COMPLEX EVOLUTION ALGORITHM

The SCE algorithm of Duan et al. {1992) combines the strengths of the simplex
procedure of non-linear optimization, the concepts of controlled random search, competitive
evolution and the concept of complex shuffling. The algorithm is reproduced below and is
illustrated in Figure 3.1.

i. To initialize the process, select p = 1 and m = n + 1, where p is the number of
complexes, m is the number of points in each complex, and n is the dimension of the
problem. Compute the sample size s = pm.

2. Generate a sample as follows, Sample s points x; ........ ,X,., in the feasible space QC
#". Compute the function value f; at each point x;. In the absence of prior information, a
uniform sampling distribution can be used.

1. Rank the points as follows. Sort the s points in order of increasing function value.
Store them in an array D = {x;, f;, i=1,..., s}, so that i = 1 represents the point with the
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smallest function value,

| Input: n=chmansian, p=numbar ol compiexes
menumber of poinls in each complax
Compule: Sampla $ize s=pxm

Sample s points al random in £l
Compute the lunction valus at gach poinl

i 1
Son #he s points ln order of increasing
tunction valus, Sicre themin O.

¥

P artition D inlo  complexes ol m poinls
1q. D={A" ket ...}

#{ CCE algorthm
Evolve each complex A", k=1,...P L isao Frgure 13)

i

Replace A* k=1, ... m, oo D

Convargencecritena
satisfiad 7

Fig.3.1 Flowchart of the SCE-UA algorithm
given by Duan et al. { 1992)

4. Partition D into p complexes Al, ..., AP, each containing m points, such that A* =
k ko - C_
{5 55155 = x4p600 5 = feapgay 3 = 1, .., m)

5. Evolve each complex A¥, k = 1, ..., p, according to the competitive complex
Evolution (CCE) algorithm outlined separately.
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6. Shuffle the complexes as follows. Replace Al APinto D, such that D = {Ak, k
=1, .., p}. Sort D in order of increasing function value.

7. Check convergence. If the convergence critetia are satisfied, stop; otherwise, return
to step 4,

3.2 COMPETITIVE COMPLEX EVOLUTION ALGORITHM

The competitive complex evolution (CCE) algorithm required for the evolution of
each complex in step 5 of the shuffled complex evolution method is presented below and is
iliustrated in Figure 3.2:

i To initialize the process, selectq, o, and 8, where2 < g < m, o = land § = 1.
2. Assign weights as follows. Assign a trapezoidal probability distribution to A¥, ‘i.e.,
p = [ {2m+1-D} / {mm+1} ], i=1, .., m (3.1

The point xkl has the highest probability p; =2/m+1, The point x¥, has the lowest
probability p, = 2/m(m+1).

3. Select parents by randomly choosing q distinct points u; ..., u,, from A, according
to the probability distribution specified above (the g points define a "subcomplex"). Store
them in array B = {u;, v;, i =1, ..., q }, where v is the function value associated with
point u;. Store in L the locations of AK which are used to construct B.

4, Generate offspring according to the following procedure :

{a) Sort B and L so that the q points are arranged in order of increasing function
value and compute the centroid g using the expression :

1 q

-1
u. ..{(3.2)
g-1/3 "~

g:

IS

(b) Compute the new pointr = 2g - u, (reflection step).

(c} If r is within the feasible space &, comfite the function value f, and go to step d;
otherwise compute the smallest hypercub® H C R" that contains A¥, randomly
generate a point z within H, compute f,, sét r = z and set f, = f, (mutation step).
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Given dimension n, complex A and numbar
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2<mge=m, aval, for=f, Sol1=1.

¥

k 4

Assign a viangular probability distribution 1o A:

p...&(”‘%“,[)l_ =1, .0, m
m{ m +

1

Select g points lrom A according to
pi.Stove them in B and their relatve
pasiions In AlnbL . Sel) = 1.

Y

Sort B and L in order of Increasing function
value. Computa the centrold of us,..., Uyt

¥

and let uq be the worst point In B.

¥

I Compule r = 2g - uq (raflection slep). ]

w

Generale a polnt Z al
random in H. Salr=z.

Selug=r ard g = fe

I Computec=(g+ug)/2and i

Generats a pelnt 2 &
random In H. Compute
(r Sotug=z ond fqelr

I Setg=¢ ard o=l |

No

function valuse.

Replace B into A according fo L
and soit Ain order ol Increasing

No

Retwm to SCE

Fig.3.2 Flowchart of the CCE strategy of the SCE-UA algorithm

given by Duan et al. (1992)
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@ Iff, < fq» replace ug by r and go to step f; else compute ¢ = (g + ug)/2
and f, (contraction step).

(e) If £, < f,, replace U, by ¢, go to step f; otherwise randomly generate a
point z within H and compute f, (mutation step). Replace ug by z.

(f) Repeat steps () to (¢) « times, where a = 1 is a user-specified parameter.

5. Replace parents by offspring as follows : Replace B into A* using the original
locations stored in L. Sort A¥ in order of increasing function value.

6. Iterate by repeating steps 2-5 8 times, where 8 = 1 is a vser-specified parameter
which determines how many offspring should be generated (how far each complex should
evolve).

The algorithm developers have recommended the values m = (2n + 1), q = (n +
1), e =1,and 8§ = (2n + 1) and the only variable to be specified by the user is the number

of complexes p.

The results of an application of this algorithm are presented in section 4.0.

L]
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4.0 APPLICATION OF SCE-UA METHOD

The SCE-UA method described in previous chapter was applied for the calibration
of the CRR model used by Jain (1993). This model is briefly described in Appendix A. This
model has ten parameters. Out of these, six parameters represent characteristics of the
conceptual catchment storages and control the movement of water through them. The
remaining four parameters are time constants of various reservoirs and affect the shape of
the discharge hydrograph. A two stage process s recommended for calibration of this model.
The first stage involves matching the volumes of observed and simulated hydrographs on
monthly basis. The main parameters affecting it are Sy, Crax: FC, Fyyp, Cyp and Ewf. In
the second stage, the shape of the simulated hydrograph is matched with the shape of the
observed hydrograph by fine tuning the various parameters and time constants of linear
reservoirs. This approach gives flexibility to the modeller to adjust the mode! parameters in
light of the objectives of the study, e.g., whether peak flow modelling is more important or

low flow modelling.

The code for the SCE-UA algorithm was provided by Prof, Hoshin Vijay Gupta of
University of Arizona, USA, who is one of the developers of this algorithm. The code
provided by him included the main programme and subroutines for the SCE algorithm. A
subroutine is needed for the CRR model being used and one such routine for the SIXPAR
meodel was also provided. To use the proposed model, two subroutine were needed to be
written. The first routine was necessary to read the initial data necessary for simulation. This
data included the details about simulation period, initial value of the various model
parameters, and initial conditions at the beginning of the simulation. The second subroutine
is called by the SCE algorithm a number of times with different parameter values. At each
calh, this subroutine simulates the catchment response with the trial parameter set, checks if
any constraints are being violated and computes the value of the objective function.

All the programming was done in Fortran and double precision accuracy was used for
real numbers. The computations were carried out on an IBM-compatible Pentium machine.

4.1 INPUT DATA USED

The data of Kolar sub-basin of Narmada basin was used in this study. The hourly
rainfall and discharge data for the period 1983-88 were available. The same data were used
in the calibration study. However, as the computational requirements increase with an
increase in the period of calibration, the data for the monsoon period of 1983-85 were used
for most of the calibration runs in this study.
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The lower and upper bounds of the search region for the various parameters are
required-to be given as an input. These bounds can be set-up based on expected range from
"physical point-of-view", the experience of the modeller, the characteristics of the catchment
etc. The bounds should be specified such that they cover the entire range in which the true
value of the parameters is likely to fall and may actually over-span the range in which the
parameters may lie. The feasible range of the parameters specified in the present case is
given in the following table. It can be seen that a rather extensive range has been specified.

Table 4.1 Lower and Upper Bounds of Various Parameters

Parameter Lower bound Upper bound
S 10.0 400.0
Cnax 10.0 900.0

FC 0.05 0.95
Fit 0.05 0.95
Cint 0.05 0.95
Ewf 0.05 0.95

4.2 DISCUSSION OF RESULTS

The SCE algorithm was used to optimize above six model parameters given in Table
4.1. The developers of this algorithm have claimed that this method is a global optimization
method. To see whether the algorithm really converges to the global optimum when the
initial values of the parameters are different, a number of computer runs were taken, The
various combination of initial values of the mode! paramelers were given as input in these
runs. These combinations included the extreme values of one or more model parameters. In
this way, about 16 calibration runs were taken. It was found that in each case, the algorithm
converged at the same point. The corresponding parameter values were : S, = 79.88, C,,,
= 368.09, FC = 0413, F;; = 0477, C;;; = 0.947 and Ewf = 0.088. The value of the
objective function (sum of squares between observed and computed discharge) was 4922.99,
The number of shuffling loops was 20 and the number of function evaluations was 814 when
an accuracy (see appendix B) equal to 0.01 was adopted. The volumes of the observed and
simulated discharges for the period 1983 to 1985, on monthly basis are given in Table 4.2.
The observed and simulated hydrographs for these years have been plotted in Fig. 4.1,
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The optimal parameters show a minor change when the accuracy criteria is changed
stightly but they remain in the vicinity of the same point. Thus the above parameter set can
be considered to be the optimal point and it can be concluded that this method is indeed a
global optimization method. The number of function evaluations needed to arrive at the
optimum was not very large and the calibration exercise can be completed in a reasonable
time on a PC.

4.2.1 Sensitivity of Accuracy Criteria

The number of function evaluations 2d thereby the computation burden of an iterative
scheme depends upon the accuracy requirements. Evidently, the mumber of function
evaluations goes up with increase in accuracy requirement. To get an idea about the increased
computational requirements, the model calibration was carried out with different values of
required accuracy. The results of these runs are given in Table 4.3, In order to save
computational time, in these runs only four parameters were optimized and the remaining two
were set at their optimal value. For all the runs in this table, all other model parameters as
well as other controlling variables, except the accuracy requirements, were kept unchanged.
ii is seen that the number of function evaluations rapidly increases as accuracy requirement
is made more stringent although there is insignificant change in the optimized value of the
parameters and there is very slight improvement in the final value of the objective function.
The final value of the optimized parameters also changes only marginally.

The results of this table can be used as guideline to set the accuracy requirements
while calibrating a CRR model. It can be seen that the number of function evaluations almost
doubles from 319 to 604 when the accuracy requirement is changed from 1.0 to 0.001:
However, the corresponding change in objective function is only from 4927.89 to 4923.01
which is insignificant, The parameter values also do not change significantly, It is apparent
from this table that the response surface is more or less flat in the vicinity of the optimal
point and this is a common phenomenon associated with CRR models.

In case a long calibration period is used and the computational requirements are very
high, the modeller may choose less stringent accuracy requirement to keep the computations
in manageable limits. It is pertinent to note that the developments in information technology
have lead to availability of powerful personal computers at affordable prices. Looking at the
trends in this industry, it is certain that within a period of one to two years, a typical user
will have access to machines on which the calibration of a CRR model can be carried out
within reasonable times.
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4.2.2 Optimal Duration of Data For Calibration

A question which is commonly raised related to calibration of CRR models is : what
is the optimal duration of data which should be used in such computations. Jain (1993)
mentions that both light quantity as well as quality of data are necessary and the input data
shoutd be selected in such a fashion that all the model parameters are activated during the
calibration time. Yapu et al. {1996) also examined this aspect and their results for a basin
of about 2000 sq. km. suggest that approximately 8 years of calibration data are necessary
to obtain parameters that are relatively insensitive to the period selected. Further they found
that the benefits of using more than 8 years of data may be only marginal. It was also
reported that the parameter identifiability can be significantly improved by selecting the
wettest area of data for calibration.

Experiments were made with the current set-up in which the calibration was carried
out by using the different lengths of the input data. In these runs, all other conditions were
kept unchanged except the duration of input data. The results of these runs have been given
in Table 4.4, It is seen that there is wide variation in the optimum parameters when the
duration of data is increased from one year. The parameters appear to have somewhat stab-
ilized at the data length of 5 years. The change in the optimum value of the parameters is
small when the duration of the data is increased from 5 years to 6 years, As the data for only
6 years were available, the analysis could not be carried out further but the results seem to
confirm the findings of Yapu et al. (1996) given above. Thus at least about 7 to & years of
calibration data appear to be necessary to obtain parameters that are representative for a
catchment.

ek
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5.0 CONCLUSIONS

The main aim of this report was to apply the SCE-UA algorithin of Duan et al. (1992)
for the calibration of a CRR model. The model reported by Jain (1993) was used to sirnulate
the response of a basin of size 820 km®. The results show that the algorithm is able to
converge to the global optimum when the computations are started from a number of initial
points. The initial points were selected such that the extreme points of all the parameters
were selected. The number of function evaluations needed to arrive at the optima was also
quite reasonable.

The main conclusions of the study are as follows :

1 The SCE-UA algorithm is a global optimization method and is able to converge to the
global optimum parameters when different initial values of parameters are used.

2. The computational requirements for calibrating a CRR model are quite reasonable and
thus the algorithm is computationally efficient.

3 The user has complete control on the calibration through a large number of
parameters which control the execution of the algorithm.

Aok
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Table 4.2

Comparison of Volumes of Observed and Simulated Discharges for Kolar Basin

Year | Month | Rainfall | Observed | Simulated
(mm) | Discharge | Discharge
(mm) (mm)
1983 7 270 29 g
1983 8 548 361 | 376
1983 9 382 248 292
1983 10 1¢ 37 29
s | 6| 11| 10| 9
1984 7 141 20 0
1984 8 851 592 594
1984 9 27 53 21
1984 10 4 23 11
Cess | 8| 19| ol 9
1985 7 293 76 78
1935 8 386 218 238
1985 9 181 60 69
1983 10 118 40 44
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Table 4.3
Variation of Calibration with Accuracy Criterion

Accuracy Optimized Parameters Objective | No. of | No. of

Function | Loops Funet.

S hax Conax FC Fior Eval.
1.0 79.36 365.84 0.415 0.481 | 4927.89 11 319
6.5 79.36 365.84 0.415 0.481 | 4927.89 11 319
0.2 78.43 362.26 0.422 0.516 | 4949.54 13 381
0.1 78.43 362.26 0.422 0.516 | 4949.54 13 381
0.05 78.43 362.26 0.422 0.516 | 4949.54 13 381
0.01 79.88 368.15 0.413 0.477 | 492297 16 472
0.005 79.88 368.17 0.415 0.477 | 4923.32 18 537
0.001 79.92 368.26 0.415 0.477 | 4923.01 20 604

The initial values of the parameters were 10.0, 20.0, 0.1 and

parameters C, and Ewf were set at 0.947 and 0.088.

Table 4.4
Duration of Calibration Data and Corresponding Optimized Parameters

0.1 respectively.

The

Length of Optimized Parameters No. of No. of
Data Loops Funet,
(Years) Simax Cruax FC Fing Eval.

1 32.13 659.67 0.739 0.223 21 636

- 2 2227 636.10 0.324 0.380 17 504

3 79.88 368.15 0.413 0.477 16 472

4 72.55 380.45 0.412 0.943 16 477

5 77.79 380.40 0.337 0.945 16 460

6 77.55 378.38 0.368 0.944 16 463
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- APPENDIX A

A.1 DESCRIPTION OF THE MODEL USED

In the CRR model used in the present study, the catchment is represented with the
help of three storages. The first storage, termed as surface storage, represents the water
~stored on the surface and top few cms of soil of the catchment. It has a maximum storage
capacity given by S, (mm). The second storage represents the catchment soil moisture
storage and has a maximum water holding capacity given by C,, (mmj}. The third storage
represents the ground water zone, It may be mentioned that most of the existing models make
use of similar arrangement of linear reservoirs with varying degrees of complexity. The box
diagram of the model structure is given in Fig. A.1.

Rain Ep
¥ + ki
———————————————— B LR
| Surface Storage SURF OF -
“ '
*Ea
j Soil Storage Csoil | LR2 LR4 (=%
Il lIIlt.F L__._l P | L._

1Groundwater Zone (LR3} EF -

Fig. A.1 Structure of the Conceptual Model Used in this Study

The rainfall is input to the surface storage. The water leaves this storage through
evaporation, infiltration or overland flow. The moisture content of this storage at any time
is denoted by SURF. If SURF > E, (potential evaporation in mm/hr), the actual
evapotranspiration is at the potential rate else evapotranspiration (ET) takes place from the
lower storage at a lesser rate. The infiltration of water from this storage to the soil storage
takes place at the rate INF :

INF = (1 - Coy/Crn} * Fiup if SURF > 0

0 otherwise. L {ALD

where F,; is a factor(mm/hr) controlling the infiltration rate. When C_; = C,_ .., INF is
zero, One may visualize that in this event the surface and the seil moisture storages have
merged and the downward movement of moisture is computed as described below.
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If at any instant SURF > S, the excess water over S, flows as overland flow
{OF). The OF is routed through a linear reservoir LR1 with time constant K.

The water which infiltrates from the surface storage enters the soil storage. The
outflow from this storage can take place through ET losses, interflow or recharge to the
groundwater zone. If the surface storage is empty, ET takes place from the soil storage at
a rate E, given by

E; = Cooit'Conax™ Ep L {A2)

and Cgy is depleted by E *di where dt is the length of computation interval in hour. If
SURF < Ep *dt, the actual ET is SURF+E, *dt. The maximum value of E, is Ep.

If the contents of soil storage exceed a threshoid denated by FC, water flows out of
it as interflow and recharge to groundwater. The excess moisture available for these two is:

Exw = (Coy/Cpa- FOP*Ewf  if C_,/C,., > FC (A3)

where Ewf is a factor(mm/hr) controlling the volume of excess water. The volume of
interflow is given as :

IntF = Exw * C;, L (Ad)
and recharge to groundwater is

RECH = Exw * (1 - Cjp) _(A5)

where C,, is a dimensionless coefficient which controls how much of the excess moisture
gocs as recharge and how much as interflow. The interflow is routed through a linear
reservoir LR2 with time constant K;. The ground water zone behaves as a linear reservoir
whose time constant is K. The moisture comes out of it as the baseflow (BF). The flow
coming out of the reservoirs LR1, LR2 and LR3 is combined and then routed through a
linear reservoir, LR4, to yield the discharge from the catchment, denoted by TF,

The input to the model consists of the values of model parameters, rainfall and
potential evaporation data for the simulation period, the time step size and the initial contents

of various storages.
ok
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Appendix B

B.1 VARIABLES CONTROLLING A RUN OF SCE ALGORITHM
The various variables controlling a run of SCE algorithm are described below :

MAXN Maximum number of trials allowed before optimization is terminated. The
purpose of MAXN is to siop an optimization search before too much computer
time is expended. MAXN should be set large enough so that optimization is
generally completed before MAXN trials are performed. MAXN was set at
5000 in this study.

KSTOP : Number of shuffling loops in which the criterion must improve by the
specified percentage or else optimization will be terminated. Recommended
value is 15.

PCENTO : Percentage by which the criterion value must change in the specified number
of shuffling loops or else optimization is terminated. (Decimal equivalent:
Percentage/100 used). Varied systematically in the runs.

NGS : Number of complexes used for optimizaticn search. Minimum value is 1.
Recommended value is between 2 and 20 depending on the number of
parameters to be optimized and on the degree of difficulty of the problem.

ISEED : Random seed used in optimization search. Recommended valus is any large
integer.
NPG : Number of points in each complex. NPG should be greater than or equal to

2. The default value is equal to (2 * mumber of optimized parameters +1).

NPS : Number of points in each sub-complex. NPS should be greater than or equal
to 2 and less than NPG. The default value is equal to (number of optimized
parameters + 1).

NSPL : Number of evolution steps taken by each complex before next shuffling.
Default value is equal to NPG.

MINGS : Minimum number of complexes required for optimization search, if the
number of complexes is allowed to reduce as the optimization search
proceeds. The default value is equal to NGS.

INIFLG : Flag on whether to include the initial point in the starting population.

sk

- 35 -



STUDY GROUP

Director : Dr. §. M. Seth
Scientists : Dr. S. K. Jain
Mr. M. K. Goel
Scientific Staff : Mr. P. K. Agarwal

Typing : Mrs. Mahima Gupta



