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PREFACE 

Springs provide a viable and ready source of clean water for 

the remote rural community especially in the hilly area where 

logistic difficulty prevails in creating storage of water. There 

are many springs in the Himalayas, in the Western Ghats and 

elsewhere some of which occur in groups. The existing hydrological 

models are based on. the the assumption that the spring discharge 

is linearly proportional to the dynamic storage in the springflow 

domain. The validity of such assumption is yet to be verified. 

In the present study, a mathematical model has been developed 

to analyse unsteady flow from a group of springs. The basic 

solution for rise in piezometric surface due to recharge from a 

rectangular basin given by Hantush has been used in the analysis. 

Duhamal's integration has been used to account for time variant 

recharge to the spring flow domain. The expression for spring 

discharge has been obtained in terms of response function 

coefficients. Any of the springs gets activated when the 

piezometric surface tends to rise above its threshold. The 

analysis assumes that once the piezometric surface touches the 

spring's threshold there is no further rise in the piezometric 

surface at the location of the spring. 

The report is part of the work programme of Groundwater 

Assessment Division for the year 1992-93. The study has been 

carried out by Shri A.K.Bhar, Scientist E and by Dr. G.C. Mishra, 

Scientist F of the Division. 

DECEMBER 1993 (S.M.Seth) 

Director 
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1.0 Introduction 

1.1 General 

Spring is a ready source of water, a place of natural beauty, 

and a recreational spot. Springs generally provide clean water. 

They are found in the Himalayas, in the Western Ghats and in other 

places in India where it is logistically difficult to create 

storage for water. As such, study of springflow has relevance to 

the water supply to rural areas, specially in the hilly region. 

Springs are part of the groundwater system and are natural 

exits through which groundwater emerges at the earth surface as 

concentrated discharge from aquifers. Springs occur in various 

sizes from small trickle to large stream in both in water table 

and artesian conditions. Necessary conditions to produce springs 

are many and are related to different combination of geologic, 

hydrologic, hydraulic, pedologic, climatic and even biological 

controls. Due to single or combined influence of these controlling 

factors, springs at times occur as a group. A few large springs 

may indicate the existence of thick transmissive aquifers whereas 

frequent small springs tend to indicate thin aquifers of low 

transmissivity. Hydrologic study of springs aids in the evaluation 

of groundwater potential of an area. 

1.2 Occurrence of springs in group: 

There could be various natural situations for springs to 

occur in groups depending upon the geomorphology and 

hydrogeological conditions. Some of these situations for giving 

rise to springs in groups are: 

1.2.1 Springs issuing from thin permeable formation: 

Blocking of downward movement of groundwater by an aquiclude 

forces water to move laterally and at the outcrop of the permeable 

layer in a valley a line of springs results. Outcrop of bedrock or 

1 



nearness of bedrock to surface is the controlling factor. Well 

known thousand springs along the Snake river in southern Idaho, 

0.S.A is an example (Tarbuck and Lutgens,1990). Various other type 

of springs which can emerge in group due to similar condition are 

contact, gravity, perched and barrier springs (Fig.1). The 

discharge of such springs are small and could considerably vary 

periodically. 

1.2.2 Springs issuing from alluvial fan deposits: 

Boulders and pebbles rolling down a river are dropped down as 

soon as the river enters into the plains due to an abrupt change 

in the gradient of the valley floor and consequent reduction in 

the transporting capacity of the river. Such accumulations at a 

place where running water enters into the plains, are known as 

alluvial fans as the rock fragments are arranged in a radiating 

fan like pattern in these deposits. The fan in the vicinity of the 

hill will have steep slope, higher porosity to receive recharge 

and higher transmissivity compared to the area at the end of the 

fan. Groups of springs emerge from the outer boundary of the fan. 

Intersection of sloping water table with the land surface is the 

controlling feature in these springs. Deep underlying bed rock 

does not have any control over the flow of the springs. Discharge 

of such springs are usually small. Such situation occurs at the 

foothills of the Siwalik hills in Nainital district at the 

boundary between Bhabar and Tarai. The northern boundary of Bhabar 

belt is in contact with the Siwalik hill range and the southern 

limit of the Bhabar is the spring line which defines the northern 

limit of the Tarai sediments (Pandey,Rao and Raju,1968) (Fig.2 ). 

1.2.3 Springs issuing from karstic rock: 

Carbonate rocks springs represent constricted discharges at 

widely separated outlets. At the start, lines of week discharging 

2 
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springs may develop. The largest spring progressivelY,captures the 

water feeding its neighbours and the smaller springs become dry. 

This is specially so in a strongly developed karstic rock. A karst 

indicates the development of chemically enlarged openings in a 

carbonate rock and in other non carbonate rocks like gypsum 

(Fig.3). Erosion of a karstic valley may reach so deep that it 

reaches the groundwater level. Lines of groundwater flow converge 

on the valley and dissolve bedrock at a faster rate than for 

adjacent uplands. Less permeable residual soils and floodplain 

sediments promote the formation of line of springs at the contact 

of bedrock and valley fill sediments ( Parizek,1975)(Fig.4). The 

majority of important springs in karsts are located along the 

perimeter of the erosion base. A common characteristic of these 

springs, whether permanent or temporary, is their direct 

dependence between precipitation and their outflows. It is 

possible to have two closely spaced springs, one having a high 

capacity and the other a low capacity. The two springs of the 

Pliva river near Jajce (Yugoslavia) are good examples (Milanovic, 

1981). 

Submarine springs and springs at the sea surface were formed 

during continental phase when the base of erosion was lower than 

at present. These springs are active only during the wet season. 

At this time they discharge substantial quantities of fresh water 

into the sea changing the salt content and temperature of the sea 

water in the coastal belt. Continuous submarine springs are rare. 

Their main characteristic is their considerable variation in flow. 

More than 50 localities with submarine springs have been  

discovered along the Adriatic coast in Yugoslavia. The submarine 

shelf, between Florida and the Bahama Islands, is composed of 

karstified limestone and is covered with thousands of sinkholes. 

7 
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Submarine springs are active in many of them. Similar cases of 

coastal springs also have been identified at many locations along 

the Adriatic coast. At particular sites, it was observed that 

water from the coastal aquifer discharges during winter through 

a long line of springs (Milanovic,1981). 

2.0 Hydrologic Modelling of Springflow: 

A spring emerges at ground surface through a threshold point 

where the drawdown is constant till the spring is active. The 

spring serves as a boundary condition for the regional groundwater 

flow analysis and the threshold point or outlet of a spring is 

considered as a fixed head boundary. But when the water table in 

the vicinity of the spring drops below the spring outlet, it 

ceases to be a boundary of the flow domain. 

Many existing mathematical models of the springflow have been 

developed on the assumption that the spring outflow is linearly 

proportional to the dynamic storage in the spring flow domain. The 

'alidity of this assumption needs to be checked. For this purpose 

rigourous mathematical model has been presented for analysing 

FLow from a spring and a group of springs. 

3.0 Mathematical Models for Springflow: 

Statement of the Problem: 

A schematic configuration of a spring flow domain is shown in 

Fig.5(a). The corresponding idealised flow domain adopted for the 

analysis is shown in Fig.5(b). The basic saturated flow equation 

describing flow to a spring is the Boussinesq's equation: 

Ct 
" Os d

2
S 02  s  

T 19 f f q (,,T) 6(-x,&-y,T-t)dt d& dz ji T 

0y  _co  _co 
 dx

2 2 r 

...(L) 

where 0 is the drainable (or effective) porosity, s is the rise in 

10 



7///// 

(a) 

( b) 

IMPERMEABLE 

FIG.5 a & b -SCHEMATIC AND IDEALISED FLOW DOMAIN 
OF A SPRING 
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piezometric surface , t is time, x and y are the horizontal 

Cartesian coordinates, T is the transmissivity, q
r
(t,9,T) is the 

instantaneous recharge or discharge rate per unit area (positive 

for recharge and negative for discharge) and á(t-x,19-y,r-t ) is a 

Dirac delta function singular at the point of coordinates x, y, 

and t. The level of the initially rest piezometric surface is 

taken as the datum. 

The required solution to the differential equation (1) needs 

to satisfy the initial condition s(x,y,0)=0. The boundary 

conditions to be satisfied are: 

ds 
d x ...(2) x l=0 =0  

s(x,t w,t)=0 ; ...(3) 

s(w ,y,t)=0; ...(4) 

A spring gets activated when the piezometric surface tends to 

rise above its threshold. Once a spring gets activated, the rise 

in piezometric surface at the location of the spring remains 

invariant. Therefore, the other boundary conditions to be 

satisfied are: 

s(x.,y.,t)=z., t > t.,i=1,N 
i ...(5) i i i 

where x
i  ,y. are the coordinate of the i

th 
spring, t. is time of i i 

activation of the i
th 

spring, z. is height of the threshold of the i 
.th spring above the initially rest piezometric surface, and N 

are the total number of springs. 

METHOD OF SOLUTION: 

3.1 Single Spring 

The method of image can be applied to convert the finite flow 

domain into an infinite flow domain. The boundary condition stated 

in equation(2) is thereby satisfied. The system of image and real 

springs is shown in Fig.6. _ 

12. 
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Let the origin of the X,Y co ordinate system be chosen at the 

centre of the equivalent recharge zone. Let the time span be 

discretised into uniform time steps. Let during a time step the 

recharge rate and the spring discharge be seperate constants; 

however they may vary from one time step to next. 

The rise in piezometric surface at spring 1, s(x ,y ,nAt), 
t t 

due to the time variant recharge, R(r), through the recharge zone 

in the equivalent flow domain until the spring gets activated is 

given by: 

s(x ,y ,nAt)= R(r) 6(2W,L;x ,y ;At;n-r+t) t t P=1 i 

in which R(r) is the recharge rate (m
3 
 per unit time step) per unit 

area during time step 7 ; a(A,B;x,y;At; m) is a discrete kernel 

coefficient; A and B are the width and length of the excitation 

zone; X,Y are the coordinate of the point of observation, the 

coordinate being measured from a local origin chosen at the centre 

of the excitation zone; At is the time step size. The discrete 

kernel coefficients are the response at an observation point due 

to unit excitation per unit area given to the system during the 

first unit time period. In the present problem the excitation zone 

is either the area through which recharge takes place or the 

spring's opening. 

Let the spring get activated at t=N
t
At and the rising 

piezometric surface touches the spring's threshold at t=(N -1)At. 

Since just prior to activation S(x ,y ,nAt) = z., therefore, 
t t 

N 

R(y) 6(2W,L;x ,y ;At; N -7  )  rri 

The time of activation of the first spring can be predicted 

from equation(7) using an iteration procedure. As the spring gets 

activated at 11=N I  therefore, q
1(r)=0 for 7 = 1,2,...Nt

-1. 

14 



The expression for rise in piezometric surface at location of 

the first spring after its activation is given by: 

s(x ,y ,nAt) 
t 

=En  [ R(y) 6(2W,L;x ,y ;At;n-y+1) 
r=1  

- En  [q (y)(6(a ,b ;0,0;At;n-y+1)+6(a ,b ;2x ,O;At;n-7+1))) 
r=i t i 

Since after activation of the spring, s(xl at,nAt).. z, therefore, t 

En  [ R(r) 6(2W,L;x ,y ;At;n-y+1) l 
Yst t t 

-y  E
nIgi  (Y){

6(at 
 ,b t ;0,0;At;n-y+1)+6(a t ,b  1 

 ;2x 1,O;At;n-y+1))1=zi =t  
...(9) 

Splitting the second temporal summation into two parts, one 

part containing the summation up to (n-1)th terms, and the other 

part the n th term, equation(9) is simplified to: 

,n 
my) 6(214,14xi

a5;At;n-1+1)) 

_n-1 
L [q (7)0(a ,b ;0,0;At;n-y+1)+6(a ,b ;2x ,0;At;n-y+1)}1 

r=t I 

- q(n) 6(a
s
,b

i
;0,0;At;1)+ 6(ai

,b
i
;2x

1
,0;At;1)}w= z 

—(10) 

Solving for q (n), we obtain 
1 

q
t 

 (n) = [ En[R(Y)6(2W,L;x t ,y t
;At;n-Y+1)} 

Y=1   
(, )(6 ( , a ,b ;0,0;Lit;n-y+1) 

r=t 
,If  f i i 

+6(a ,b ;2x ,();n-y+1))}-z1 1/ s 4. t 

[6(a ,b ;0,0;At;1)+6(a 
i
,b ;2x ,O;At;1)] ...(11) 

t t th i  
Since the spring gets activated during Nt 

 time step, qi
(7)=0 for 

1=1,2,.., N-i. qt
(n),n ?. N

i 
 ,can be solved in succession starting 

t 
from time step N. For time step Ni 

equation (11) reduces to 
t 

15 



N
s 

 

q (N )= [ S  rrt 

[6(a
l
,b

1;0,0;At;1)+6(al
,b

1 ;2x1,0;At;1)] 

...(12) 

The 6(.) coefficients can be obtained from Hantush's solution 

(1967 vide Bouwer, 1978) for the rise of piezometric surface due 

to uniform recharge at a constant rate from a rectangular basin 

(fig.7). The expression for 6(A,B;X,Y:At;m) is: 

6(A,B;X,Y;At;m)=— {F{(A/2+X)ns.(8/2+Y)ni )+F{(A/2+X)nt
,(B/2-Y)nd 

+F{ (A/2-X)7111(8/2+Y)771)+F{(A/2-X)ne(B/2-Y)nt)]At 

(m-1) . 

+ F{(A/2-X)n2,(8/2+Y)772)+F{(A/2-X)ne(9/2-Y)P2MAt 

...(13) 

where 
= time step , 

0 = coefficient of storage, 

= trasmissivity, 

A,B = width and length of the recharge basin, or spring 

opening 

X,Y = coordinates of observation point measured from the 

centre of the local origin (recharge basin, or spring) 

7)1 = (4TmAt /0) 
-0.5 

n
2 ={4T(m-1)At/0 -0.5 

) = 
o
fierf(t T-°.5).erf(W T-61.5) dt 

F(§,T) values have been tabulated by Hantush. 

3.2 Multiple Springs 

The multiple springs problem has been solved considering 

three number of springs. The solution can be obtained for any 

number of springs. 

16 
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Statement of the problem: 

Locations of a group of springs and an outcrop through which 

recharge takes place to the aquifer are shown in Fig.5. Let the 

spring aquifer system be initially relaxed. A time variant 

recharge occures through the recharge zone. The time is reckoned 

since the onset of recharge. It is required to find the time of 

activation and discharge of each spring. 

Analysis: 

Introducing the image springs, the no-flow boundary condition 

along x=0 is satisfied. By introducing the image spring the finite 

aquifer is converted to an infinite aquifer (Fig.6). The flow 

equations for multiple springs have been derived using the Hantush 

basic solution for rise in piezometric surface in 

aquifer due to recharge from a rectangular basin. 

The piezometric surface in the aquifer rises 

an infinite 

due to the 

recharge. The spring nearest to the recharge zone gets first 

activated when the piezometric surface tends to rise above the 

spring's threshold. Once a spring gets activated, the rise in 

piezometric surface under combined action of the recharge and the 

spring discharge remains invariant at the spring's threshold. 

Up to the time any other spring gets activated, the discharge 

from the first spring is given by equation (11). 

Let the second spring get activated at n=N . Just prior to 
2 

activation the rise in piezometric surface at the second spring is 

_14 
2. 2-1 {R(/) 6(2W,L; x ,y ;At;N -r)} 

r=1 2 2 2 
,N -1, , , 

-
2
4

1
2 Lq ) fo ( a

l 
 ,b

i 
 , x

2 
 -x

i 
 ,y

2
-y

i 
 ,At ;N

2 
 -t )+ 

6(a ,b ;x +x ,y -y ;At; N-7 ))].-rz 
i 1 2 1 2 1 2 2 

18 



can be solved from equation (14) by an iteration 
2 

procedure. 

Till the second spring gets activated the discharge from the 

second spring, q2
(7)=0 for r = 1,2, ..N2

-1. 

The expressions for rise in piezometric surface at the first 

and the second spring locations after activation of the second 

spring are given by: 

s(x ,y ,nAt)= En  {R(y) 6(2w,L; x ,y ;At;n-r+1)} 
Tri 

- En  [q (1){ 6(a ,b ;0,0; At; n-r +1)+ 
r=i 

6(a
i
,b

i
;2x

1
,0;At; n-r+1)}] 

[q (r) {6(a ,b ;x -x , y -y ;At; n-r +1)+ 
2 2 2 i 2 I 2 

6(a
2
,6
2
;x

1
1C +
2
, y

i
-y
2
;At;n-r+1)11 

...(15) 

s(x ,y ,nAt)= E 01(r) 6(2w,L; x ,y ;At;n-r+1)} 
2 2 rri 2 2 

- E
n [q (r)( 6(a ,b ,x -x ,y - y , At; n-r +1)+ 

r=i 1 

6(a
l
,b

5
;x
2
+x

i
,y
2
-y

i
;At; n-7+1)}] 

{6(a ,b ;0,0:At; n-r +1)+ 
r=t 2 2 2 

6(a ,b ;2x ,O;At;n-r+1)1] 
2 2 2 

...(16) 

After activation of the first and the second spring at all 

time s(x
t
,y

i
,nAt)=z

i 
 and s(x

2
,y
2
,nAt)= z

2
. Equating equations (15) 

and (16) to z and z respectively and rewriting the following 

equations in terms of the unknown q (n), and q (n) are obtained: 2 
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q
t  (n){ 6(a ,b ;0, 0; At; 1)+ 6(a ,b ;2x ,O;At; I)} t t t 

+q (n){6(a ,b ;x -x ,y -y ;At; 1)+6(a ,b ;x +x  2 2 2 1 2 1 2 2 2 i 2 1 2 

= E
n 
(R(r) a(zw,L; x ,y ;At;n-r+1)} r=1 t 

rn-1 
[q (r) { 6(a ,b , 0,0; At; n-r +1)+ rri t 

6(a
1
,13

1
;2
%,0;At; n-7+1)}] 

[q (y) {6(a
2
,b
2
;x

i
-x
2  2 , y

i-y2;At; n-r +1)+ 

6(a ,b ;x +x , y -y ;At;n-r+1))] -z
t 2 2 -  

...(17) 

q(n){6(a ,b ,x -x ,y -y ,At;1)+ 6(a ,b ;x +x ,y -y ;At; i 
 

1 t 2 1 2 i 1 1 2 1 2 A. 

+q (n) {6(a ,b ;0,0;At; 1)+ 6(a ,b ;2x ,O;At;1)} 
2 2 2 2 2 2 

= En  ifi(r) a(zw,L; x ,y ;At;n-7+1)} 
rri 2 2 

-Z  n-l[q (r){6(a ,b ,x -x ,y -Y ,At; n-r +1)+ r=1 i 1 1 -  2 A. 2 - 1 - - 

6(a
l
,b

1
;x
2
+x

l
,y
2
-y

i ;At; n-7+1))] 

nn-t -L [q (r) o(a ,b ;0,0;At; n-r +1)+ 7=1 2 2 2 

6(a
2,b2;2x2,0;At;n-r+1)}] 

-z 

...(18) 

In matrix notation equations 17 and 18 can be written as 

[ a ] [ b ] = [ c ] ...(19) 
in which 

a(1,1)=6(a
1
,b

1 ;0,0; At; 1) + 6(ai
,b

1 ;2x1 ,0;At; 1); 

a(1,2)=6(a ,b ;x -x ,y -y ;At;1)+ 6(a ,b ;x +x ,y -y ;At;1) 
2 2 1 2 1 2 2 2 1 2 1 2 

a(2,1)=6(a
1
,13

1
;x

2
-x

l
,y
2
-y

t ;At;1)+ 6(ai
,b

1 ;x2+xi;y2
-y

t;At; 1); 

1)) 
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a(2,2)=6(a2,b2
0,0; At; 1) + 6(a2

,b2;2x2
,0;At; 1); 

= q(n) 

= q(n) 

c(1)= En  {fur) 6(2W,L; x ,y ;At;n-r+1)) 
7=i 

- =1 t (
7){ 6(a t ,bI 

 ,0,0; At; n-r +1)+ 
7   

6(a ,b ;2x ,O;At; n-7+1))] 

_zn-s , 
(q tr, {a(a ,b ;x -x Y -y r ;At; n- +1)+ 

r=1 2 2' I 2 S 2 

6(a
2
,13
2
;x1

+x2
, yi

-y2
;At;n-r+1))] 

-z 

cm= 01(r) cs(2w,L; z ,y 2
;At4n-r+1)) 

r=t • 2  

n-1 - tr„ , „ - [q ) o(al,b1
;x2

-xl
,y2-yi

; At; n-r +1)+ 
r=t 

_211-
1
1(

2  
c, (r) 

 
r=  

-Z 
2 

6(al,b1
;x2+xi

,y2-yi
;At; n-7+1))] 

(6(a
2
,b
2
;0,0;At; n-r +1)+ 

6(a2
,b2

;2x2
,0;At;n-r+1)}] 

Thus [b]=[a] [c] ...(20) 

Let the third spring become active during time Ns 
 At. At the 

end of (N -I)
th time step the rise in piezometric surface at the 

3 
location of the third spring is equal to z. Hence, 
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_ En 
7=1 

_En tq  2
(7)  

r=i  

N-1 
9 

fR(y) 6(2W,L; x ,y ;At;N -7  )) 9 9 9 P=1 9 9 9 

Ni 

r){6(a t ,b I ;x  s -x[q 
i ,y s-y t ;At.N -7  )+r=1  

N-I 

-c [q (r)(6(a ,b ;x -x ,y -y ;At;N )+ 7=1 2 2 2 9 2 9 2 9 

6(a,b;x
9+x 2 2 

2,ys-y2;At;N9
-r 

=z 
3 

...(21) 

can be known from equation (21) by an iteration procedure. 9 

When all the springs are active the expression for drawdown 

at spring locations 1, 2 and 3 are given by 

s(x ,y ,nAt)=
?
Z

i 
 {R(r) 6(2W,L; x

i
,y

1
;At;n-r+1)} 

6(a
l
,b

1
;x
9
+x

l
,y
9
-y

i
;At;N

s
-r ))] 

6(a
t
,b

1;0,0; At; n-r +1)+ 

6(a
l
,b

1
;2x

1,0;At; n-r+1)1] 

{6(a
2
,b
2;xi-x2, Y1-Y2;At; n-y +1)+ 

ó(a ,b ;x +x , y -y ;At;n-r+1)}] 
2 2 I 2 I 2 

[q
s(r) [6(a9

,b
9
;x

i
-x

9
, y

i
-y
9;At; n-r +1)+ 

(5(a
9
,b
9;x1

+x
s, yl

-y
9;At;n-r+1))] 

...(22) 

s(x ,y ,nAt)= E
n 
(R(r) 6(2W,L; x

2,y2;At;n-r+1)) 2 2 r=1  

- En  [q
1
(7){ 6(a

l
,b

1
;x
2
-x, y

2
-y

l
; At; n-r +1)+ 

Y=I 

c5(a
l
,b

1
;x
2
+x

l
, y

2
-y

i ;At; n-r+1)}] 
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N2 (y) 
(6(a

2
,b

2
;0,0 ;At; n-r +1)+ 

6(a ,b ;2x ,0 ;At;n-y+1)}] 
2 2 2 

[q (r) [6(a ,b :x -x 
s 9 9 ' 2 

Y -Y ;At; n-Y +1)+ 
9 2 9 - 

6(a
9
,b

s
;x
2
+x
s
, y2

-y
s
;At;n-r+1)1] 

= z 
2 

...(23) 

s(x ,y ' nAt)= E
n 
{R(7) 6(2W,L; x

s
,y
9
;At;n-r+1)} 

s s Y=I 

_ rn [q (y)( 6(a ,b ;x -x , y -y ; At; n-r +1)+ 
Y=1  1 t 1 9 1 9 1 

6(a ,b ;x +x , y -y ;At; n-y+1)}] 
I i 9 1 9 1 

[q (y) (6(a ,h ;x -x  
2 2 2 9 2

' y -y ;At;  
9 2 

6(a ,b ;x +x  
2 2 9 2

' y -y ;At;n-r+1)1] 
9 2 

-En  [q (r) {6(a ,b ;0,0;At; n-)' +1)+ 
y=t 9 9 9 

6(a
9
,b
3
;2x

9
,0 ;At;n-y+1)}] 

= z 

• 
...(24) 

The three unknowns q (n) q (n) q (n) can be solved from 
2 9 

equations(22), (23) and (24). In matrix notation, 

[b]= [a] 1[i ...(25) 

in which b(1), and b(2); a(1,1),a(1,2),a(2,1), and a(2,2) are as 

defined earlier. Other elements of the matrix are: 

b(3)= q(n) 

a(1,3)= {6(a3
,b
3
;x

1
-x
9
, 

i
-y

9
;At; n-r +1)+ 

6(a
9
,b
3
;x

1
+x

s
, y

l
-y
9
;At;n-y+1)} 

a(2,3)= f6(a
s
,b,;x

2
-x
s
, y

2
-y
9
;At; n-y +1)+ 

23 

y=i 



6(a,b;x+x 
9 3 2 s

, y
2
-y

s ;At;n-r+1)) 

a(3,1)= 6(al,b1;x-x 
S i

, y
s -y; At; n-r +1)+ 

6(a
i 1 s 

 ,b;x+x
l
, y

s
-y

1;At; n-r+1)} 

a(3,2). {6(a
2

,b
2
;x

s
-x

2
, y

s
-y

2
;At; n-r +1)+ 

6(a2,62;xs+x2, ys-y2;At;n-r+1)) 

a( 3 , 3 )=[6(a
s

,b
s ;0,0;At; n-r +1)+6(a

s
,b

s
;2x

8
,9 ;At;n-r+1)) 

{R(y) 6(2W,L; x1 1y1 ;At;n-r+1)) Y=1 

[q (r)I 6(1
1

01
1 ;0,0; At; n-r +1)+ 

6 (al ,b
i ;2x

1 ,0;At; n-r+1))] 

-2n-l [q (r) [6(a ,b ;x -x , y -y ;At; n-r +1)+ y=1 2 2 2 / 2 1 2 

(5(a,6;x+x 
2 2 1 2

, y1 -y2 ;At;n-r+1)}] 

i. [q (r) fe(a.,b ;x -x y -y ;At; n-r +1)+ r=1 9 9 9 1 9
, 

s 

6(a ,b ;x +x ,  
9919 y -y ;At;n-r+1)}) 

19 
- zi  

c(g).  
r.7. 

01(r) a(2w,L; x ,y
2  ;At+1)) 

1 2  
nn-1 

[q (r){ 6(a ,b ;x -x y -y ; At; n-r +1)+ P-7 1 1 1 2 1 9 2 1 

6(a
l ,b

1 ;x
2 +x

l , y
2 -31.1 ;At; n-r+1)}1 

A [q (r) (6(a ,b ;0,0 ;At; n-r +1)+ ) =1. 2 2 2 

6(a
2

,b
2

;2x
2 ,0 ;At;n-r+1))] 

_n-1 
L [q (r) [6(a ,b ;x -x , y -y ;At; n-y +1)+ rri 3 9 9 2 9 2 9 

6(a ,b ;x +x , y 
2 
 -y 

9
;At;n-r+1)}1 9 3 2 9  

- zz 
• 
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c(3)= {R(r) 6(2w,L; x ,y ;At;n-y+1)} 

rn-1 
-L [q (elf 6(a ,b ;x -x , y -y ; At; n-y +1)+ 

6(a
1
,15

1
;x
3
+x

i
, y

9
-5/

1
;At; n-r+1)11 

{6(a ,b ;x -x , y -y ;At; n-r +1)+ 
r=i 2 2 2 9 2 3 2 

6(a
2
,b
2
;x
9
+x
2
, y

9
-y

2
;At;n-y+1)}] 

rn-i 
[q 0,1 {6(a ,b ;0,0;At; n-y +1)+ 

6(a
3

,b
3

;2x9
,0 ;At;n-y+1))] 

-Z 3 

3.3 Results and discussion 

For single Spring 

A recharge of 20 cm is assumed to occur in a span of 120 days 

continuously at a uniform rate of (1/600) m/day through a 

recharging area having W=250m and L=2000m. Variation of spring 

flow with time in response to this recharge has been computed by 

the model and plotted on a linear scale in Fig.8. Out of lx10
5 
 cu.m 

of total recharge to the aquifer, only 0.25 x10
5 
cu.m appears as 

springflow during 240 days after the commencement of recharge. It 

is also found that out of the total recharge, only 0.40x10
5 
 cu.m 

of water appears as springflow and the remaining 0.60x10
5 
 cu.m 

never appears as springflow. 

The springflow during recession has been expressed as (Mandel 

and Shiftan, 1981 ): q(t+At) = q(t) exp(-At/t
0
), where t

o
is known 

as depletion time. The depletion time is a parameter of the spring 

and is the time that will be required to empty the live storage of 

the spring at the present flow rate, i.e.,the dynamic storage at 

any time t is equal to q(t).t . 
o 
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Let S
o 

 is the part of the total recharge which never appears 

as springflow. S has been ascertained from the plot of cumulative 

recharge and cumulative discharge. The dynamic storage at any time 

which will subsequently appear as springflow is equal to the 

difference between the total recharge and the summation of S and 0 

cumulative spring discharge up to that time. Hence, 

t = [ R-
n 
q(y)+S }]/q(n) 

r=1. 
The values of depletion time at 

...(25) 

various time steps (days) 

during recession have been evaluated and are given in Table 1. 

Table 1: Variation of depletion time 

Days after the cessation 
of recharge 

(days) 

Depletion time 
(days) 

80 220 

90 221 

100 224 

110 229 

120 234 

130 240 

140 245 

150 251 

160 258 

170 264 

180 271 

190 278 

200 285 

210 288 

220 294 

230 302 

Perusal of the values of depletion time in Table 1 shows that 

the depletion time which has been assumed as constant varies with 

time and as such the springflow during the recession period does 

not follow strictly the exponcntial decay curve and the springflow 

is not truly linearly proportional to the dynamic storage whicIll 
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will subsequently appear as springflow. From the semilog plot 

(Fig.9) of recession portion of springflow the value of depletion 

Lime is 274. So, using this value of depletion time, the dynamic 

storage of the spring will be overestimated. 

The variation between springflow and the total storage in the 

aquifer due to recharge is depicted in Fig.10. After the cessation 

of recharge after 120 days, the springflow continue to rise for 

another 26 days and then discharge declines. This is depicted by 

the falling line after the loop in the plotting. Fig.11 gives the 

combined plotting of cumulative discharge (firm line), storage 

(dashed line) and cumulative springflow. The cumulative recharge 

increases and becomes constant after the cessation of recharge 

(120 days). The storage also follows similar trend and decreases 

gradually after the cessation of recharge due to spring flow. The 

storage will become more or less constant and will be equal to 

storage which will never appear as springflow. It is estimated 

that the portion of storage which will never appear as spring flow 

is around 60,000 cu.m . The discharge from the spring will be zero 

or negligible when the storage will be constant. 

For Multiple Springs 

Two illustrative configuration of three springs were taken 

for this model. In the first case, all the three springs are in 

one line along X-asis with coordinates (2000m,0), 6000m,0) and 

8000m,0). For the second case, the three springs are on a along 

Y-axis with (2000m,1000),(2000m,0m)and (2000m,-1000m). 

In the first case, the spring 1,2 and 3 get activated after 1 

day, 14 days and 24 days respectively after the onset of recharge. 

In the second case, the central spring(2) which is closer to 

the recharge area is activated after a day and the other two 

springs(1,3) get activated after 2 days after the onset of 

28 



recharge. The discharges from the spring-1 and spring-2 are 

presented in Fig. 12. The discharge of spring-1 is lower than the 

discharge of spring-2. The difference between the two springs 

goes on increasing and is maximum at the time of cessation of 

recharge. It maintains this difference for another two weeks and 

the difference goes on decreasing thereafter the springs hydrogram 

start to fall downwards. These are so as the spring-2 being 

nearer to recharge zone starts with a higher discharge and also 

responds early after the cessation of the recharge in its 

discharge. Eventually the discharges of the spring-1 and 2 become 

equal after the 220 days and the discharge from spring 1 

supersedes the discharge from the spring-2 marginally till the 

onset of next recharge. 

Fig. 13 shows the variation of cumulative recharge and 

cumulative spring discharge with time. Cumulative recharge has 

become constant and plotted as a straight line after the cessation 

of recharge after 120 days. The rate of increase of cumulative 

discharge from springs shows decreasing trend after 165 days i.e. 

after almost one and half months after the cessation of discharge. 

The Computer Program developed for computing the springflow, 

recharge and storage is given in the Appendix. 

The mathematical models developed appears to perform 

reasonably for predicting springflow, but their efficacy should be 

checked with field data. 
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c: CASE OF 3 SPRINGS 
c: 
c: 31-03-93 
c:C THIS PROGRAMME IS TO STUDY DISCHARGE OF A GROUP OF SPRINGS 

IMPLICIT REAL*8(A-H,0-2) 
DIMENSION DELTA(7,3,500),RECH(500),XCORD(7),YCORD(7) 
DIMENSION GW(100),GX(100),AAA(3,3),BBB(3),DISCH(3,500) 
DIMENSION AA(2,2),BB(2),SAL(7),SW(7),PREV(7) 
OPEN(UNIT=1,FILE='SPR3L.DAT',STATUS='OLD') 
OPEN(UNIT=2,FILE='SPR3L.OUT',STATUS=1 NEW) 
READ (1,*)SAL(7),SW(7),XCORD(7),YCORD(7) 
READ (1,*)SAL(1),SW(1),XCORD(1),YCORD(1) 
READ (1,*)SAL(2),SW(2),XCORD(2),YCORD(2) 
READ (1,*)SAL(3),SW(3),XCORD(3),YCORD(3) 
READ (1,*)T,PHI,RECHR 
READ (1,*)NTIME,NRECH 
READ(1,*)(GW(I),I=1,96) 
READ(1,*)(GX(I),I=1,96) 
SAL(7),SW(7)=DIMENSION OF RECHARGE AREA ALONG Y AND X DIRECTION 
SAL(I),SW(I);I=1,3 ARE DIMENSIONS OF THE SPRING OPENING 
DELTA(EXCITATION,RESPONSE,TIME) 
1,2,3 =REAL SPRING LOCATIONS 
7=RECHARGE LOCATION 
4,5,6=IMAGE SPRING LOCATIONS 
SAL(4)=SAL(1) 
SW(4)=SW(1) 
SAL(5)=SAL(2) 
SW(5)=SW(2) 
SAL(6)=SAL(3) 
SW(6)=SW(3) 
XCORD(4)=-XCORD(1) 
XCORD(5)=-XCORD(2) 
XCORD(6)=-XCORD(3) 
YCORD(4)=YCORD(1) 
YCORD(5)=YCORD(2) 
YCORD(6)=YCORD(3) 
DO 53 I=1,NTIME 

53 RECH(I)=0.0 
DO 52 I=1,NRECH 

52 RECH(I)=RECHR 
WRITE(2,78) 

78 FORMAT(3X,'DIMENSION OF RECHARGE AREA'3X,'SAL(7)1 ,9X,'5W(7)') 
WRITE(2,75)SAL(7),SW(7) 

75 FORMAT(27X,2F10.2) 
WRITE(2,68) 

68 FORMAT(2X,'DIMENSION OF SPRING AND THEIR LOCATION') 
WRITE(2,71) 

71 FORMAT(6X,'SAL(1)',7X,'SW(1)',3X,'XCORD(1)1 ,3X,'YCORD(1)') 
WRITE(2,76)SAL(1),SW(1),XCORD(1),YCORD(1) 

76 FORMAT(4F10.2) 
WRITE(2,72) 

72 FORMATI6X,ISAL(8)',7X,'SW(2)',3X,'XCORD(2)',3X,'YCORD(2).) 
WRITE(2,76)SAL(2),SW(2),XCORD(2),YCORD(2) 
WRITE(2,73) 

73 FORMAT(6X,'SAL(3)',7X,'5W(3)',3X,'XCORD(3)3XYCORD(3)') 
WRITE(2,76)SAL(3),SW(3),XCORD(3),YCORD(3) 
WRITE(2,74) 

74 FORMAT(2X,'T',7X,'PHI',5X,'RECHR 1 ,2X,'NRECH') 
WRITE(2,59)T,PHI,RECHR,NRECH 

59 FORMAT(2X,2F10.2,F10.5,I3) 
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500 
114 
513 

DO 513 J=1,7 
DO 514 1=1,3 
PREV(J)=0. 
DO 500 N=1,NTIME 
AN 
CALL HGAUS(GW,GX,T,PHI,AN,SAL(J),SW(J),XCORD(J),YCORD(J),  

I XCORD(I),YCORD(I),RES) 
DELTA(J,I,N)=RES-PREV(J) 
PREV(J)=RES 
CONTINUE 
CONTINUE 
CONTINUE 

AAA(1,1)=DELTA(1,1,1)+DELTA(4,1,1) 
AAA(1,2)=DELTA(2,1,1)+DELTA(5,1,1) 
AAA(1,3)=DELTA(3,1,1)+DELTA(6,1,1) 
AAA(2,1)=DELTA(1,2,1)+DELTA(4,2,1) 
AAA(2,2)=DELTA(2,2,1)+DELTA(5,2,1) 
AAA(2,3)=DELTA(3,2,1)+DELTA(6,2,1) 
AAA(3,1)=DELTA(1,3,1)+DELTA(4,3,1) 
AAA(3,2)=DELTA(2,3,1)+DELTA(5,3,1) 
AAA(3,3)=DELTA(3,3,1)+DELTA(6,311) 

AA(I,1)=DELTA(1,1,1)+DELTA(4,1,1) 
AA(1,2)=DELTA(2,1,1)+DELTA(54,1) 
AA(2,1)=DELTA(1,2,1)+DELTA(4,2,1) 
AA(2,2)=DELTA(2,2,1)+DELTA(5,2,1) 

DO 307 J=1,NTIME 
DO 308 1=1,3 
DISCH(I,J)=0.0 

308 CONTINUE 
307 CONTINUE 

DISCH(1,1)=RECH(1)*DELTA(7,1,1)/(DELTA(1,1,1)+DELTA(4,1,1)) 

N=2 
850 CONTINUE 

SUM1=0. 
SUM2=0. 
SUM11=0. 
DO 802 NGAMA=1,N 

802 SUM1=SUM1+RECH(NGAMA)*DELTA(7,1 
DO 803 NGAMA=1,N-1 
SUM2=SUM2+DISCH(1,NGAMA)*(DELTA 

I +DELTA(4,1,N-NGAMA+1)) 
803 CONTINUE 

DISCH(1,N)=(SUM1-SUM2)/(DELTA(1 
DO 852 NGAMA=1,N 

852 SUM11=SUM11+RECH(NGAMA)*DELTA(7 
1 (DELTA(1,2,N-NGAMA+1)+DELTA(4,2 

IF(SUM11.LE.0.0)G0 TO 853 
GO TO 854 37 

853 N=N+1 
GO TO 850 

,N-NGAMA+1) 

(1,1,N-NGAMA+1) 

,1,1)+DELTA(4,1,1)) 

,2,N-NGA14A+1)-DISCH(1,NGAMA)* 
,N-NGAMA+1)) 



854 CONTINUE 
M=2 
CALL MATIN1(AA,M) 
M=N+1 

865 CONTINUE 
SUM22=0. 
SUM1=0. 
SUM2=0. 
DO Stb NGAMA=1,M 
SUM1=SUM1+RECH(NGAMA)*DELTA(7,1,M-NGAMA+1) 

805 SUM2=SUM2+RECH(NGAMA)*DELTA(7,2,M-NGAMA+1) 
SUM4=0. 
SUMS =0. 
DO 806 NGAMA=1,M-1 
SUM4=SUM4+ 

1 DISCH(1,NGAMA)*(DELTA(1,1,M-NGAMA+1)+DELTA(4,1,M-NGAMA+1))+ 
2 DISCH(2,NGAMA)*(DELTA(2,1,M-NGAMA+1)+DELTA(5,1,M-NGAMA+1)) 

SUM5=SUM5)- 
1 DISCH(1,NGAMA)*(DELTA(1,2,M-NGAMA+1)+DELTA(4,2,M-NGAMA+1))+ 
2 DISCH(2,NGAMA)*(DELTA(2,2,M-NGAMA+1)+DELTA(5,2,M-NGAMA+1)) 

806 CONTINUE 
BB(1)=SUM1-SUM4 
BB(2)=SUM2-SUM5 
DISCH(1,M)=AA(1,1)*BB(1)+AA(1,2)*BB(2) 
DISCH(2,M)=AA(2,1)*BB(1)+AA(2,2)*BB(2) 
DO 866 NGAMA=1,M 
SUM22=SUM22+RECH(NGAMA)*DELTA(7,3,M-NGAMA+1)- 

1 DISCH(1,NGAMA)*(DELTA(1,3,M-NGAMA+1)+DELTA(4,3,M-NGAMA+1))- 
2 DISCH(2,NGAMA)*(DELTA(2,3,M-NGAMA+1)+DELTA(5,3,M-NGAMA+1)) 

866 CONTINUE 
IF(SUM22.LE.0.0)G0 TO 867 
GO TO 868 

867 M=M+1 
GO TO 865 

868 CONTINUE 
N=3 
CALL MATIN (AAA,N) 
DO 555 N=m+1,NTIME 
SUM1=0. 
SUM2=0. 
SUM3=0. 
DO 666 NGAMA=1,N 
SUM1=SUM1+RECH(NGAMA)*DELTA(7,1,N-NGAMA+1) 
SUM2=SUM2+RECH(NGAMA)*DELTA(7,2,N-NGAMA+1) 

666 SUM3=SUM3+RECH(NGAMA)*DELTA(7,3,N-NGAMA+1) 
SUM4=0. 
SUM5=0. 
SUM6=0. 
DO 777 NGAMA=1,N-1 
SUM4=SUM4+ 

1 DISCH(1,NGAMA)*(DELTA(1,1,N-NGAMA+1)+DELTA(4,1,N-NGAMA+1))+ 
2 DISCH(2,NGAMA)*(DELTA(2,1,N-NGAMA+1)+DELTA(5,1,N-NGAMA+1))+ 
3 DISCH(3,NGAMA)*(DELTA(3,1,N-NGAMA+1)+DELTA(6,1,N-NGAMA+1)) 

SUM5=SUM5+ 
1 DISCH(1,NGAMA)*(DELTA(1,2,N-NGAMA+1)+DELTA(4,2,N-NGAM4+1))+ 
2 DISCH(2,NGAMA)*(DELTA(2,2,N-NGAMA+1)+DELTA(5,2,N-NGAMA+1))+ 
3 DISCH(3,NGAMA)*(DELTA(3,2,N-NGAMA+1)+DELTA(6,2,N-NGAMA+1)) 

SUM6=SUM6+ 
1 DISCH(1,NGAMA)*(DELTA(1,3,N-NGAMA+1)+DELTA(4,3,N-NGAMA+1))+ 
2 DISCH(2,NGAMA)*(DELTA(2,3,N-NGAMA+1)+DELTA(5,3,N-NGAMA+1))+ 
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3 DISCH(3,NGAMA)*(DELTA(3,31 N-NGAMA+1)+DELTA(6,3,N-NGAMA+1))  

777 CONTINUE 
BBB(1)=SUMI-SUM4 
BBB(2)=SUM2-SUM5 
BBB(3)=SUM3-SUM6 
DISCH(1,N)=AAA(1,1)*BBB(1)+AAA(1,2)*BBB(2)+AAA(1,3)*BBB(3) 
DISCH(2,N)=AAA(2,1)*BBB(1)+AAA(2,2)*BBB(2)+AAA(2,3)*8BB(3) 
DISCH(3,N)=AAA(3,1)*BBB(1)+AAA(3,2)*BBB(2)+AAA(3,3)*BBB(3) 

555 CONTINUE 
CUMDIS=0.0 
CUMREC=0.0 
WRITE(2,51) 

51 FORMAT(5X,'TIME',3X,'FLOW1',2X,'FLOW2',2X,'FLOW3', 
1 2X,'CFLOW',5X,'CUMDIS',5X,'STORAGE') 

DO 888 N=I,NTIME 
CUMDIS=CUMDIS+DISCH(1,N)+DISCH(2,N)+DISCH(3,N) 
CUMREC=CUMREC+RECH(N)*SAL(7)*SW(7)*0.50  
STOR=CUMREC-CUMDIS 
WRITE(2,13)N,DISCH(1,N),DISCH(2,N),DI8CH(3,N),CUMDI8,CUMREC,STOR 

13 FORMAT(I5,6E11.3) 
888 CONTINUE 

STOP 
END 

C 
SUBROUTINE ERF(X,ERFX) 
IMPLICIT REAL*8(A-H2O-Z) 
XINDEX=X 
IF(X)4,5,5 

4 X=-X 
5 CONTINUE 

IF(X-9.)1,2,2 
1 CONTINUE 

T=1.0/(1.0+0.3275911*X) 
ERFX=1.0-(0.25482959*T-0.28449673*T**2+1.4214137*T**3  

1 -1.453152*T**4+1.061405*T**5)*DEXP(-X**2) 
GO TO 3 

2 ERFX=1. 
3 CONTINUE 

IF(XINDEX)6,7,7 
6 ERFX=-ERFX 
7 CONTINUE 

RETURN 
END 

SUBROUTINE HGAUS(GW,GX,T,PHI,AN,AL,W,X1,Y1,X2,Y2,RES) 
IMPLICIT REAL*8(A-H2O-Z) 
DIMENSION GW(100),GX(100) 
ALPHA=T/PHI 
X=X2-X1 
Y=Y2-Y1 
C1=(ALPHA*AN)**0.5 
TERM1=(W*.5+X)*.5/C1 
TERM2=(W*.5-X)*.5/C1 
TERM3=(AL*.5+Y)*.5/C1 
TERM4=(AL*.5-Y)*.5/C1 
IF(DABS(Y).LE.0.001)G0 TO 200 
CALL GAUSSQ(GW,GX,TERM1,TERM3,RES1) 
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SUM 1 = RES 1 
CALL GAUSSQ(GW,GX,TERM2,TERM3,RES1) 
SUM2=RES1 
CALL GAUSSQ(GW,GX,TERM1,TERM4,RES1) 
SUM3=RES1 
CALL GAUSSQ(GW,GX,TERM2,TERM4,RES1) 
SUM4=RES1 
RES=0.25/1311I*AN*(SUM1+SUM2+SUM3+SUM4) 
RETURN 

200 CONTINUE 
IF(DABS(X).LE.0.001) GO TO 100 
CALL GAUSSQ(GW,GX,TERM1,TERM3,RES1) 
SUM1=RES1 
CALL GAUSSQ(GW,GX,TERM2,TERM3,RES1) 
SUM2=RES1 
RES=0.25/PHI*AN*2.0*(SUM1+SUM2) 
RETURN 

100 CONTINUE 
CALL GAUSSQ(GW,GX,TERM1,TERM3,RES1) 
RES=AN*RES1/PHI 
RETURN 
END 
SUBROUTINE GAUSSQ(GW,GX,A,B,RES1) 
implicit real*8 (a-h,o-z) 
DIMENSION GW(100),GX(100) 
RES1=0.0 
DO 100 1=1,96 
Y=GX(I) 
X=A/(0.5+0.5*Y)**0.5 
CALL ERF(X,ERFX) 
F1=ERFX 
X=B/(0.5+0.5*Y)**0.5 
CALL ERF(X,ERFX) 
F2=ERFX 
RES1=RES1+(F1*F2)*GW(I) 

100 CONTINUE 
RES1=RES1*0.50 
RETURN 
END 
SUBROUTINE MATIN (AAA,MMM) 
implicit real*8 (a-h,o-z) 
DIMENSION AAA(3,3),B(3),C(3) 
NN=MMM-1 
AAA(1,1)=1./AAA(1,1) 
DO 8 M=1,NN 
K=M+1 
DO 3 I=1,M 
B(I)=0.0 
DO 3 J=1$ M 

3 B(I)=B(I)+AAA(I,j)*AAA(J,K) 
D=0.0 
DO 4 I=1,M 

4 D=D+AAA(K,I)*B(I) 
D=-D+AAA(K,K) 
AAA(K,K)=1./D 
DO 5 I=1,M 

5 AAA(I,K)=-B(I)*AAA(K,K) 
DO 6 J=1,M 
C(J)=0.0 40 
DO 6 I=1,M 



6 C(J)=C(J)+AAA(K,I)*AAA(I,J) 
DO 7 J=1,M 

7 AAA(K,J)=-C(J)*AAA(K,K) 
DO 8 I=1,M 
DO 8 J=1,M 

8 AAA(I,J)=AAA(I,J)-B(I)*AAA(K,J) 
RETURN 
END 
SUBROUTINE MATIN1 (AA,MMM) 
implicit real*8 (a-h,o-z) 
DIMENSION AA(2,2),B(2),C(2) 
NN=MMM-1 
AA(1,1)=1./AA(1,1) 
DO 8 M=1,NN 
K=M+1 
DO 3 I=1,M 
B(I)=0.0 
DO 3 J=1,M 

3 B(I)=B(I)+AA(I,J)*AA(J,K) 
D=0.0 
DO 4 I=1,M 
D=D+AA(K,I)*B(I) 
D=-D+AA(K,K) 
AA(K,K)=1./D 
DO 5 I=1,M 

5 AA(I,K)=-B(I)*AA(K,K) 
DO 6 J=1,M 
C(J)=0.0 
DO 6 I=1,M 

6 C(J)=C(J)+AA(K,1)*AA(I,J) 
DO 7 J=1,M 

7 AA(K,J)=-C(J)*AA(K,K) 
DO 8 I=1,M 
DO 8 J=1,M 

8 AA(I,J)=AA(I,J)-B(I)*AA(K,J) 
RETURN 
END 
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