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PREFACE 

The rise of water from a shallow water table can in some 

cases serve the useful purpose of supplying water to the root zone 

of crops. On the other hand, this process also entails the hazard 

of salinization, especially where the ground waters are brackish 

and potential evaporativity is high. Excessive irrigation tends 

to raise the water table and thus aggravate the salinization 

problem. Lowering the water table by drainage can decisively 

reduce the rate of capillary rise and evaporation. Drainage is a 

costly operation, however, and it is therefore necessary, ahead of 

time, to determine the optimal depth to which the water table 

should be lowered. Among the important considerations in this 

regard is the necessity to limit the rate of capillary rise to the 

surface. 

This report entitled 'Prediction of Evaporation Losses 

from Shallow Water Table using a Numerical Model' is a part of the 

research activities of 'Ground Water Assessment' division of the 

Institute. The purpose of this study is to estimate the steady 

state evaporation from bare soils with a high water table. The 

study has been carried out by Mr. Chandra Prakash Kumar, Scientist 

'C' under the guidance of Dr. G.C.Mishra, Scientist 'F'. 

15 ati,jo. 
(SATISH CHANDRA) 

Director 
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ABSTRACT 

A steady state flow problem of interest and importance 

is the upward movement of water from a water table and subsequent 

evaporation at the soil surface. This information is desirable 

when estimating water loss from soils by evaporation and 

estimating the amount of ground water available to plants due to 

the upward movement of water from a water table. Soils may also 

become saline due to the upward movement of saline ground water 

and its subsequent evaporation at the soil surface. To minimize 

the rate of salt accumulation and thus reduce the salinity hazard, 

attempts are usually made to lower the water table by pumping or 

by installation of drains. In order to determine what depth to 

water table should be maintained, the relation between depth to 

water table, soil properties, and evaporation rate must be known. 

The purpose of this study is to estimate the steady 

state evaporation rates from bare soils under conditions of high 

water table. A finite difference numerical scheme based upon the 

one-dimensional Richards equation has been employed to attain the 

steady state moisture profiles and estimate the evaporation rates 

under conditions of high water table. The procedure takes into 

account the relevant atmospheric factors and the soil's capability 

to conduct water. Field data required include soil water 

retention curves, water table depth, and a record of air 

temperature and air humidity. Results obtained with the method 

demonstrate how the soil water evaporation rates depend on water 

table depth and suction prevailing at the soil surface. 



1.0 INTRODUCTION 

Evaporation in the field can take place from plant 

canopies, from the soil surface, or from a free-water surface. 

Evaporation from plants, called transpiration, is the principal 

mechanism of soil-water transfer to the atmosphere when the soil 

surface is covered with vegetation. When the surface is at least 

partly bare, evaporation can take place from the soil as well as 

from plants. These two interdependent processes are commonly 

lumped together and treated as if they were a single process, 

called evapotranspiration. 

In the absence of vegetation, and when the soil surface 

is subject to radiation and wind effects, evaporation occurs 

directly and entirely from the soil. It is a process which, if 

uncontrolled, can involve very considerable losses of water in 

both irrigated and unirrigated agriculture. Under annual field 

crops, the soil surface may remain largely bare throughout the 

periods of tillage, planting, germination, and early seedling 

growth, periods in which evaporation can deplete the moisture of 

the surface soil and thus hamper the growth of young plants during 

their most vulnerable stage. Rapid drying of a seedbed can thwart 

germination and thus doom an entire crop from the start. The 

problem can also be acute in young orchards, where the soil 

surface is often kept bare continuously for several years, and in 

dryland farming in arid zones, where the land is regularly 

fallowed for several months to collect and conserve rainwater from 

one season to the next. 

Evaporation of soil water involyes not only loss of 

water but also the danger of soil salinization. This danger is 

felt most in regions where irrigation water is scarce and possibly 

brackish and where annual rainfall is low, as well as in regions 
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with a high ground water table . Where a ground water table occurs 

close to the surface, continual flow may take place from the 

saturated zone beneath through the unsaturated soil to the 

surface. If this flow is more Or less steady, continued 

evaporation can occur without materially changing the soil 

moisture content (though cumulative salinization may take place at 

the surface). In the absence of shallow ground water, on the 

other hand, the loss of water at the surface and the resulting 

upward flow of water in the profile will necessarily be a 

transient state process causing the soil to dry. A proper 

formulation of an evaporation process should account for spatial 

and temporal variability, as well as for interactions with the 

above ground and below ground environment. 

It is desirable to estimate the evaporation rates from 

bare land surfaces and to predict the variation of these rates 

with meteorological conditions or with man-imposed changes in the 

water table level. This estimate might be rather important in 

certain regions during the appraisal of ground water availability. 

For such purposes, it is often both permissible and useful to 

assume steady state of the hydraulic gradient driven upward flux 

of water and to neglect certain effects of soil temperature and of 

solute accumulations. The basic approaches required for the 

development of this method can be found in the literature. 

Convenient equations were suggested for describing hydraulic 

conductivity, the most relevant soil parameter, and from it 

methods were developed for evaluating soil-limited evaporation in 

cases of high water table. It was also shown how the effects of 

the soil factors on bare soil evaporation interact with the 

effects of the atmospheric parameters on bare soil evaporation. 
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However, all the studies concerned themselves with homogeneous 

soils and mainly with cases involving liquid transfer. 

In the present study, steady state evaporation rates 

from bare soils under high water table conditions have been 

estimated by using a finite difference numerical scheme for 

solution of the one-dimensional Richards equation. The evaporation 

rates are shown to be related to the water table depth and the 

climatic factors. 



2.0 REVIEW 

2.1 Physical Conditions 

Three conditions are necessary if the evaporation 

process from a given body is to persist. First, there must be a 

continual supply of heat to meet the latent heat requirement 

(which is about 590 cal/gm of water evaporated at 15°C). This heat 

can come from the body itself, thus causing it to cool, or as is 

more commonly the case, it can come from the outside in the form 

of radiated or advected energy. Second, the vapour pressure in the 

atmosphere over the evaporating body must remain lower than the 

vapour pressure at the surface of that body (i.e., there must be a 

vapour pressure gradient between the body and the atmosphere), and 

the vapour must be transported away, by diffusion or convection, 

or both. These two conditions - namely, supply of energy and 

removal of vapour - are generally external to the evaporating body 

and are influenced by meteorological factors such as air 

temperature, humidity, wind velocity and radiation, which together 

determine the atmospheric evaporativity (the maximal flux at which 

the atmosphere can vapourize water from a free water surface). 

The third condition is that there be a continual supply 

of water from or through the interior of the body to the site of 

evaporation. This condition depends upon the content and potential 

of water in the body as well as upon its conductive properties, 

which together determine the maximal rate at which the body can 

transmit water to the evaporation site. Accordingly, the actual 

evaporation rate is determined either by external evaporativity or 

by the soil's own ability to deliver water, whichever is the 

lesser ( and hence the limiting factor). 

4 



2.2 Capillary Rise from a Water Table 

The rise of water in the soil from a free water surface 

(i.e., a water table) has been termed capillary rise. This term 

derives from the capillary model, which regards the soil as 

analogous to a bundle of capillary tubes, predominantly wide in 

the case of a sandy soil and narrow in the case of a clay soil. 

Accordingly, the equation relating the equilibrium height of 

capillary rise h
e 
to the radii of the pores is 

h - 
2 r cos a 
r p

w 
g 

where r is the surface tension, r the capillary radius, p
w 
 the 

water density, g the gravitational acceleration, and a the wetting 

angle, normally ( though not always justifiably) taken as zero. 

This equation predicts that water will rise higher, albeit less 

rapidly, in a clay than in a sand. However, soil pores are not 

capillary- tubes of uniform or constant radii, and hence the height 

of capillary rise will differ in different pores. Above the water 

table, matric suction will generally increase with height. 

Consequently, the number of water filled pores, and hence wetness, 

will decrease in each soil as a function of height. The rate of 

capillary rise, i.e., the flux , generally decreases with time as 

the soil is wetted to greater height and as equilibrium is 

approached. 

The wetting of an initially uniformly dry soil by upward 

capillary flow, illustrated in figure 1, is a rare occurrence in 

the field. In its initial stages, this process is similar to 

infiltration, except that it takes place in the opposite 
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FIG, 1 - THE UPWARD INFILTRATION OF WATER FROM A WATER 
TABLE INTO A DRY SOIL 
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direction. At later stages of the process, the flux does not tend 

to a constant value, as in downward infiltration, but to zero. The 

reason is that the direction of the gravitational gradient is 

opposite to the direction of the matric suction gradient, and when 

the latter (which is large at first but decreases with time) 

approaches the magnitude of the former, the overall hydraulic 

gradient approaches zero. 

Such an ideal state of static equilibrium between the 

gravitational head and the suction head is the exception rather 

than the rule under field conditions. In general, the condition of 

soil water is not static but dynamic - that is to say, constantly 

in a state of flux rather than at rest. Where a water table is 

present, soil water generally does not attain equilibrium even in 

the absence of vegetation, since the soil surface is subject tq, 

solar radiation and the evaporative demand of the ambient 

atmosphere. However, if soil and external conditions are constant, 

that is, if the soil is of stable structure, the water table is 

stationary, and atmospheric evaporativity also remains constant 

(at least approximately) - then, in time, a steady state flow 

situation can develop from water table to atmosphere via the soil. 

However, in the field the flow regime will at best be a 

quasi-steady state, since diurnal fluctuations and other 

perturbations will prevent attainment of truly stable flow 

conditions. Nevertheless, the representation of this process as a 

steady state flow is a useful approximation from the analytical 

point of view. 

2.3 Steady Evaporation in the Presence of a Water Table 

The steady state upward flow of water from a water table 

through the soil profile to an evaporation zone at the soil 
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dh 
Z = f  = f 

+ 

dh 
K(h)+q 
K(h) 

surface was first studied by Moore (1939). Theoretical solutions 

of the flow equation for this process were given by several 

workers, including Gardner (1958), Anat et al. (1965), and Ripple 

et al. (1972). 

The equation describing steady upward flow is 

q = K(h) (---
dh  
- - 1) 

dZ 

de 
or q = D(0) a2  - K(C) 

where q is flux ( equal to the evaporation rate under steady state 

conditions), h suction head 

conductivity of the soil, D 

water content, and Z height 

shows that flow stops ( q = 

equation (2) is 

( soil water pressure), K hydraulic 

soil water diffusivity, C volumetric 

above the water table. The equation 

0) when dh/dZ = 1.Another form of 

 

dh 
+ 1 = -- 

dZ K(h) 

Integration should give the relation between depth and 

suction or wetness: 

or 

de 
K(e) + q 

In order to perform the integration in 

must know the functional relation between K and 

Z = 
D(e) 

equation (5), we 

h, i.e., K(h). 
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dh 
(--- - 1) 

h
n 
+ b 

dZ e = q = 
a 

Similarly, the functions D(e) and K(e) must be known if equation 

(6) is to be integrated. An empirical equation for K(h), given by 

Gardner (1958), is 

a 
K(h) - 

 

h
n 
+ b 

where the parameters a, b, and n are constants which must be 

determined for each soil. Accordingly, equation (2) becomes 

where e is the evaporation rate. 

With equation (7), equation (5) can be used to obtain 

suction distributions with height for different fluxes, as well as 

fluxes for different surface suction values. The steady rate of 

capillary rise and evaporation therefore depend on the depth of 

the water table and on the suction at the soil surface. This 

suction is dictated largely by the external conditions, since the 

greater the atmospheric evaporativity, the greater the suction at 

the soil surface upon which the atmosphere is acting. However, 

increasing the suction at the soil surface, even to the extent of 

making it infinite, can increase the flux through the soil only 

upto an asymptotic maximal rate which depends on the depth of the 

water table. Even the driest and most evaporative atmosphere can 

not steadily extract water from the surface any faster than the 

soil profile can transmit from the water table to that surface. 

The fact that the soil profile can limit the rate of evaporation, 

is a remarkable and useful feature of the unsaturated flow 
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system. The maximal transmitting ability of the profile depends on 

the hydraulic conductivity of the soil in relation to the suction. 

Disregarding the constant b of equation (7), Gard
iner 

(1958) obtained the function 

Aa 
max 

d
n 

where d is the depth of the water table below the soil surface, a 

and n are constants from equation (7), A is a constant which 

depends on n, and q
max is the limiting (maximal) rate at which the 

soil can transmit water from the water table to the evaporation 

zone at the surface. 

The actual steady evaporation rate is determined either 

by the external evaporativity or by the water transmitting 

properties of the soil, depending on which of the two is lower, 

and therefore limiting. Where the water table is near the surface, 

the suction at the soil surface is low and the evaporation rate is 

determined by external conditions. However, as the water table 

becomes deeper and the suction at the soil surface increases, the 

evaporation rate approaches a limiting value regardless of how 

high external evaporativity may be. 

Equation (9) suggests that the maximal evaporation rate 

decreases with water table depth more steeply in coarse-textured 

soils (in which n is greater) than in fine-textured soils. 

Nevertheless, a sandy loam soil can still.evaporate water at an 

appreciable rate even when the water table is as deep as 180 cm. 

The subsequent contributions of a number of workers 

have generally accorded with the above theory. Anat et al.(1965) 

developed a modified set of equations employing dimensionless 
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variables. Their theory also leads to a maximal evaporation rate 

e
max 

varying inversely with water table depth d to the power of n: 

1.886 
1+ 

e = 
max 

 
d
n 

A theoretical analysis of steady evaporation from a two 

layered soil profile was carried out by Willis (1960), with the 

following assumptions: (a) the steady flow through the layered 

profile is governed only by the transmission properties of the 

profile ( external evaporativity taken to be infinite); (b) 

matric suction is continuous at and through the interlayer 

boundary, though wetness and conductivity may be discontinuous 

(i.e.,change abruptly); (c) the same empirical K(h) function given 

by equation (7) holds for both layers, but the values of 

parameters a,b, and n are different ; and (d) each soil layer is 

internally homogeneous. With these assumptions, equation (5) leads 

to 

d+L hL h
L+d 

dh dh 
dZ + S dZ = + ...(11) 

0 L h
o 

1+e/K
1 
 (h) h 1+e/K

2 
 (h) 

where L and d are the thicknesses of the bottom and top layers, 

respectively. The integral in this equation relates water table 

depth L+d to the suction at the soil surface for any given 

evaporation rate. By assuming that the suction at the soil surface 

is infinite, one can calculate the limiting (maximal) evaporation 

rate for any given water table depth and profile layering 

sequence. Willis developed a graphical method for obtaining the 

necessary solution. 

(n
2 
+1) 
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All of the above treatments apply to cases in which soil 

properties are the sole factor determining the evaporation rate. A 

more realistic approach should include cases in which 

meteorological conditions can also play a role. A more flexible 

treatment of steady state evaporation from multilayer profiles 

might also be based on numerical, rather than analytical or 

graphical, methods of solution. Such an approach was indeed 

developed by Ripple et al.(1972). Their procedure makes it 

possible to estimate the steady state evaporation from bare soils 

(including layered ones) with a high water table. The field data 

required include soil moisture characteristic curves, water table 

depth, and standard elevation records of air temperature, air 

humidity, and wind velocity The theory takes into account both 

the relevant atmospheric factors and the soil's capability to 

transmit water in liquid and vapour forms. The possible effects of 

thermal transfer (except in the vapour phase) and of salt 

accumulation are still neglected. 
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3.0 PROBLEM DEFINITION 

The direct evaporation of water from the soil surface 

often involves considerable losses of water and involves the 

hazard of salinizing the top layers of the soil. This danger 

becomes more acute in regions where a high ground water table 

exists. In order to minimize water losses as well as reduce the 

rate of soil salinization, one has to evaluate the possibilities 

of reducing evaporation by studying the water flow patterns 

through the soil. 

The objective of the present study is to determine the 

evaporation from shallow water tables through a homogeneous soil 

profile under isothermal conditions on the basis of solutions of 

the water flow equation. The steady state upward water flow from a 

shallow water table through the soil toward its surface is 

described by the nonlinear Richards equation. A numerical model 

(finite difference scheme) is used for solving the partial 

differential equation describing one-dimensional water flow 

through the unsaturated porous medium. Steady state moisture 

profile is obtained for the given initial and boundary conditions 

and the steady state evaporation rate is estimated by using 

Darcy's law. The evaporation rate can be limited either by the 

external evaporative conditions or by the maximal rate at which 

the soil can transmit water to its surface. If the water table is 

near the soil surface, the external conditions will govern the 

evaporation rate; whereas, if the water table becomes deeper, the 

evaporation rate approaches a limiting value which is determined 

by the soil profile capabilities of water transmission regardless 

13 



of the external conditions. The effect of water table depth and 

suction at the soil surface (dictated by the atmospheric 

evaporativity) on the actual steady evaporation rate is therefore 

examined by varying depth of the water table, temperature and 

humidity of the air. 
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4.0 METHODOLOGY 

4.1 General 

Most of the processes involving soil water flow in the 

field, and in the rooting zone of most plant habitats, occur while 

the soil is in an unsaturated condition. Unsaturated flow 

processes are in general complicated and difficult to describe 

quantitatively, since they often entail changes in the state and 

content of soil water during flow. Such changes involve complex 

relations among the variable water content, suction, and 

conductivity, which may be affected by hysteresis The 

formulation and solution of unsaturated flow problems very often 

require the use of indirect methods of analysis, based on 

approximations or numerical techniques. 

4.2 Soil Water Flow 

A proper physical description of water flow in the soil 

requires that three parameters be specified : flux, hydraulic 

gradient, and conductivity. Knowledge of any two of these allows 

the calculation of the third, according to Darcy's law. This law 

states that the flux equals the product of conductivity by the 

hydraulic gradient . Darcy's law has been found to apply for 

unsaturated as well as for saturated soils, but the pressure 

gradient at unsaturation becomes a suction gradient, and the 

hydraulic conductivity is no longer constant, but a function of 

water content or suction. Since the conductivity depends on the 

number, sizes, and shapes of the conducting pores, its value is 

greatest when the soil is saturated, and decreases steeply when 

15 



the soil water suction increases and the soil loses moisture. 

Darcy's law suffices to describe water flow under steady state 

conditions, but must be combined with the continuity equation to 

describe unsteady ( transient state) flow. According to Darcy's 

law, for one dimensional vertical flow, the volumetric flux 

q(cm
3
/cm

2
/h) can be written as 

Or 

a 
q = - K 52  (h-z) (cm/h) 

,oh 
q = - K (-- - 1) (cm/h) 

aZ 

where K is the hydraulic conductivity ( cm/h), h is the soil water 

pressure head ( relative to the atmosphere) expressed in cm of 

water and Z is the gravitational head ( cm) considered positive in 

downward direction. 

In order to get a complete mathematical description for 

unsaturated flow, we apply the continuity principle ( Law of 

Conservation of Matter) 

de _ eq.  
5 - 5Z ( /h) 

where e is soil moisture content expressed in cm
3 
 /cm

3 
and t is 

time in hours. 

Substitution of equation ( 12) into equation (13) yields 

the partial differential equation 

Oe 
= a  [ ( 1)] ai ai 

Equation (14) is a second order, parabolic type of 

partial differential equation ( known as Richards equation) which 
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is- non-linear because of the dependendy of K and h on 9 (linearity 

means that the coefficients in a differential equation are only 

functions of the independent variables Z and t). To avoid the 

problem of the two dependent variables e and h, the derivative of 

S with respect to h can be introduced, which is known as the 

specific water capacity C 

de 
c --- dh (/cm) ...(15) 

In equation (15) a normal instead of a partial 

derivative notation is used, because h is considered here as a 

single value function of 9 ( no hysteresis). 

Writing 
ae de an 
5i- = aR- • 5i 

and substituting equation (15) into equation (14) yields 

Oh an C(h) hi  = hi  [ K (h) ( -hi  - 1) ] ... (17) 

In equation (17) the coefficients C and K are functions 

of the dependent variable h, but not functions of the derivatives 

oh/at and aniaz. Written in this form, equation (17) provides the 

basis for predicting soil water movement in layered soils of which 

each layer may have different physical properties. 

4.3 Initial and Boundary Conditions 

To obtain a solution for the one dimensional vertical 

flow equation, equation (17) must be supplemented by appropriate 

initial and boundary conditions. 
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As initial condition ( at t = 0) the pressure head is 

specified as a function of the depth Z 

( Z, t = 0) = h
o 

As hysteresis is not considered in this study, this 

condition is equivalent to 

( z, t = 0) = s ... (19) 

One can then easily obtain the value of h (and vice versa) from 

the expression : h = f (e). 

To describe the boundary conditions one can distinguish 

between three types: 

(a) Dirichlet condition: specification of the dependent 

variable, the pressure head 

( Z=0, t) = h 

( Z=L, t) =h 
...(20) 

These conditions are equivalent to 

Z =0,t) = eu 
 

( z=1,,t) = 

18 



(0,t) 
RT(t) 

ln [f(t)] ...(23) 
Mg 

Neumann condition: specification of the derivative of 

the pressure head. For the soil water problem this 

condition means a specification of the flow through the 

boundaries 

ah 
q(t) = - K (h) ( -5i  - 1) ...(22) 

'Mixed' condition, a combination of the first two types. 

In particular this can specify 

at the lower boundary and 

at the upper boundary. 

If the relative humidity (f) and the temperature of the 

air (I) as a function of time are known, and if it may be assumed 

that the pressure head at the soil surface is at equilibrium with 

the atmosphere, then h(0,t) can be derived from the thermodynamic 

relation (Edlefson and Anderson, 1943): 

where R is the universal gas constant (8.314x10
7 
erg/mole/K), T is 

the absolute temperature (K), g is acceleration due to gravity 

(980.665 cm/5
2
), M is the molecular weight of water (18 gm/mole), 

f is the relative humidity of the air (fraction) and h is in bars. 

Knowing h(0,t), e(0,t) can be derived from the soil water 

retention curve. 

For the present study, initial condition has been 

defined by equation (19) as 

(Z, t = 0) = 0.10 ...(24) 
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and the upper boundary condition has been obtained by equation 

(23). The phreatic surface acts as lower boundary of the system in 

case of a shallow ground water table. The lower boundary condition 

has therefore been set as ( Dirichlet type, equation 21): 

0 (Z = L, t) = es 
...(25) 

where L is the depth of the ground water table and the subscript s 

denotes saturated condition. 

4.4 Soil Moisture Characteristics 

For the present study, functional relations, as reported 

by Haverkamp et al.(1977), for characterizing the hydraulic 

properties of a soil, were used. They compared six models, 

employing different ways of discretization of the non-linear 

infiltration equation in terms of execution time, accuracy, and 

programming considerations. The models were tested by comparing 

water content profiles calculated at given times by each of the 

model with results obtained from an infiltration experiment 

carried out in the laboratory. All models yielded excellent 

agreement with water content profiles measured at various times. 

The infiltration experiments were done in the laboratory 

using a plexiglass column, 93.5 cm long and 6 cm inside diameter 

uniformly packed with sand to a bulk density of 1.66 gm/cm
3
. The 

column was equipped with tensiometers at depths of 7, 22, 37, 52, 

67 and 82 cm below the soil surface. Each tensiometer had its own 

pressure transducer. The changes of water content at different 

depths were obtained by gamma ray attenuation using a source of 

Americium-241. A constant water pressure (0 = 0.10) was maintained 

at the lower end of the column, a constant flux (13.69 cm/h) was 
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imposed at the soil surface (Z = 0) and initial condition as e = 

0.10 throughout the depth. The hydraulic conductivity and water 

content relationship of the soil was obtained by analysis of the 

water content and water pressure profiles during transient flow. 

The soil water pressure and water content relationship was 

obtained at each tensiometer depth by correlating tensiometer 

readings and water content measurements during the experiments. 

The following analytical expressions, obtained by a least square 

fit through all data points were chosen for characterizing the 

soil: 

A 
K = K  

A + h101 ; 
...(26) 

K
s 

= 34 cm/h, 

A = 1.175 x10
6
, 

= 4.74. 

a ( e
s 
-e  

r
) 

and =  

G
s 

= 0.287, 

A
r 

= 0.075, 
6 

a = 1.611 x 10 , 

= 3.96, 

where subscript s refers to saturation, i.e. the value of a for 

which h = 0, and the subscript r to residual water content. 
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Figure 2 present the relationships between the soil 

water pressure h, the water content e and the hydraulic 

conductivity K for the above soil used in this study. 

4.5 Finite Difference Approximation 

Equation (17) is a non-linear partial differential 

equation (PDE) because the parameters K(h) and C(h) depend on the 

actual solution of h(Z,t). The non-linearity of the equation 

causes problems in its solution. Analytical solutions are known 

for special cases only. The majority of practical field problems 

can only be solved by numerical methods. In this respect one can 

use either explicit or implicit methods. Although an implicit 

approach is more complicated, it is preferable because of its 

better stability and convergence . Moreover, it permits relatively 

large time steps thus keeping computer costs low. For a given grid 

point at a given time, the values of the coefficients C(h) and 

K(h) can be expressed either from their values at the preceding 

time step ( explicit linearization) or from a prediction at time 

(t+1/2 At) using a method described by Douglas and Jones, 1963 

(implicit linearization). 

Let us now solve equation (17) by a finite difference 

technique and appropriate initial and boundary conditions. We have 

Oh _ ah 
c  at - 5i [K ( 5i-  - 1)1  

or 
Oh 
at 

0h_ 
az 1) + K 

a2h 

0z
2 

or 
C ah 
K at 

0
2
h 1 alc Oh 

5i ( 5i 
az2 

- 1) ... (28) 
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Using implicit evaluation of the coefficients at time 

(t+1/2 At), that is values for K and C are obtained at time 

(t+1/2 At), then pressure distribution is evaluated at time 

(t+At). The partial differential equation is approximated by a 

finite difference equation replacing at and az by At and AZ, 

respectively. 

Prediction C estimation of Ciand 
1 

From equation (28), by taking time step as At/2, we have 

j+1/2- hj j+1/2 
- 2h '2 

j+1/2 2C. h. h
i+1 

+ h. 
1 1 1 1-1 

K. 
1 

At (AZ)
2 

+ 
K
i+ 
i 

1 
- Ki hi - hi . 

1 1-1 i+1 i-1 

K.
J  

2AZ 2AZ 
1 

1] 

where i refers to depth and j refers to time. Rearranging the 

terms, we get 

At j+1/2 2CJ  
2At j+1/2 Li j+1/2 h. + [     ] h.

2 
h
i+1 

(AZ)
2 1-1 

(AZ)
2 1 

(AZ) 

2Ci Ki -K'?  
i h

j 
-h'? 

i j 1 i+1 1-1 At i+1 i-1 
h. + I j 1 2 Az 

K. K.J 2AZ 
1 1 

1] ...(29) 
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j+1/2 
K. 2AZ 2AZ 1 

1 
Kj+1/2 

- K
j+1/2 

h "22 
 

1+1 1-1
[ 

1+1 hi-1
0 1] 

Correction ( estimation of h
j 

) 

From equation (28), by taking time step as At, we have 

j+1/2 
h
j+1 j j+1 - j+1 j+1 

h
j 

-2hj+hj C. - h. 2h. + h 1 i 1 1  h1+1 1-1 1 1+1 i 1-1
] - 2[ 

+ 
K. At (AZ)

2 
(AZ)

2 
i 

Rearranging the terms, we get 

j+ At j+1 
C1/2 
. 1 1 At j+1 1 At  

K 

j+1 - h. + [ 
j+1/2 

+ 
(AZ)0 

 ] 
(AZ) 

h. 2 1 2 2 1+1 (AZ)
2 1-1 

. ` 1 

j+1/2 

+ 1 At   h [ h - 2 h + j 
. 

(Az)
2 i.+1 

] +1/2 2 1-1 

K
j+1/2 

h
j+1/2  - K

j +1/2  
-  1 1+1 1-1 At  1+1 

h
1-1  + [ 1 ] 2 j+1/2 Az K. 2AZ 1 

...(30) 

When equation (29) or (30) is applied at all nodes, the 

result is a system of simultaneous linear algebraic equations with 
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a tridiagonal coefficient matrix with zero elements outside the 

diagonals and unknown values of h. In solving this system of 

equations, a so-called direct method was used by applying a 

tridiagonal algorithm of the kind discussed by Remson et al. 

(1971). 

Steady state evaporation rates were estimated by 

applying equation (2) for two vertically adjacent nodal points 

after obtaining the equilibrium moisture profile. 

h
i+1 

-h'? 
q = K

i+1/2 
1 

1) ...(31) 

where, K
j = 4 a a i+1/2 K. K 

1 i+1 

Geometric mean of K was taken following suggestions of 

Haverkamp and Vauclin (1979) . Theoretically we should get the 

same evaporation rates by considering any two adjacent nodal 

points. However, small variations may be observed due to values of 

K being not properly represented over the depth interval chosen. 

Therefore, arithmetic mean was taken by considering all nodes in 

sequence. Various sets of water table depths, air temperature and 

air humidity were considered for the study. 

The computer code, for discretization scheme used in the 

model and estimation of steady state evaporation rates as per the 

procedure described above, has been written in FORTRAN IV and 

presented in appendix. 
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5.0 RESULTS 

5.1 General 

The actual evaporation rate is governed by the 

atmospheric conditions, transmitting properties of the soil and 

the water table depth. While the maximum possible ( potential) 

rate of evaporation from a given soil depends only on atmospheric 

conditions, the actual flux across the soil surface is limited by 

the ability of the porous medium to transmit water from below. 

For the given external evaporative conditions and the 

water table depth, the equilibrium moisture profile was obtained 

by using the numerical scheme presented in section 4.5 and 

assuming the pressure head at the soil surface to be in 

equilibrium with the surrounding atmosphere. The initial and 

boundary conditions were defined by the equations (24), (23), and 

(25) respectively. The rate of loss of water (Darcian flux q) 

served as a measure of the evaporation rate once the steady state 

w.is attained. The evaporative conditions were varied by varying 

the temperature and humidity of air. The evaporation rates under 

each set of external conditions and water table depth were 

evaluated. 

Since the steady state evaporation rates are estimated 

by considering the two vertically adjacent nodal points (equation 

31), the size of the depth interval plays an important role. It 

was found that the numerical scheme is stable only when 

At 

 

f: 2.5 ...(32) 
(AZ)

2 
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where At is the time step ( seconds) and AZ is the depth interval 

(cm). At greater water table depths, matrix dimensions (number of 

nodes, number of time steps) may become quite large (insufficient 

virtual address space to complete the link). Also it takes more 

time to attain the equilibrium moisture profile in case of a 

deeper water table. Therefore, different sets of AZ and At had to 

be used for different water table depths, for condition of 

stability ( equation 32). 

5.2 Effect of Depth to Water Table 

In order to study the relation between evaporation rate 

and depth to the water table, solutions were obtained by varying 

the water table depth and keeping the evaporative conditions same 

(temperature = 25°C, relative humidity = 0.75). Ample time was 

allowed for steady state to be attained at each depth. The values 

of soil water pressures at different nodes during consecutive time 

steps gave assurance that steady state had been attained. At 

steady state the rate of loss of water ( the flux q), which is 

approximately the same at every depth, equals the evaporation 

rate. Table 1 presents the data on depth to water table, depth 

interval, time step and the estimated evaporation rates. The 

results are also shown graphically in figure 3, where the steady 

state evaporation rates are plotted against the depth to the water 

table. 

It can be expected that for a particular soil and 

meteorological condition, the evaporation rate remains essentially 
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constant and fixed by weather, if the water table depth does not 

exceed a certain value. With the water table at greater depths, 

the evaporative flux decreases markedly because the soil becomes 

the limiting factor. Figure 3 shows that under the conditions 

studied, evaporation was soil limited. This figure demonstrates 

that as the water table is lowered from 45 cm to 80 cm, the 

evaporation rate decreases markedly with depth. However, further 

lowering reduces the evaporation rate only slightly. 

Table 1 - Steady State Evaporation Rates as a Function of Water 

Table Depth ( T = 25°C, f= 0.75, h (0,t) = -396.14) 

S.No. Depth to Depth Time Step, Number Evaporation 

Water Interval, At of Vertical Rate 
Lat 

Table,L Az (sec) --- Nodes (mm/day) 

(cm) (cm) (AZ) 

45 3 20 2.22 16 178.61 

60 4 40 2.50 16 44.36 

80 4 40 2.50 21 11.53 

100 4 40 2.50 26 4.03 

120 4 40 2.50 31 1.70 

150 5 60 2.40 31 0.56 

180 6 90 2.50 31 0.22 

210 6 90 2.50 36 0.10 

Upward movement and evaporation of water is possible 

with the water table as deep as 150 cm and although the rate will 
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be slow, accumulation of harmful amounts of soluble salts is 

possible if the ground water is sufficiently saline and if 

sufficient time is allowed. In such a case it may be feasible 

either lowering of the water table or periodically leaching out 

the salts by the application of excess water at the surface. 

5.3 Effect of Suction Head at the Soil Surface 

The variation of steady state evaporation rate with 

suction head at the soil surface was studied by varying the 

temperature and humidity values. All estimations were made at 

water table depth of 100 cm. Table 2 shows estimated values of 

steady state evaporation rates for different external evaporative 

conditions. It may be seen that relative humidity has more 

pronounced effect on evaporation rate than that of temperature. In 

figure 4, evaporation rates are plotted as a function of the 

suction at the soil surface, assuming a depth to water table of 

100 cm. The evaporation rates do seem to approach definite maxima. 

When the evaporation rate is low and is limited by 

external conditions, a large increase in the evaporation rate 

causes only a small increase in the suction •at the soil surface. 

Evaporation under such conditions is virtually independent of the 

depth to water table and the capillary conductivity of the soil. 

The range of external conditions for which this is the case 

depends upon the depth to the water table. The shallower the water 

table the greater the range over which evaporation is controlled 

by external conditions. 
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Table 2 - Steady State Evaporation Rates as a Function of 

Suction Head at the Soil Surface ( L = 100 cm) 

S No. Temperature, Relative Suction Head Evaporation 

Humidity, at the Soil Rate 

(°C ) Surface,-h(0,t) (mm/day) 

(cm) 

4.021 

4.024 

4.027 

4.031 

4.033 

4.037 

4.039 

4.084 

4.075 

4.060 

3.967 

3.800 

3.023 

2.537 

1.671 

0.213 

10 0.75 376.21 

15 0.75 382.85 

20 0.75 389.50 

25 0.75 396.14 

30 0.75 402.78 

35 0.75 409.43 

40 0.75 416.07 

25 0.60 703.41 

25 0.65 593.19 

25 0.70 491.14 

25 0.80 307.27 

25 0.85 223.79 

25 0.90 145.08 

25 0.91 129.87 

25 0.92 114.82 

25 0.929 101.41 

5.4 Soil-Limited Evaporation 

clear from physical considerations that an 

evaporative capacity of the atmosphere will 

suction at the soil surface. This higher 

It is 

increase in the 

produce an increased 
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suction, in turn, must magnify the upward water flux through the 

soil. Such a flux can not increase without bound, rather a 

limiting soil-water flux and hence a soil-limited evaporation, E
m 

exists. For any particular soil system, the latter is 

approximately given by (Ripple et al.,1972) 

where, 

K
s 
 [ lh

1/2
1 it 

n sin n in 
...(32) 

E = soil-limited rate of evaporation from the soil 

(cm/day); 

K
s = hydraulic conductivity of water-saturated soil 

(cm/day); 

h
1/2=a constant soil coefficient representing h at 

K = 1 K ( cm of water); 
2 s 

L = total distance between the water table and soil 

surface ( cm); and 

n = a soil coefficient ( which usually ranges from 2 

for clay to 5 for sands) in K-h relationship of 

the form 

a 
K =  ...(33) 

b + IhI n  

(a,b, and n are constants) 

3 given without derivation by Gardner (1958) for n ' 2, 3, 4 
2  

and yields identical numerical coefficients. 

It may be noted from figure 4 that the curve approaches 

a limiting rate of evaporation with increasing water suction at 
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E -- 816 x 1.175 x 10
6 [ 1  

co 

    

j4.74 

4.74 sin 
it 

 

4.74 100 

the soil surface as expected. The rate of approach to the actual 

E
w mainly depends on the value of n characterizing the particular 

soil. It should be noted that most of the field soils commonly 

found show n values which lie between 2 and 5. 

The value of E
m 
for the soil system under consideration 

is estimated for L = 100 cm, as below: 

Comparing equation (26) and (33), 

n = 1 = 4.74 

Also from equation (26), 

A  
K
s A+Ihi 1 

or _1_ A 
2 

A+111 I P1 
1/2 

or = A lh1/2!n = 1.175 x 10
6  

Also K
s 

= 34 cm/h = 816 cm/day 

So, from equation (32), we get 

Or E
co r

-3 0.4516 cm/day 

or E R: 4.516 mm/day 
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This value of E, as compared with figure 4, support the 

applicability of the equation (32) to the steady state evaporation 

problem. 

5.5 Remarks 

The dependence of the actual steady state evaporation 

rate on water table depth and weather (as demonstrated in figures 

3 and 4), which can be computed with the aid of the approach 

presented in the preceding pages, might be most useful in 

hydrologic practice. The extent to which the above results can be 

applied quantitatively to the field depends upon the 

correspondence between capillary conductivity values and those 

existing in the field. The soil data employed might be less 

precise than desirable. In addition, it might be impossible to 

take into account adequately the variability of field soils. 

Steady state conditions were assumed throughout this 

study. In nature, however, the systems considered are seldom in 

such a state, principally because of the variations in 

meteorological conditions, in soil salt content, and in water 

table depth. The changes in soil salt content and water table 

depth are relatively slow, and therefore their short-period 

effects might be negligible. Their long-range influences, however, 

could be of very considerable importance and should be taken into 

account, with different experimentally determined soil parameters 

and measured or predicted water table depths . Also under various 

conditions, the thermal transfer of water might significantly 

change the evaporation rate. In this study, the thermal transfer 

of liquidwater was entirely neglected. 
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6.0 CONCLUSIONS 

In a bare soil with a shallow water table, subject to 

atmospheric evaporation, steady flow can take place from the 

ground water source below to the evaporation sink above. When the 

water table is very near to the soil surface, and the soil 

transmits water readily, the actual evaporation rate will be 

limited by external evaporativity ( i.e., the micrometeorological 

conditions). When the water table is relatively deep, the 

water-transmitting properties of the profile are likely to be 

limiting, and thus to determine the evaporation rate. Capillary 

rise from a water table and evaporation at the soil surface entail 

the hazard of progressive salinization, even though this hazard is 

not always immediately apparent at the surface. To avoid this 

hazard, which is most severe in fine textured soils under 

irrigation, artificial ground water drainage may be necessary. The 

best way to conserve soil moisture against evaporation is to cause 

it to move as deeply as possible into the profile, by proper 

regulation of the irrigation 

initial evaporation rate so as  

regimen and 

to allow  

by controlling the 

time for the maximal 

post-irrigation redistribution of soil water. 

A numerical model study has been carried out to examine 

the steady state evaporation from shallow water table through a 

soil. The evaporation rate is shown to be related to the depth to 

water table for a particular soil. The influence of external 

evaporativity is also considered. 

37 



REFERENCES 

Anat, A., H.R. Duke, and A.T. Corey (1965), "Steady 

Upward Flow from Water Tables", Colorado State 

University Hydrol. Paper No.?, June. 

Douglas, J.J., and B.F. Jones (1963), "On 

Predictor-Corrector Method for Non Linear Parabolic 

Differential Equations", J.Siam, Volume 11, pp.195-204. 

Edlefson, N.E., and A.B.C. Anderson (1943), 

"Thermodynamics of Soil Moisture", Hilgardia, Volume 15, 

pp.31-298. 

Feddes, R.A.,P.Kowalik, K.K. Malinka, and H. Zaradny 

(1976), "Simulation of Field Water Uptake by Plants 

using a Soil Water Dependent Root Extraction Function", 

Journal of Hydrology, Volume 31, pp.13-26. 

Feddes, R.A., P.J. Kowalik, and H. Zaradny (1978), 

"Simulation of Field Water Use and Crop Yield", Centre 

for Agricultural Publishing and Documentation, 

Wageningen, The Netherlands. 

Gardner, W.R. (1958), "Some Steady-State Solutions of 

the Unsaturated Moisture Flow Equation with Application 

to Evaporation from a Water Table", Soil Science, Volume 

85, pp.228-232. 

38 



Gardner, W.R., and Milton Fireman (1958), "Laboratory 

Studies of Evaporation from Soil Columns in the Presence 

of a Water Table", Soil Science, Volume 85, pp.244-249. 

Hades, Amos, and Daniel Hillel (1972), "Steady-State 

Evaporation through Non-Homogeneous Soils from a Shallow 

Water Table", Soil Science, Volume 113, pp.65-73. 

Haverkamp, R., M.Vauclin, J.Touma, P.J.Wierenga, and 

G.Vachaud (1977), "A Comparison of Numerical Simulation 

Models for One-Dimensional Infiltration", Soil Sci. Soc. 

Am. J., Volume 41, pp.285-294. 

Haverkamp, R., and M. Vauclin (1979), "A Note on 

Estimating Finite Difference Interbloc Hydraulic 

Conductivity Values for Transient Unsaturated Flow 

Problems", Water Resources Research, Volume 15, No.1, 

February 1979, pp.181-187. 

Hillel, Daniel (1971), "Soil and Water - Physical 

Principles and Processes", Academic Press, New York. 

Hillel, Daniel (1977), "Computer Simulation of Soil-

Water Dynamics", Int.Dev.Res.Centre, Ottawa, Canada. 

Hillel, Daniel (1980), "Applications of Soil Physics", 

Academic Press, New York. 

Moore, R.E. (1939), "Water Conduction from Shallow Water 

Tables", Hilgardia, Volume 12, pp.383-426. 

39 



15 Remson, I., G.M. Hornberger, and F.J. Molz (1971), 

"Numerical Methods in Subsurface Hydrology", Wiley 

Intersci., New York, 389 pp. 

Ripple, C.D.,Jacob Rubin, and T.E.A. van Hylckama 

(1972), "Estimating Steady-State Evaporation Rates from 

Bare Soils under Conditions of High Water Table", U.S. 

Geological Survey Water-Supply Paper 2019-A. 

Willis, W.0.(1960),"Evaporation from Layered Soils in 

the Presence of a Water Table", Soil Sci. Soc. Am. 

Proc., Volume 24, pp.239-242. 

40 



APPENDIX 

SOIL MOISTURE PREDICTION MODEL 

PREDICTION OF EVAPORATION LOSSES FROM SHALLOW WATER TABLE 
USING A NUMERICAL MODEL 

IMPLICIT SCHEME WITH IMPLICIT LINEARIZATION (PREDICTION - CORRECTION) 
(MODEL 4 OF HAVERKAMP ET AL., 1977) 

DIMENSION SUB(32),SUP(32),DIAG(32),B(32) 
DIMENSION H(32,5410),CCC(32,5410) 
DIMENSION THETA(32,5410),HYDCON(32,5410) 
DIMENSION HP(32,5410),THETAP(32,5410) 
OPEN(UNIT=1,FILE=1 EVAP4.DAT',STATUS='OLD') 
OPEN(UNIT=2,FILE='EVAP4.0UT',STATUS='NEW.) 

J REFERS TO TIME 
I REFERS TO DEPTH 
Z = DEPTH (CM), ORIENTED POSITIVELY DOWNWARD 
THETA = VOLUMETRIC MOISTURE CONTENT (CUBIC CM / CUBIC CM) 
H = SOIL WATER PRESSURE (RELATIVE TO THE ATMOSPHERE) 

EXPRESSED IN CM OF WATER 
R = UNIVERSAL GAS CONSTANT (ERGS/MOLE/K) 
T = ABSOLUTE TEMPERATURE (K) 

(READ IN CENTIGRADE AND CONVERTED IN K) 
WM = MOLECULAR WEIGHT OF WATER (GM/MOLE) 
G = ACCELERATION DUE TO GRAVITY (CM/SEC/SEC) 
RH = RELATIVE HUMIDITY OF THE AIR (FRACTION) 
THETAR = RESIDUAL MOISTURE CONTENT 
THETAS = MOISTURE CONTENT AT SATURATION 
BETA1, CONA = PARAMETERS IN THE HYDRAULIC CONDUCTIVITY 

AND SOIL WATER PRESSURE RELATIONSHIP 
BETA2, ALPHA = PARAMETERS IN THE MOISTURE CONTENT AND 

SOIL WATER PRESSURE RELATIONSHIP 
HYDCON = HYDRAULIC CONDUCTIVITY OF THE SOIL (CM/HOUR) 
AKS = HYDRAULIC CONDUCTIVITY AT SATURATION (CM/HOUR) 
DELT = TIME STEP (HOURS) 
DELZ = DEPTH INTERVAL (CM) 
NTIME = NUMBER OF TIME STEPS 
NNODE = NUMBER OF NODES 
CCC = SPECIFIC WATER CAPACITY (/CM) DEFINED AS d(theta)/dh 

READ(1,11)THETAR,THETAS 
11 FORMAT(3F12.3) 

READ(1,12)BETA1,BETA2 
12 FORMAT(2F12.3) 

READ(1,13)CONA,ALPHA 
13 FORMAT(2F12.3) 

READ(1,14)AKS 
14 FORMAT(F12.3) 

READ(1,15)DELT,DELZ 
15 FORMAT(F12.8,F12.3) 

READ(1,16)NTIME,NNODE 
16 FORMAT(I4,6X,I4) 

READ(1,17)T 
17 FORMAT(F5.2) 

READ(1,18)RH 
18 FORMAT(F5.2) 

41 



READING OF INITIAL CONDITIONS 

READ(1,19)(THETA(I,1),I=1,NNODE) 
19 FORMAT(5F10.4) 

WRITE(2,20) 
20 FORMAT(2X,'* EVAPORATION LOSSES FROM SHALLOW WATER TABLE') 

WRITE(2,21) 
21 FORMAT(2X,'** ONE DIMENSIONAL RICHARDS EQUATION') 

WRITE(2,22) 
22 FORMAT(2X,'*** IMPLICIT SCHEME WITH IMPLICIT LINEARIZATION') 

WRITE(2,23) 
23 FORMAT(/2X,'TEMPERATURE IN CENTIGRADE') 

WRITE(2,24)T 
24 FORMAT(F7.2) 

WRITE(2,25) 
25 FORMAT(2X,'RELATIVE HUMIDITY OF THE AIR') 

WRITE(2,26)RH 
26 FORMAT(F7.3) 

WRITE(2,27) 
27 FORMAT(2X,'THETAR',9X,'THETAS') 

WRITE(2,28)THETAR,THETAS 
28 FORMAT(2X,F5.3,10X,F5.3,10X,F5.3) 

WRITE(2,29) 
29 FORMAT(2X,'BETA1',10X,'BETA2') 

WRITE(2,30)BETA1,BETA2 
30 FORMAT(2X,F5.3,10X,F5.3) 

WRITE(2,31) 
31 FORMAT(2X,'CONA',11X,'ALPHA') 

WRITE(2,32)CONA,ALPHA 
32 FORMAT(2X,F11.3,4X,F11.3) 

WRITE(2,33) 
33 FORMAT(2X,'AKS') 

WRITE(2,34)AKS 
34 FORMAT(2X,F6.3) 

WRITE(2,35) 
35 FORMAT(2X,'DELT',11X,'DELZ') 

WRITE(2,36)DELT,DELZ 
36 FORMAT(2X,F10.8,5X,F5.3) 

WRITE(2,37) 
37 FORMAT(2X,'NTIME',10X,'NNODE') 

WRITE(2,38)NTIME,NNODE 
38 FORMAT(2X,I4,9X,I4) 

WRITE(2,39) 
39 FORMAT(/2X,'INITIAL CONDITIONS'!) 

WRITE(2,40)(THETA(I,1),I=1,NNODE) 
40 FORMAT(5F10.4) 

WRITE(2,41) 
41 FORMAT(/2X,'WATER CONTENT AND SOIL WATER PRESSURE 

1 AT DIFFERENT NODES') 

DO 100 I=1,NNODE 
H(I,1)=-(ALPHA*(THETAS-THETA(I,1))/(THETA(I,1) 

1 -THETAR))**(1./BETA2) 
100 CONTINUE 
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GENERATION OF UPPER BOUNDARY CONDITION 

DO 200 J = 2, NTIME 
R = 8.314E+7 
WM = 18.0 
G = 980.665 
TMP=T+273.15 
HU=R*TMP*ALOG(RH)/(WM*G) 
HU=HU/1019.80 
H(1,J)=HU 
THETA(1,J)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(H(1,J))**BETA2)+ 1 THETAR 
HP(1,J)=H(1,J) 
THETAP(1,J)=THETA(1,J) 

200 CONTINUE 

GENERATION OF LOWER BOUNDARY CONDITION 

DO 300 J=1,NTIME 
THETA(NNODE,J)=THETA(NNODE,1) 
THETAP(NNODE,J)=THETA(NNODE,1) 
H(NNODE,J)=-(ALPHA*(THETAS-THETA(NNODE,J))/(THETA(NNODE,J) 1 -THETAR))**(1./BETA2) 
HP(NNODE,J)=H(NNODE,J) 

300 CONTINUE 

E1=BETA1/BETA2 
E2=(THETAS-THETAR) 
E3=ALPHA**E1 
E4=CONA*AKS 
E5=1./BETA2*ALPHA**(1./BETA2) 

DO 400 J=2,NTIME 

DO 500 I=1,NNODE 
IF(THETA(I,J-1).LT.(THETAR+0.005))THETA(I,J-1)=THETAR+0.005 TERM1=(THETA(I,J-1)-THETAR)/E2 
HYDCON(I,J-1)=E4*TERM1**E1/(CONA*TERM1**El+E3*((1.-TERM1))**E1) HYDCON(I,J-1)=E4/(CONA+(ABS(H(I,J-1)))**BETA1) 
CCC(I,J-1)=1./(E5*E2)*(THETAS-THETA(I,J-1) )**(-1./BETA2+1.)* 

1 ( THETA(I,J-1)-THETAR ) **(1./BETA2+1.) 
500 CONTINUE 

DO 600 I=2,NNODE-1 
DIAG(I-1)=2.*CCC(I,J-1)/HYDCON(I,J-1)+2.*DELT/DELZ**2 SUB(I-1)=-DELT/DELZ**2 
SUP(I-1)=-DELT/DELZ**2 
B(I-1)=2.*CCC(I,J-1)/HYDCON(I,J-1)*H(I,J-1)+DELT/DELZ*.5 

1 *(HYDCON(I+1,J-1)-HYDCON(I-1,J-1))/HYDCON(I,J-1)*((H(I+1,J-1)- 
2 

600 CONTINUE 

B(1)=B(1)-SUB(1)*H(1,J) 
B(NNODE-2)=B(NNODE-2)-SUP(NNODE-2)*H(NNODE,J) 
DO 700 I=1,NNODE-3 

700 SUB(I)=SUB(I+1) 
M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 
DO 800 I=1,NNODE-2 

800 HP(I+1,J)=8(I) 
DO 900 I=2,NN0DE-1 
THETAP(I,J)=ALPHA*(THETAS-THETAR)/(ALPHA+ABS(HP(I,J))** 1 BETA2)+THETAR 

900 CONTINUE 
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DO 1000 I=1,NNODE 
IF(THETAP(I,J).LT.(THETAR+0.005))T11ETAP(I,J)=THETAR+0.005 

 

TERM1=(THETAP(I,J)-THETAR)/E2  
HYDCON(I,J-1)=E4*TERM1**E1/(C0NA*TERM1**E1+E3*((1.-TERM1))**E1) 

 

HYDCON(I,J-1)=E4/(C0NA+(ABS(HP(I,J)))**BETA1)  
CCC(I,J-1)=1./(E5*E2)*(THETAS-THETAP(I,J) )**(-1./BETA2+1.)* 

1 ( THETAP(I,J)-THETAR ) **(1./BETA2+1.) 

1000 CONTINUE 

DO 1100 I=2,NNODE-1 
DIAG(I-1)=CCC(I,J-1)/11YDC0N(I,J-1)+DELT/DELZ**2  

SUB(I-1)=-DELT/DELZ**2*.5  
SUP(I-1)=-DELT/DELZ**2*.5  
B(I-1)=CCC(I,J-1)/HYDC0N(I,J-1)*H(I,3-1)+DELT/DELZ*.5 

 

1 *(HYDCON(I+1,J-1)-HYDCON(I-1,J-1))/HYDCON(I,J-1)*((HP(I+1,J)- 
2 HP(I-1,J))/(2.*DELZ)-1.)+DELT/DELZ**2*.5*(H(I+1,J-1)-2.*  

3 H(I,J-1)+H(I-1,3-1)) 

1100 CONTINUE 

B(1)=B(1)-SUB(1)*H(1,J) 
B(NNODE-2)=B(NNODE-2)-SUP(NN0DE-2)*H(NN0DE,J)  

DO 1200 I=1,NNODE-3 
1200 SUB(I)=SUB(I+I) 

M=NNODE-2 
CALL TRID(M,SUP,SUB,DIAG,B) 
DO 1300 I=1,NNODE-2 

1300 H(I+1,J)=B(I) 

DO 1400 I=2,NNODE-1 
THETA(I,J)=ALPHA*(THETAS-THETAR)/(ALPHA.CA

BS(H(I,J))**BETA2)+  

1 THETAR 
1400 CONTINUE 

IF (J.EQ.90) GO TO 111 
IF (J.EQ.180) GO TO 111 
IF (J.EQ.270) GO TO 111 
IF (J.EQ.360) GO TO 111 
IF (J.EQ.450) GO TO 111 
IF (J.EQ.540) GO TO 111 
IF (J.EQ.1080) GO TO 111 
IF (J.EQ.1620) GO TO 111 
IF (J.EQ.2160) GO TO 111 
IF (J.EQ.2700) GO TO 111 
IF (J.EQ.3240) GO TO 111 
IF (J.EQ.3780) GO TO 111 
IF (J.EQ.4320) GO TO 111 
IF (3.EQ.4860) GO TO 111 
IF (J.EQ.5400) GO TO 111 
GO TO 400 

111 CONTINUE 

DO 666 I=1,NNODE 
HYDCON(I,J)=E4/(C0NA+(ABS(H(I,J)))**BETA1)  

666 CONTINUE 

EVAP = 0.0 
DO 1500 N = 2,NNODE 
EVAP=EVAP+((HYDC0N(N,J)*HYDC0N(N-1,J))**0.5)*  

1 (((H(N,J)-H(N-1,J))/DELZ)-1.0)*240.0 

1500 CONTINUE 
EVAP = EVAP/(NNODE-1) 

44 



HOUR=J*DELT 
WRITE(2,51)J,HOUR 

51 FORMAT(/M I TIME STEP = ',I4,4X,'DURATION = ',F6.2,5X,'HOURS'/) 
WRITE(2,52)(THETA(I,J),I=1,NNODE) 

52 FORMAT(5F10.4) 
WRITE(2,*) 
WRITE(2,333)(H(I,J),I=1,NNODE) 

333 FORMAT(5F10.4) 
IF (J.EQ.5400) GO TO 444 
GO TO 555 

444 WRITE(2,*) 
WRITE(2,777)(HYDCON(I,J),I=1,NNODE) 

777 FORMAT (5F10.6) 
555 CONTINUE 

WRITE(2,53)EVAP 
53 FORMAT(/2X,'EVAPORATION LOSSES = ',F10.4,' MM/DAY'/) 
400 CONTINUE 

STOP 
END 

SUBROUTINE TRID(M,SUP,SUB,DIAG,B) 
DIMENSION SUP(32),SUB(32),DIAG(32),B(32) 
N=M 
NN=N-1 
SUP(1)=SUP(1)/DIAG(1) 
B(1)=B(1)/DIAG(1) 
DO 61 I=2,N 
II=I-1 
DIAG(I)=DIAG(I)-SUP(II)*SUB(II) 
IF (I.EQ.N) GO TO 61 
SUP(I)=SUP(I)/DIAG(I) 

61 B(I)=(B(I)-SUB(II)*B(II))/DIAG(I) 
DO 62 K=1,NN 
I=N-K 

62 B(I)=B(I)-SUP(I)*B(I+1) 
RETURN 
END 
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