Please use this identifier to cite or link to this item: http://117.252.14.250:8080/jspui/handle/123456789/3540
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKant, Amal-
dc.contributor.authorSuman, Pranmohan K.-
dc.contributor.authorGiri, Brijesh K.-
dc.contributor.authorTiwari, Mukesh K.-
dc.contributor.authorChatterjee, Chandranath-
dc.contributor.authorNayak, P. C.-
dc.contributor.authorKumar, Sawan-
dc.date.accessioned2019-09-12T09:55:04Z-
dc.date.available2019-09-12T09:55:04Z-
dc.date.issued2013-
dc.identifier.citationNeural Comput & Applic (2013) 23 (Suppl 1):S231–S246en_US
dc.identifier.urihttp://117.252.14.250:8080/jspui/handle/123456789/3540-
dc.description.abstractAccurate flood forecasting is of utmost importance in mitigating flood disasters. Flood causes severe public and economic loss especially in large river basins. In this study, multi-objective evolutionary neural network (MOENN) model is developed for accurate and reliable hourly water level forecasting at Naraj gauging site in Mahanadi river basin, India. The performance of the developed model is compared with adaptive neuro-fuzzy inference system (ANFIS) and bootstrap-based neural network (BNN) models. The performance of the models is compared in terms of Nash–Sutcliffe efficiency, root mean square error, mean absolute error and percentage deviation in peak (D). The performance of the models in forecasting floods is also evaluated using existing performance evaluation criterion of Central Water Commission, India as well as a multiple linear regression model. A partitioning analysis in conjunction with threshold statistics is carried out to evaluate the performance of the developed models in forecasting floods for low, medium and high water levels. It is found that the performance of MOENN and BNN models is more stable and consistent compared to ANFIS model. For longer lead times, the performance of MOENN model is found to be the best, with its performance in forecasting higher water levels being significantly better compared to ANFIS and BNN models. Overall, it is found that MOENN model has great potential to be applied in flood forecasting.en_US
dc.language.isoenen_US
dc.publisherSpringer-Verlagen_US
dc.subjectNeural networken_US
dc.subjectMulti-objective evolutionary neural networken_US
dc.subjectNeuro-fuzzy inference systemen_US
dc.subjectBootstrap-based neural networken_US
dc.subjectFlood forecastingen_US
dc.titleComparison of multi-objective evolutionary neural network, adaptive neuro-fuzzy inference system and bootstrap-based neural network for flood forecastingen_US
dc.typeArticleen_US
Appears in Collections:Research papers in International Journals

Files in This Item:
File Description SizeFormat 
Restricted Acess.pdf411.81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.