Please use this identifier to cite or link to this item: http://117.252.14.250:8080/jspui/handle/123456789/2803
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeth, S. M.-
dc.contributor.authorGoel, N. K.-
dc.date.accessioned2019-06-03T04:54:13Z-
dc.date.available2019-06-03T04:54:13Z-
dc.date.issued1985-
dc.identifier.urihttp://117.252.14.250:8080/xmlui/handle/123456789/2803-
dc.description.abstractTime series analysis belongs to major statistical techniques used in the extraction of information on hydrologic and water resources random variables from observed data.-This report gives a brief review on time series models and steps used for time series modelling. Various criteria for the classification of time series models are presented and described. Available time series models are explained in the light of short memory models and long memory models. Short memory models include autoregressive (AR), moving average (MA), autoregressive moving average(ARMA), and autoregressive integrated moving average (ARIMA)models. Long memory models such as fast fractional Gaussian noise, filtered fractional Gaussian noise and broken line models are then described. Generation of daily data by shot noise model has been given. In the end disaggregation model and multisite models have been explained. Some of the areas in which further study and research are needed have been identified by the review of literature. These include (i) time series analysis of water quality and quantity to meet the solution of complex environmental problems, (ii) development of more comprehensive families of time series models, (iii) physically based time series models, (iv) development of daily flow generating models with lesser parameters, (v) differential persistence and (vi), application of time series models (after modification) to Indian rivers as many of them have nearly zero flows during non-monsoon season (Nov. May).en_US
dc.language.isoenen_US
dc.relation.ispartofseries;RN-18-
dc.subjectTime series analysis modelsen_US
dc.subjectTime series analysisen_US
dc.subjectDaily flow generating modelsen_US
dc.subjectARIMA modelsen_US
dc.titleRN-18 : Time series analysis modelsen_US
dc.typeTechnical Reporten_US
Appears in Collections:Review Note

Files in This Item:
File Description SizeFormat 
RN-18.pdf15.97 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.