
TR - 79 

EFFECT OF TRIBUTARY JUNCTION 

ON 

ROUTING CHARACTERISTICS 

NATIONAL INSTITUTE OF HYDROLOGY 

JALVIGYAN BHAWAN 

ROORKEE - 247667 (U.P.) INDIA 

1988 - 89 



PREFACE 

In river systems confluences are typical features 

and of a complex nature. The behaviour of the confluences 

is largely determined by the specific characteristics of 

the rivers involved. The junction imposes a computational 

difficulty in accurate routing of floods in river networks 

because of the mutual backwater effects of the channels 

joining at the junction. 

In the present report various methods developed 

to predict the progress of a flood wave along a junction 

have been briefly described and the overlapping method using 

four-point implicit finite difference scheme has been descri-

bed. The overlapping segment method faithfully simulates 

the flood flow in the network and the computer results agree 

well with those obtained by the time consuming solutions 

of all the flow equations of the entire network. Conversely, 

the commonly used sequential cascading channel method produces 

inaccurate results, particularly when the down-stream backwater 

effect is important and reverse flow occurs. 

This report entitled "Effect of Tributory Junction 

on Routing Characteristics" is a part of the work programme 

of "Flood Studies" division of the Institute. The study 

has been carried out by Sh. Surendra Kumar, Scientist 'B' 

under the guidance of Dr, S.M. Seth, Scientist I F ! 

(SATISH CHANDRA) 
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ABSTRACT 

In accurate routing of floods in river networks 

using the St. Venant's equations, the junction imposes a 

computational difficulty because of the mutual backwater 

effects of the channels joining at the junction. Various 

methods have been developed to predict the progress of a 

flood wave along a junction. These have been briefly discussed 

and the overlapping method using four-point implicit finite 

difference scheme has been described in detail in this report. 

Having surveyed the different methodologes and experiences 

of various authors/implementors, the data requirement needed 

for finding the solutions to such problems faced by Water 

Resources Engineers has also been given seperately. Conven-

tionally, the downstream backwater effect is simply ignored 

and the computations for the network are proceeded in a 

cascading manner towards the downstream, leading to unrealis-

tic results. The overlapping segment method faithfully 

simulates the flood flow in the network and the computer 

results agree well with those obtained by the time consuming 

solution of all the flow equations of the entire network. 

Conversely, the commonly used sequential cascading channel 

method produces in-accurate results, particularly when the 

downstream backwater effect is important and reverse flow 

occurs. 
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1.0 GENERAL 

Simons and Gessler (1971) contended that "Theory 

on hydraulic processes is years ahead of theory on geomorphic 

processes and there is a pool of knowledge in the field of 

boundary layer theory which could be tapped for answers in 

relation to geomorphic problem". Progress has been realized 

with the increased use of theory in geomorphology since 1965, 

but such theoritical developments have concentrated upon 

river channel cross-sections or reaches because networks 

are necessarily more complex. In fact networks have been 

studied in at least three principal ways by geomorphologists. 

First, have been studies of network topology which have only 

recently been directed towards the problem of the relationship 

between network topology and stream flow hydrograph formation 

as attempted by Surkan (1974 ). Second, have been studies 

of drainage network densities in relation to climatic charac-

teristics and streamflow (Gregory, 1976 b), but only since 

1968 has the nature of the relationships become apparent 

so that we are in a position to model change in the manner 

previously attempted for river channel metamorphosis. Thirdly, 

there has been great progress in the study of network exten-

sion by gullying (Cooke and Reeves, 1976 b) but only recently 

has it become usual to include ancillary consideration of 

associated geometry changes downstream. Unfortunately, studies 

of network contraction by the producation of dry valleys, 

have not usually been investigated for recent short periods 
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of time but have been placed in a longer time scale context. 

Reversal of cause and effect at different scales 

complicates the relationship between a river and its catchment. 

For example, in the long term the spatial patterns of runoff 

and sediment production determine the evolution of drainage 

network structure. However over the intermediate time- 

scale of the river - channel steady state the catchment 

water and sediment delivery represent direct environmental 

controls of the river channel which are focused on to the 

river by the drainage network. The essential underlying control 

of the drainage network is considered in terms of both its 

structural arrangement, which controls exploitation of the 

spatially-distributed runoff and sediment sources, and its 

density, which influences the intensity of runoff and sediment 

yield to the channel. Slope in hydrological processes, which 

vary regionally in relation to climate, relief, soils and 

vegetation, determine the form of the quickflow hydrograph 

which is then transformed as it is routed through the network. 

Thus downstream reaches are influenced by flood hydrographs 

which reflect the yeild of storm runoff from the hill-slopes 

modulated by network properties. 

The density of the net of tributaries has a consider-

able impact on the density of the river net itself (i.e. 

the length of all the water course in km/km2). It depends 

primarily upon the amount of precipitation, the hydrological 

attributes of the rocks, and the type of ground cover. For 
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example, in similar conditions of precipitation and evapora-

tion, river density is less on lime stone than on metamorphic 

rock. The tendency of limestone to faulting does not offer 

the right conditions for the formation of a dense surface 

network of run-off channels. 

In river systems confluences are typical features, 

be it of a complex nature. There is no general treatise 

the existing literature is usually restricted to specific 

cases. Some typical confluences of Indian rivers are shown 

in figure (1). From the figures it is seen that some rivers 

are joining the main river making acute angle (in most of 

the cases), some are joining at right angle and some (very 

few) at obtuse angle. 

This is quite logical that the behaviour of the 

confluences is largely determined by the specific characteris- 

tics of the rivers involved. Some general remarks about 

this can be made with reference to Figure (2) as below: 

(a) At the confluence, the difference between the regimes 

01  (t) and 02  (t) seems to be a dominating factor. 

For Q1 > Q 2  strong backwater effects can be found 

in river 2. Hence the supply of sediment from river 

2 to the main river 0 can be rather irregular. 

This means that in river 2 there is no direct link 

between 0 and S
2 near the confluence. 2 

(b) At a confluence, the grain size distribution of 

the river 0 may vary greatly with time if the grain 
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Sizes of the rivers 1 and 2 differ substantially. These  

effects can also be attributed to differences in the regimes 

Q1(t) and Q2  (t). 

The stations for discharge measurements (to establish 

a stage-discharge relationship) have to be selected 

carefully. This is especially true for river 2. 

Correct data can only be obtained if the station 

is located such a distance upstream of the actual 

confluence that back-water effects can be neglected. 

With regard to the measurement of sediment transport 

the stations have to be selected away from confluences. 

The reason is that in the vicinity of confluences 

time-dependent erosion and sedimentation will probably 

be relatively large (especially for the rivers 0 

and 2). 

01 51  0 

Confluence or 
Junction 

Fig. 2 A' River junction 
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2.0 REVIEW: 

The presence of junction in a river reach imposses 

complexity in routing the flood along the river. SeVeral 

methods have been developed to route the flood along a river 

but somewhat limited number of studies exist for considering 

junction effect. The work done by different researchers 

dealing specifically with the junction problem in flood routing 

is discussed as follows: 

Taylor (1944) in his study, established a relation 

between the flow characteristics and the geometry of the 

junction, for sub-critical flow passing through the channels 

at a junction, where all channels have the same breadth. 

Stoker (1957) carried out a numerical computation 

for the passage of a flood wave originating in the Ohio River 

and passing through the junction with Mississippi River. 

In this study he assumed that the depths at the junction 

in all the three branches at any instant are the same. In 

essence this computation serves as the link between the beha-

viour of the flood wave in the different branches. 

Stoker (1957) applied the fixed mesh explicit method 

the first and best known numerical method for the solution 

of the equations of unsteady flow. 

Chow (1959) stated two basic methods of flood routing 

namely hydraulic method and hydrologic method. When a flood 

comes through a junction, backwater is usually produced. 

According to him this problem can accurately be evaluated 
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only by the basic hydraulic equations employed in the hydraulic 

method but not by the hydrologic method. 

Grushevskiy and Fedorov (1965) reported on field 

investigations by the State Hydrological Institute of unsteady 

flow on the Tvertsa, Oredeyh and Svirj Rivers, each with 

a different morphology. Stages and release wave travel were 

Investigated. The authors made preliminary conclusions on 

the influence of flopd plains, ice cover, wave celerities, 

and velocity distributions. 

Meijer et.al. (1965) described an approximate method 

for computing discharges and water levels for unsteady flows 

in open channel networks. The system of channels has been 

schematized into a network of nodes and branches; storage 

capacity is concerned in the nodes and resistance in the 

middle of tne branches. In the derivation of equation it 

is assumed that the difference in velocity head between the 

end points of a branch is negligible, that the slope of the 

channel bottom is small, and that the pressure distribution 

is hydrostatic. An implicit-finite difference scheme and 

iteration process has been used to solve the equations. Compari-

son between computed results and corresponding field obser-

vations showed this method could yield good results in many 

cases. 

Seltzer and Lai (1968) developed computer-oriented 

simulation techniques and applied these techniques in selected 

field reaches. They used one dimensional theoritical approach 

for the treatment of transient open-channel flow. 
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Garrison et.al. (1969) used a digital computer program 

for solving the basic equations of unstea flows in reservoirs 
and natural rivers. 

Tsuchiya and Takahashi (1969) developed an analog 

computer in which the hydraulic variables are transformed 

to electric potential or current, considering the magnitude 

of each term in the equation of motion of unsteady flow in 

rivers. 

The analog computer made it possible to calculate 

the flow in rivers with tributaries and diversions under 

various boundary conditions. Reliability of the computer 

was confirmed by an experiment on flood propagation in a 

experimental flume. 

Amein and Fang ( 1970) presented a generalized impli-

cit method for application to irregular channels in which 

the cross-sectional geometry and bottom elevation could vary 

from section to section. The method was found to be stable 

for large time steps, it was fast and was well suited for 

engineering applications involving flows of long duration 

and long channel reaches of complex geometry. 

Ellis (1970) applied the method of characteristics 

to examine the possibility of producing a computational system 

for use in the conditions where glacial activities produces 

changes in river cross-section. 

Freed (1972) showed that the interaction of storage 

and dynamic effects between the two river could be simulated 

efficiently by a mathematical model consisting of (1) the 

conservation form of the two unsteady flow differential equa-

tions, and (2) known stage-time and/or stage discharge rela-

tionships at the extremities of the rivers. 

Henry (1972) presented a paper in which the system 

has been divided into overlapping segments and the motion 

has been computed for each segment seperately over a time 
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increment short enough to ensure that errors due to neglect 

of neighbouring segments have been confined to the regions 

of overlap. The solution for the whole system at the end 

of each time increment has been found by discarding erroneous 

portion of the solutions for the various Segments and piecing 

together the remaining parts. The difficulties of programming 

a single large difference scheme to cover a whole inlet or 

river have been avoided and the problem has been reduced 

to linking standard subroutines representing commonly encoun- 

tered features such as bifurcating and confluences to test 

the method in a known physical situation and to compare various 

methods of linking adjacent segments. 

Pinkayan (1972) solved the unsteady flow equations, 

describing the problem of routing storm water through storm 

drainage systems with lateral inflow, by the method of charac- 

teristics on digital computers. The storm drain consists 

of a singlc continuous line of circular channel with constant 

slope. The main inflow to the drain is at the upstream end. 

The lateral inflow comes through a circular conduit at the 

junction box being normal to the direction of the main drain. 

The outflow is a free fall at the downstream. A good agreement 

has been found in comparing computed hydrographs and observed 

hydrographs in the experiment at various locations along 

the drain. 

Quinn 6 Wylie (1972) developed a hydraulic transient 

model of the Detroit River by using the implicit method to 
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solve the complete equations of continuity and motion, in 

this, the river has been modeled in the shape of a Y and 

has one main channel and two branching channels. The stabi-

lity of the numerical solution, which uses the Newton-Raphson 

algorithm, has been found to be dependent on the selection 

of a weighting co-efficient. This co-efficient determines 

the position at which the equations are evaluated on the 

x-t grid. The model input consists of water surface hydro-

graphs at the head and mouth of the river. The output con-

sists of flows at each end of the three channels and water 

surface elevations at the junction of the Y. Transient flows 

of the Detroit River induced by a severe wind tide or Lake 

Erie were simulated to illustrate the model. Good aggreement 

was obtained between measured and computed water surface 

elevations at the junction of the Y. 

Sevuk (1973) applied the overlapping Y-segment 

method to sewer networks with prismatic channels, an in view 

of the relatively short duration of the floods and the range 

of Froude number of the flows, he used a first-order charac-

teristic method to solve the St. Venant equations. The concept 

of overlapping segment has been adopted in this study and 

extended to fork junctions and' non-prismatic channels using 

three upstream branches and one downstream branch as an exam-

ple. A four-point finite difference implicit numerical scheme 

has been used to solve the St. Venant equts. because of its 

computational efficiency and stability for relatively slow, 
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long duration river floods (Amein and Fang, 1969, Sevuk and 

Yen, 1973 a, Fread, 1974, Price, 1974). 

Sevuk and Yen (1973) in their study presented a 

comparison of four different approaches used in routing flood 

waves through open channel junctions. 

Sevuk and Yen (1973) considered the attenuation 

of a flood wave passing through a junction of a large river 

with a tributary of comparable size. They approximated the 

incoming flood wave to be a number of step waves satisfying 

the kinematic wave condition and the disturbances caused 

in the tributary to be dynamic waves, where the dynamic effects 

are large in comparison with frictional and gravitational 

effects. The authors presented a theory based on this model 

and obtained explicit expressions for the depths and discharges 

in the different branches. 

Price (1974) found that the four point implicit 

method was the most efficient and maintained stability under 

severe test conditions. 

Amein and Chu (1975) extended the work on the four 

point implicit method by Amein and Fang (1970). They modified 

the numerical scheme to provide a versatile technique that 

would embrace large changes in channel geometry, large fluct-

uations in discharge ranging from abrupt to gradually varied 

and a variety of boundary conditions. By applying to field 

problems they demonstrated the versatility of the implicit 

method. 
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Wood, et.al. (1975) presented the formulation of 

a mathematical model to predict transient flows in hydraulic 

networks. The network formulation consists of breaking the 

network in to a series of connected reaches; reducing the 

finite difference equations for each reach in to two reach 

equations, forming exterior matrix consisting of the reach 

equations, external boundary conditions, and interior compati-

bility conditions; solving the external matrix for the end 

values of discharge and water -Surface elevation for all reaches 

and back substituting for all interior values. 

Soliman (1976), studied the Blue-white Nile confluence 

in Republic of Sudan and the Tigris-Diyala river confluence 

in Iraq for the purpose of arrangements required for flood 

protection. This case he studied theoritically using computer 

program which lead to useful recommendations for the flood 

control arrangements due to the heading up caused by the 

river junction. 

In the study by Yen and Akan (1976), It has been 

shown that the overlapping segment method can be extended 

to route unsteady flow through fork-type dentritic networks 

of non-prismatic channels using a four-point implicit finite 

difference scheme. According to them it requires much less 

computer time than simulataneous solution of the flow equations 

for all the branches of the network, and it is considerably 

more accurate than the sequential method which neglects the 

downstream junction backwater effect. They concluded that 

the over-lapping segment method simulated the flood flow 
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faithfully and its results aggreed well with the simultaneous 

solution method. 

Akan a Yen (1981) developed a non-linear diffusion 

wave model for flood routing in dentritic-type open channel 

networks. This model accounts for the downstream backwater 

effects. The authors have applied overlapping-segment technique 

to the diffusion wave equations which are written in finite 

differences. The resulting set of non-linear algebraic equa-

tions for each segment has been solved by the Newton iteration 

process. The coefficient matrices obtained in the solution 

process are band and, therefore, the matrix equts. have been 

solved by a very efficient numerical technique. After compari-

sion of this model with dynamic wave and non-linear kinematic 

wave models they concluded: 

The diffusion-wave model could satisfactorily simulate 

the mutual backwater effects of channels joining 

at a junction. 

The model was nearly as accurate as the dynamic 

wave model which might be classified among the most 

sophisticated one-dimensional routing techniques 

available in the literature. 

The model was faster and cheaper in computation 

than a kinematic wave model which mignt be considered 

as one of the simplest hydraulic routing models 

known. 
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Sevuk and Yen (1982) investigated hydraulics of 

unsteady flow in storm sewer networks by using a dynamic 

wave simulation model. They adopted the Illinois storm sewer 

(ISS) Model which solves the complete dynamic equations using 

the method of characteristics. Two examples were presented. 

One was a 48-pipe sewer system to show that for unsteady 

open channel flow in sewer networks, the back water effect 

can not be ignored, under certain circumstances reversal 

flow may occur, the depth-discharge relationship is not unique 

and a loop-type rating curve exists, and the accurrence of 

maximum depth. The second example showed how a dynamic wave 

routing model could be used to evaluate and improve a sewer 

system. 

The authors at last concluded that the junction 

effect could not be ignored for flow in sewer networks and 

the storage in the junctions and sewer pipes is an important 

factor for the attenuation and dispersion of the flood waves. 

Li et.al. (1983) studied the methods for calculating 

flow in branch channels. In order to obtain the unsteady 

flow in the channels without branching, they provided the 

non-equidistant difference schemes on interior mesh points 

and the corresponding difference schemes on boundary mesh 

points. 

Joliffe (1984) presented a numerical model for simu-

lating flows in either looped or dentritic channel networks. 

The solution procedure adopted solves the full non-linear 
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gradually varied unsteady flow equations using the generalized 

Newton-Raphson technique. A sparse matrix technique has 

been used to store and solve the resulting set of linear 

equations that has been solved to find the flow corrections 

during the simulation; use of this matrix technique allows 

the computer storage to be substantially reduced. Analytic 

differentiation has been used to evaluate the partial deriva-

tive terms of the linear flow correction equations. This 

type of differentiation permitted significant improvements 

in the computational efficiency of the model. 

Lai (1986) in his paper described the computer mode- 

lling of unsteady flow. He included the development of the 

real-world algorithm for flow simulation in natural environ-

ments which deals with the computer science and engineering 

technology of building a simulation model involving the 

desciplines of model implementation, application, utilization. 

Ramana Murthy et.al. (1989) have developed an electro-

nic analogue computer for flood forecasting of Tapi Basin 

which is based on Muskingum storage equation of flood routing. 

This is the extension of the work done by the author earlier 

(Ramana Murthy, 1965, 1967). The presence of the tributary 

flows has been taken into account by adding the tributary 

flow to the routed flow in the main river upto the confluence. 

In case of the several tributaries the routing has been 

done upto the major tributary confluence. 
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3.0 METHIOLOGIES: 

River models can be calssified according to the 

tools used as physical models, analog models and mathematical 

models. The mathematical models can again be classified as 

hydraulid models and hydrologic models; the former consider 

the mechanics of the flow, whereas the latter utilizes no 

more than the continuity relationship of the flow and usually 

treats the river as a lumped system. 

Mathematical modeling of steady open-channel flow 

has been discussed extensively in the literature (e.g., see 

chow, 1959; Henderson, 1966). Three and two-dimensional 

modeling for rivers is still at the development stage. There-

fore, in this report the discussion is centred on mathematical 

hydraulic, fixed boundary, one-dimensional, unsteady flow 

models. 

Unsteady Flow Equations: 

Hydraulically, the flow equations required to route 

floods through junctions can be divided into two groups. 

One group is the equations describing the junction conditions 

and the other group for the channels joining to the junction. 

In seeking numerical solution the former serves as the boundary 

conditions of the latter. 

The flow in a channel can be described mathematically 

by a set of one dimensional shallow water wave equations 

commonly known as the St. Venant equations. By using a gravity 

oriented coordinate system with x measured horizontally along 
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the channel i.e. longitudinal direction and vertically as 

shown in the figure (3), the St. Venant equations in discharge-

area form are: 

Y Y b  Y 

Fig. 3. Gravity Oriented Coordinotes with 
Eripth Mccsurcd Vertically 
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x
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A the flow cross-sectional area measured normal 

to x (i.e. a vertical direction); 

discharge through A; 

the perimeter bounding A; 

the time rate of lateral flow through unit 

length of cr and being positive for inflow 

and negative for outflow; 

Ux = the x-component of the velocity of the lateral 

flow when joining or leaving the main flow; 
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Ys = water surface elevation above a reference 

horizontal datum; 

A = momentum correction factor; 

S
f friction slope of the flow; 

= time; 

= gravitational acceleration; 

channel bottom slope. 

The friction slope S f, can be estimated by using 

the Manning's, Darcy-Weisbach's or similar formulas. The 

first equation is the continuity equation whereas the second 

is the momentum equation. The derivation ol these formulas 

is given by Yen (1975). The assumptions involved in deriving 

these equations include. 

the fluid is incompressible and homogeneous 

the piezometric pressure distribution on the cross-

section A is uniform. 

the spatial rate of change of the internal flow 

stresses w.r.t. x is not appreciable. 

The gravity oriented coordinates and the discharge 

area form of the equations are chosen because of their relative 

convenience in routing flows in channel of irregular cross-

sections and alignments. 

Boundary and Initial conditions: 

Solution of an unsteady river flow problem obviously 

depends on the initial ana boundary conditions imposed on 
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the river flow. In other words, when using the St.Venant equa-

tions to model river flow, two initial conditions and two 

boundary conditions must be specified in order to obtain 

a unique solution that describes the flow. 

Initial Conditions: 

The initial conditions specify the flow conditions 

at the initial time (t=0) of computation of the unsteady 

flow. The two initial conditions for the St.Venant equations 

are the velocity, V (x,o), or discharge, Q (x,o), paired 

with the area, A(x,o), or depth, Y (x,o) or h (x,o), specified 

for the entire channel length at initial time t=0. However, 

if an initial dry bed condition is specified with V or Q=0 

and A or h=0 at t=0, a numerical singularity is generated. 

For such a case one can assume a non-zero but small and negli-

gible initial depth so that the computations can proceed. 

After all, the St. Venant equations are unreliable for dry 

bed because under such conditions the Weber number (interfacial 

or surface tension) effect is important, which is not accounted 

for in St. Venant equations. 

Boundary Conditions: 

The boundary conditions specify the time variations 

of discharge, velocity, depth, or area of the boundary loca- 

tions. For a subcritical flow, both boundary conditions 

must be specified at the upstream boundary of the channel. 

For a subcritical flow, one boundary condition must be speci-

fied at the upstream end of the channel, whereas the other 
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-ust be at the downstream end. 

Channel Junctions: 

The precise hydraulic description of the flow at 

channel junctions is rather complicated and difficult because 

of the high degree of flow mixing, separation, turbulence, 

and energy loss. Yet correct representation of the junction 

hydraulics is important in realistic and reliable computation 

of flow in river networks. In addition to the continuity 

relationship, the dynamic relationship can be represented 

by either the energy or the momentum equations. In applica-

tions, the momentum equations are rarely used because they 

are vector equations and the pressure acting on the junction 

boundaries is usually difficult to describe. The energy 

equation is usually expressed in a simplified form of one 

of the following equations: 

2 
V 2 Q. 1 

4̀o (2-9g. + Y +z  1 i o 0 
2 V 2 V 1 II  

7, + Y + Z
i Ts

- + Y
o 
+ Z

o + hfi 
...3(a) i 

in which, 

Flow in to or from the junction; 

= velocity of flow in to or from the junction; 

depth of flow; 

elevation of channel bed at the junction; 

h
f = loss of energy head. 
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The subscript 'I' indicates the ith inflow channel 

at the junction and 'o' represents the outflow channel. The 

head loss h
f depends on the characteristics of the flow in 

junction and channel and is not easy to be determined. In 

general there are six possible junction flow conditions as 

follows: 

sub-critical flow in all the upstream branches 

and also in the downstream branch; 

subcritical flow in at least one but not all 

of the upstream branches whereas subcritical 

flows in all the rest of the upstream branches 

as well as in the downstream branch. 

super critical flow in all of the upstream 

branches and subcritical flow in the downstream 

branch, 

(d), (e) and (f) are same as (a), (b) and (c) except 

that the downstream branch flow is super critical. In small 

mountain streams any one of the above six cases is passible. 

However, for rivers usually the flow is subcritical in all 

the branches. 

Type of Junctions; 

For practical purposes, the junctions can be classi-

fied in to point type and reservoir type depending upon whe- 

ther the junction storage capacity is negligible relative 

to the volume of the flow. 

24 



Ql+Q2 = Q° 

Plan View 00  

Back Water in Channel 1e, 2 

Back Water hi Channel 

No Back Water in Channel 1 or 2 

"'''"'P' ziAl'aPIRPFS'Aits•—as•Ann 

_ 
Q1  

(a) Point-type Junction: 

For junctions with insignificant storage capacity, 

the junctions can be considered* as a point-type junction 

which is assumed to be represented by a single confluence 

point without storage. The net discharge into the junction 

is therefore zero at all times. Hence; 

A typical point-type junction with two inflow channels 

and one outflow channel is shown schematically in Figure 

4, for which; Q2 

--+ 

Junction Dimensions Provide 
No Storage for Flow 

Fig. 4. POINT TYPE JUNCTION 
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For subcritical flow in the inflowing channels, 

the flow discharges freely into the junction only when a 

free fall exists over a non-submerged drop at the end of 

the channel. Otherwise, the subcritical flow in the inflowing 

channel is subject to back-water effect from the junction. 

Since, the junction is considered as a point, the energy 

compatibility condition can be represented by a common water 

surface at the junction for all the joining channels. Thus 

by referring to the Figure 4. 

Yi = Yic if Zi + Yic Yo + Zo ... (7) 

otherwise, 

Yi + Zi = Yo + Zo ... (8) 

in which, 

Yi = depth of flow of the i-th inflowing channel 

at the junction; 

Yic = critical depth corresponding to tha instanta-

neous flow rate Qi; 

Zi height of the i-th inflowing channel; 

Yon() = depth and drop, respectively, of the outflowing 

channel. 

Flow in the outflow channel may be either sub-criti-

cal or super-critical. In the latter case, Yo is equal to the critical 

flow depth, Yoc, corresponding to the instantaneous flow 

rate Qo. 
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Flow in the inflow channels can also be supercriti-

cal, discharging freely in to the junction, provided the 

flow at the downstream of the channel is not submerged by 

the back-water in the junction. For such case, the discharge 

of the inflowing channels in to the junction can be computed 

without considering the flow condition in the junction. 

(b) Reservoir-type Junction: 

The reservoir-type junction has a relatively large 

storage capacity in compariskm to the flow. Consequently, 

it can be assumed to behave like a reservoir with a horizontal 

water surface and capable of obsorbing and dissipating all 

the kinematic energy of the inflows. The net discharge 

in to the junction is equal to the time rate of change of 

storage in the junction i.e. 

EQi _ dS 
u  UT ... (9) 

in which, 

S = Water stored in the junction. 

The depth of water, H, in the jun:tion is assumed equal to 

the specific energy of the flow at the entrance of the 

outflow channel, i.e. 

H + Yo + vo
2 

Zo ... (10) 

A typical three-way reservoir junction is shown schemati-

cally in Figure 5. 
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Fig.  5.  Reservoir - type Junction 

Since the kinetic energy of the inflows is assumed 

lost at the junction, for subcritical flow in the inflow 

channels, 

Zi + Yi = H if Zi + Yic CH ... (11) 

otherwise, 

Yi = Yic 

If the flow in the outflow channel is super-critical, critical 

flow condition exists at its entrance and hence H in eq. 

12 should be replaced by minimum specific energy correspon-

ding to the instantaneous flow rate Qo. 

As in the case of point-type junctions, super-

critical flow in the inflowing channels discharges freely 

in to the reservoir-type junction provided the inflow is 
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not sumberged by the back-water from the junction, abnd 

the discharge form the inflowing channels into the junction 

can be computed without considering the existing flow condi-

tions in the junction or overflowing channel. 

But the methodologies discussed previously for 

point type junction and Reservoir type junction (Figure 

4 and 5) more relevant in urban drainage systems than in 

natural river systems. In natural situations the backwater 

effect is possible only in one channel and not in two channels 

simultaneously unless and until their outfall confluences 

with another large sized outfall/channel at a short distance. 

For example, the Sabari and its tributary Yerabagu experience 

backwater effect if and only if the main river Godavari 

is in spate. Otherwise only the tributary Yeravagu experi- 

ences backwater effect. The point that needs consideration 

in a case like this is that while assuming the initial condi-

tions at the junction points, it is quite important to assess 

the initial conditions prevailing in the main river (e.g. 

Godavari as cited in the example),  if the results of the 

routing studies are to be reasonably accurate. 

Approximations to St. Venant's Equations: 

Because St Venant equations are rather complicated 

and it is not an easy task to obtain their solutions for 

unsteady river flows, various approximations to these equa-

tions have been proposed to provide simple but acceptable 

solutions. From a hydraulic view point, these approximations 
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can be classified, according to the terms of the momentum 

equation considered, as quasi-steady dynamic wave, diffusion 

wave, and kinematic wave approximations. If only the conti-

nuity equation is considered and the momentum equation is 

ignored, the approximation is a hydrologic routing model 

(e.g. see chow, 1964) and is not discussed here. 

Kinematic Wave Approximation; 

The Kinamatic wave approximation is the simple% 

but also the least accurate model of the three approximations 

to the St. Veaant equations. It retains only the two slope 

terms of the momentum equations and ignores the inertial 

and pressure terms, i.e. 

So = S
f 

Equation 13 together with the continuity equation 

forms a non-linear kinamtic wave model, for which, except 

for special cases, solutions are obtained numerically. 

However, because of the simplification of the momentum equa-

tion, only one boundary condition is required instead of 

two, as in the case of the St. Venant equations. Since 

the downstream backwater effect can not be accounted for, 

the non-linear kinematic wave model is unreliable for subcri-

tical flow when the downstream back-water effect is important. 

Diffusion Wave Approximation: 

The next higher level approximation is the diffusion 

wave approximation, which incorporates the pressure term 
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in addition to the two slope terms in the momentum equation, 

i.e. 

for gravity-oriented co-ordinates. The simplified momentum 

equation is combined with the continuity equation to form 

the non-linear diffusion wave model. 

Inclusion of the pressure term in the diffusion 

wave model substantially improves the solution accuracy. 

It permits peak attenuation in addition to distortion and 

translation of the hydrograph. It providas a means of accoun-

ting for the downstream backwater effect , if any. However, 

to obtain a unique numerical solution, it requires that 

two boundary conditions be specified, as in the case of 

St. Venant equations. Therefore, it also requires simulta-

neous or iterative numerical solutions and is more compli-

cated than the non-linear kinamatic wave approximation. 

Quasi-Steady Dynamic Wave Approximation: 

The quasi-Steady dynamic wave aproximation neglects 

only the local acceleration term and considers all other 

terms of the momentum equation. This simplified momentum- 

equation is coupled with the continuity equation to form 

the non-linear quasi-steady dynamic wave model. It accounts 

for the down-stream back-water effect and permits peak atten- 

uation distortion ani translation of the hydrograph. It 

also requires that two boundary conditions be specified 
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for the solution to be unique. Its numerical solution pro- 

cedure is nearly as complicated as that for the St. Venant 

equations. 

Solution Scheme: 

A non-linear flow routing models, each of which 

is formed by the continuity equation coupled with the momen-

tum equation or its simplified form, are mathematically 

a set of first order quasi-linear hyperbolic partial differen- 

tial equations. Usually, solutions can be obtained only 

numerically, with appropriately specified initial and boundary 

conditions. Many finite difference numerical schemes have 

been proposed to solve these equations. They can be classi-

fied in to the following three groups. 

(a) Explicit Schemes: 

The explicit schemes express the unknown parameters 

explicity as functions of known quantities, and solve them 

directly. They are relatively easy to understand, easy 

to formulate, easy to program, but they are also compata- 

tionally highly efficient because of numerical instability 

problems. o minimize numerical instability, the computa-

tional grids are usually selected to satisfy the criterion, 

1 
+ (gA/B) ... (15) 

in which, x and t are computational space and time intervals 

respectively; other terms are as defined previously. Thus 

in order to ensure numarical stability, for a given reach 
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At are so small that the computation becomes very costly. 

Therefore, explicit schemes are only useful in flood routing 

of short duration events such as flash floods. 

Implicit Scheme: 

The implicit schemes express the unknown parameters 

implicitly in simultaneous algebraic equations and then 

solve them using an appropriate solution technique. They 

are relatively much more difficult to formulate and program, 

but if done properly and carefully they can be computa-

tionally very efficient and stable. The finite difference 

computation grid sizes Ax and At can be chosen independently. 

Method of Characteristics: 

The method of characteristics solved two sets 

of "Characteristics" equations, each set consisting of a 

pair of ordinary differential equations. These equations 

are transformed mathematically from the St. Venant equations. 

The characteristics equations are usually solved numerically 

using finite differences to approximate differentials. 

They may be expcessed explicitly or implicitly using rectan3-

ular space-time grids or characteristics grids. 

River Network Solution Technique: 

There are four methods to facilitate solution 

of unsteady flow in river network as follows: 

(a) Simultaneous solution technique: 

When the diffusion wave, quasi-steady dynamic 
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wave (St. Venant °guts.) models are applied to a river channel 

two boundary conditions in addition to the initial conditions 

are required to yield the unique solution. For a subcritical 

flow, one boundary condition shold be at the upstream end 

of the channel, whereas the other should be at the downstream 

end. The latter which provides through the junction the 

upstream boundary condition for the immediately following 

channel, is actually an unknown and a part of the solution 

being sought. In using the implicit numerical scheme, the 

flow in an interior channel can only be expressed in terms 

of the unknown boundary conditions at its upstream and down- 

stream ends. This situation repeats until the last channel 

of the network is considered, for which the downstream boun-

dary condition at the outlet of the network is specified. 

Thus, the solution can be obtained only by solving all of 

the flow equations at the channel and junctions simultaneously. 

The simultaneous solution method is exact in the sense of 

solving all of the difference equtions for the entire network. 

But it is also very costly and requires a large digital 

computer when the network is large making the method imprac-

ticable. 

One-sweep explicit solution method: 

In this method, the unknown junction and channel 

flow parameters are expressed explicitly in terms of known 

quantities of the network at a previous time and of upstream 

points at the present time. Thus, simultaneous solution 
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(a) ( b) ( c ) 

3 V\  
1 

for the entire network is avoided. The solution proceeds 

starting from the upstream end towards the downstream end 

for the entire network for the present time step in sequence 

in a one-sweep manner before the computation advances to 

the next time step. This method bears the draw-back of 

explicit schemes concerning computational stability problems. 

Overlapping segment method: 

The overlapping segment method ; a single step, 

successive iteration technique is demonstrated schematically 

in Figure 6. 

Fig. 6. Method of over-Eopping segments 

The river network is considered to be formed by 

a number of overlapping segments. Each segment is formed 

by a junction together with all the channels, each (interior) 

channel belongs to two segment - as a downstream channel 

for one segment and then as an upstream channel for the 

other segment, i.e. overlapped. Each segment is solved 
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as a unit. The flow equations are first applied to each 

of the branches of the most upstream segment for which the 

upstream boundary condition is known, and solved numerically 

with appropriate junction equations. If the flow is subcri- 

tical and the boundary condition at the lower and of the 

downstream channel of the segment is unknown, the forward 

or backward differences, depending on the numerical scheme, 

are used as an approximate substitution. Simultaneous numeri-

cal solution is obtained for all the channels and junctions 

of the segment for each time step, repeating until the entire 

flow duration is completed. For example, for the network 

shown in Figure 6, solutions are first obtained for the two 

segments shown in Figure 6 (b). Since the downstream boundary 

condition of the segment is assumed, the solution for the 

downstream channel is discarded, whereas the solutions for 

the upstream channels are retained. The computation now 

proceeds to the next immediate downstream segment (e.g. the 

segment, shown in Figure 6 (c). The upstream channels of 

this new segment ware the down stream channels of each of 

the proceeding segments for which solutions have already 

been obtained. Tne inflows into this new segment are given 

by the outflow from the junctrons of the proceeding segments, 

with the inflows known , the solutions for this new segment can 

he obtained. This procedure is repeated successively, segment 

by segment, going downstream until the entire river network 

is solved. For the last (most downstream) segment of the 

network, the presented boundary condition at its downstream 
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end is used. 

The method of overlapping segments greatly redu-

ces the necessary computer size and time requirements when 

solving for large river networks. It accounts for down-

stream backwater effect and simalates reversal flow, if 

it occurs. Its accuracy and practical usefulnass have been 

demonstrated by Sevuk (1973) and Yen and Akan (1976). 

Solution by the overlapping segment method accounts 

for the downstream backwater effects of subcritical flow 

only for the adjacent upstream channels of the junction, 

but can not reflect the backwater effect from the junction 

to channels farther upstream if such case occurs. However, 

by c0n9iderin3 the length to depth ratio of natural river 

branches, the effect of backwater beyond the immediate up-

stream branches is small, and hence imposes problem in roat-

ing of river floss. For the rare case of two junctions 

being closely located, the overlapping segment method can 

be modified to include the short branch between the junctions 

as the internal branch and to use longer branches as the 

upstream and downstream channels. It should also be mentioned 

that the overlapping segment method, as well as the two 

previously described methods, cal be modified to account 

for divided channels, i.e. loop networks in addition to 

tree-type networks. 

Cascade Methpd: 

In the non-linear kinematic wave approximation, 
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only one boundary conditioi is required for routing the 

flow th-ough a channel. Usually the upstream boundary condi- 

tion is specified. Since the downstream boundary condition 

is not required and the downstream back-water effect is 

not accounted for the solution of the upstream channel, it is 

not effected by the downstream channel. At the junctions, 

only the continuity relationship is needed, and the dynamic 

coadition is ignored. Consequently, solution of the flow 

can be obtained in a cascading manner, solving first for 

the moat upstream channels individually over the entire 

flow hydrograph duration. Computation then proceeds and 

is repeated for the next downstream channel. Thus, the 

solution is obtained channel by channel individically and 

sequentially, moving downstream until the entire network 

is solved. No simultaneous or network iterative solution 

is required. This method is relatively simple and in-expen-

sive, but it is in-accurate if the downstream backwater 

effect is imiportant. 

The cascading method can be used for diffusion 

wave, quasi-steady dynamic wave, and dynamic wave models 

without causing additional error if the flow is entirely 

in super-critical regime. However, such a case rarely/ occurs 

in natural rivers. 

Using example networks, Yen and Akan (1976) com-

pared the reliability of the methods of simultaneous solution, 

overlapping segments, and cascade. A typical example for 
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the network shown in Figure 7 is 

which shows the former two methods 

whereas the sequential cascading 

reproduced in Figure 8, 

giving identical results, 

method gives significant 
SIMULTANEOUS & OVERLAPPING 
StQUENTIAL 

---- INFLOW 

D
IS

C
H

A
R

G
E

,  
c
  f

 s
  

Fig. 7 Exampte Network 
Tnere exists 

FIG. 8. OUTFLOW 
a number 

50 100 
TIME MIN 

HYDROGRAPHS FOR BRANCHES 1, 2 & 4 
of appropriate models 

and numerical schemes for mathematical modeling. Which model 

and scheme is the best for a particular problem depends on 

the nature of the problem, the accuracy required, the compu-

tational facilities available, and the computational costs. 

There is no universally superior model or scheme. However, 

usually for gradually va7ied river flow, the implicit schemes 

and method of characteristics are superior to the explicit 

schemes, and the deffusion wave or - dynamic wave modals are 

preferred if the down-stream back-water effect is important, 

and the overlapping segment method if the river network 

is large. Looking at the importance of implicit scheme (Yen 

and Akan, 1976), it has been explained 38 below. 
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Four-point finite-difference-implicit scheme- 

Eq. 2 can be re-written for the bed slope to be 
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Fig. 9, Computational Grid for Four-Point Implicit 
Finite-Difference Scheme 
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Now, with reference to the computational grid shown 

in Figure 9, the coefficients and p rtail differentials of 

Eqs. 1 a 16 are approximated by the following finite difference 

quotations. 

1 F •C1-./..- 
' 2 (Q (FI +1  , 0+1  - i+1 + (1-9) (F1 + F4 a) 

il i. N-1 N 
DISTANCE - X 

"ax 

0+1 Fj+1  
(  i+1 ) 

x +1+  
F4 -F4 + 2 (1-9) ( 1+1 1 ) 

x
i+1 + xi 

...(181- 
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aF _ 1 j+1 j+1 
IT - 2.At (F + F

1+1 

in which, 

F = any grid function; 

4X1= length of the flow reach measured in hori-

zontal direction and centred at the i-th 

station; 

At= constant time interval; 

j= time stage of computation, 

weighting factor. 

It can be noted that -E1 = 1 yields a forward-time 

implicit scheme used by Baltaff and Lai (1968) and 9 = 0.5 pro-

duces a central implicit scheme used by Amein 6 Fang (1969). 

According to Fread (1974) the implicit scheme described by 

Equs. (17), (18) 'and (19) is unconditionally stable for 

‘e er 1. 

By assuming q=o and e=1, Substitution of Eqs. 17, 

18 and 19 in to equt. 1 and 16 yields: 

AI+1 + +1 - Ai -Ai 
1+0.5=  • 1+1 i 1+1 2 9  

2 At Ax +Ax +1 

j+1 
- Q

j+1
) + 2 (1-G)  f Q

i+1 
(QI+1 - 01)  = hat  +Axi+1  

and 
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i+1 
i+1  + Ai+1) si+1  2  
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Si Si + Si+1  fi+1 fl 

  

ii 

2 

(1-9) (Ai Afl i+1 
2 

2 (Y1  
si+1 Ydi  

Si Si f i+1 + fi _ 
2 0 ... (21) 

where; 

Ci+0.5 and M1+0.5 represent respectively the finite 

difference approximate equations of continuity and momentum 

written for the channel reach between stations i and 1+1. 

+ The unknown parameters in Eqs. 20 and 21 are QJl 
1 

j+1 
and vji

+1 
1 The quantities q, Q141., YL. YL1.1  si -s+ 

are known either from previous computations or from the initial 

condition. The flow cross-sectional areaA is a prescribed 

function of the water surface elevation Ys as determined 

by the geometry of the channel. The friction slope is com- 

puted by using Manning's formula as stated previously- 

Sf = n2 Q2 A -2 R -413  2.21 ...(22) 

in which n is the roughness factor and R is the hydraulic 

radius. Both A R are prescribed functions of Ys. 
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If overlapping segment scheme is used, the upstream 

condition is specified by the upstream inflow hydrograph which 

is obtained through previous computations for each branch. 

For fork-type junctions (i.e.. storage effect is negligible) 

with horizontal bottom Eq. 8 can be re-written as: 

Y1 Y2 =Y3 Yo ... (23) 

The downstream boundary condition is the unknown 

junction kinematic computability condition, Eq. 23, which 

also serves as the upstream boundary condition for the down- 

stream branch of the overlapping segment. The downstream 

boundary condition of the downstream branch is usually unknown 

except for the last branch of the entire network, for which 

the outlet condition may be prescribed by the outflow stage-

time relationship (such as flow into a reservoir) )r the 

discharge-stage relationship (such as for a control section), 

or the discharge-time relationship (such as regulated outflow). 

As mentioned previously, Sevuk (1973) used backward differences 

applied to the momentum and continuity equations as the sub-

stitute for the downstream boundary condition and the last 

forward characteristic. The counter part of this substitution 

for the implicit finite difference scheme is to utilize the 

forward characteristic passing through the last grid point. 

However, because in the implicit scheme the space and time 

increments are selected independently and the time increment 

is usually much greater than that allowed by the Courant 
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stability criterion, this forward characteristic starts 

at the preceding time level from upstream far beyond the 

last distance interval, making this substitution impractical. 

After a number of trails, Yen and Akan (1976) found 

that approximating SfN  by linear or quadratic extrapolation 

form the immediate upstream grid stations provided reliable 

results with little computation represent the forward 

difference condition. They gave the downstream boundary 

condition for the downstream branch of the overlapping seg- 

ment as: 

SfN  = (1+ 4)(N 111(N-1) SfN-1 - ( 
 4xN +/NKIN

-1  ) s cxN-1 +4)(14 _2 .I.LA
N-1 

+4-x
N-2 -fN-2 

... (24) 

Eqs. 20 and 21 applied to each branch of an over- 

lapping segment provide2:. 2(N: -1) equations where M is 
i=1 

the total number of branches in the segment and Ni  X is 

the number of grid points used in the -th branch, and there 

are j  2 Niunknowns. The additional 2 M conditions are 
i=1 

provided by the prescribed upstream boundary conditions 

of the overlapping segment (M-1 inflow hydrographs), down-

stream boundary conditions for each branch (M equations 

from Eqs. 23 and 24) and the continuity equation at the 

juction (Eq. 6 for fork type junction). This set of 

2N
1 

non-linear algebraic equations is solved symul-1=1 

taneously using the generalized Newton's iteration method. 
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Since the matrix of the equation coefficients does not pro- 

cess banded or other special properties, the Gaussian inver-

sion technique is adopted. 
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4.0 DATA REQUIREMENT: 

Data required for the analysis of the flow through 

junction are grouped as below: 

(A) Cross-Section: 

Location - Location of the section is specified 

in terms of river miles from some obli-

gatory point (gauging station). Cross-

sections should be positioned so as 

to best characterize the geometry of 

the anticipated flow paths. 

Alignment - Cross-Section alignment should always 

be perpendicular to the anticipated 

flow lines, which may require a dog-

leg or curvilinear alignment. 

Cross-Sectionl Area - It is defined in terms of 

elevation for a cross-section, two 

width and an 'inactive' (or off-channel 

storage) width. It is presumed that 

flow through the active flow portion 

of a cross-section is normal to the 

plain of the cross-section with a 

velocity that can be appropriately 

represented with Manning's equation. 

Only the active flow portion of a 

cross-section is considered in defining 

terms in the momentum equation. 

The in-active portion of a cross-section is intended 

to account for an area where water ponds does not have a 

significant velocity component in the direction of flow. 

Characteristics of the total cross-section, active plus 
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inactive are reflected in terms of the continuity equation. 

Figure (10) ilustrates representation of a cross-section 

with elevation and widths that has both active and inactive 

areas. 

Off-channel storage, for example on a tributary, 

are modelled by locating three cross-sections as shown in 

Figure (11), and developing off-channel storage widths to 

reflect storage in the tributary. The widths are calculated 

for the middle cross-section as follows: 

BSS - 2 CSM ... (25) 

in which; 

BSS Off-channel storage width in m for middle 

at elevation E-m. 

SA Surface area of off-channel storage in 

square M at elevation E-m, 

Distance in m between first and third cross-

sections. 

(iv) Spacing - Theoretically, the distance between 

the cross-sections should be equal 

to the distance travelled by the 

flood wave during a computation 

interval. Because both the flood 

wave velocity and the computation 

Interval vary during a simulation, 

the theoritical criteria tan only 

be approximately satisfied. Rela- 
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Fig. 11. Off-Channel Storage (Plan View) 
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tively short distance steps are required 

near the junction and steps can be len-

gthened with increasing distance from 

the junction in either direction. 

(B) Roughness Coefficient: 

(i) Application: Boundary resistance is reflected in 

the equation of motion through the fric-

tion slope, which is defined with Mann-

ing's equation. Friction slope is deter-

mined for a reach in terms of an arith-

metic average of the hydraulic radii 

for the 'effective flow portions of 

cross-sections at each end of the reach. 

It is assumed that wetted perimeter 

is equal to the effective water surface 

width. This assumption results in negli-

gible error if the width to depth ratio 

for effective flow is greater than a 

value of about 10. For narrow, deep 

cross-sections, the wetted perimeter 

assumption should be accommodated by 

employing appropriately larger n-values. 

In case the roughness data are not available, the 

same can be calculated approximately if the median sediment 

size is known. Hence in absence of roughness coefficient 

data, median sediment size should be known at all cross 
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sections' along the reach. 

(ii) Composite roughness: Mannings' roughness coeffi-

cients (n-values) should be specified 

for reaches containing two or more cross-

sections as a set of composite n-values 

which vary with elevation or discharge. 

A composite n-value is an equivalent 

n-value associated with the entire (effec-

tive) wetted perimeter of a cross-section. 

Typically, n-values should be specified 

with a lateral variation across the cross-

section as shown in Figure (12). 

, a, n
2 a

2 
p

2 n3 a 

Fig. 12. Lateral Variation of n - Values 

Across a Cross-Section. 

(C) Type of Flow: 

The flow is characterized as to be sub-critical, 

critical or super-critical. If Froude number is less than 

1, the flow is said to be in sub-critical regime and equal 

to 1 then the flow is critical and if greater than 1 the 
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flow is in super-critical regime. 

Stage-Discharge Relation: 

Rating surveys at the gauging stations just upstream 

and downstream of the junctions should be available. Gauging 

stations should be so located as they best represent the 

flows characteristics. 

Generally, the gauging sites are located far upstream 

of the junction. In this case the ratings at just u/s of 

the junction can be calculated by routing process. 

Bed Slope of the Channels: 

Bed slopes of all of the tributaries joining and 

of main river should be known. For alluvial rivers where 

silting and erosion takes place, a mean slope of the channels 

can be taken. In addition to this the bed slope at the 

junction should be known. 

Velocity Distribution of the Flow: 

Velocity distribution of the flow w.r.t. depth 

should be known. As the flow velocity is changing with 

depth of flow, this will affect the momentum equation. 

The velocity distribution for tributary as well as main 

river should be known. 

Map of he Basin: 

The basin map is required for acquiring knowledge 

of plan view of the junction and also to know the angle 

of inter-section of the tributary flow with the main river 
flow. 
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5.0 REMARKS 

Yen and Akan (1976) in their paper presented a 

hypothetical study to demonstrate the validity of applying 

the overlapping segment method for routing of floods through 

fork-type junctions. Thy applied all the three methods dis-

cussed previously and made following remarks. 

Theoritically, the overlapping segment method would 

fail when the junction effect propagates signi-

ficantly beyond the immediate upstream branches. 

From the examples tested it appears that such case 

would rarely occur in field conditions. Although 

how far upstream the backwater effect from a junc-

tion is felt depends on the network geometry as 

well as on the flood characteristics and required 

accuracy, some rough indication can be obtained 

from steady flow backwater effects. For instance, 

if at the upstream end of a branch the steady flow 

depth with backwater from the junction at its down-

stream end is 10% greater than the normal depth, 

most likely in unsteady flow routing the correspon- 

ding junction effect to the preceding overlapping 

segment would be much less than 10%. 

The sequential method which is oftenly used, can 

produce erroneous results for sewer flows. However, 

for river networks with relatively wide and nearly 

rectangular channels, the error in discharge is 
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not exceedingly large and in fact under favourable 

conditions the sequential method may be useful 

because of its relative simplicity, provided that 

simulation of the reduced or reversal flow such 

as that at the d/s of branch 3 (Figure 6) is not 

important. Better approximation by the sequential 

method for river networks than for sewer networks 

is due mainly to the fact that most sewers have 

circular cross-section for which the depth changes 

rapidly at low discharges and that there usually 

is a discontinuity in invert or crown of the joining 

sewers at the junction. However, even for river 

networks with favourable conditions, the sequential 

method can not give reliable depth at the downstream 

end of the branches. Only the computed depth at 

thier upstream end can be considered as approxima-

tely acceptable. 

They further concluded that the overlapping segment 

method can be used to route unsteady flow through fork-type 

dendritic networks of non-prismatic channels using a four- 

point finite diff. implicit scheme. This method requires 

much less computer time than simultaneous solution of the 

flow equations for all the branches of the network, and 

It is considerably more accurate than the sequential method 

which neglects the downstream back-water effect. The over-

lapping segment method simulates the flood flow faithfully 

and its result agrees well with that by the simultaneous 
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solution method. The sequential method produces less erro-

neous results for river networks than for sewer networks 

because the former usually have wider channel cross-sections 

and don't have the bottom discontinuity as the latter. 

However, the sequential method should not be used when 

the downstream backwater effect is important and when reverse 

flow occurs. 
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