
LECTURE-9 

Modelling of Lake-Aquifer Interactions 

Dr. S.K. Singh, 
Scientist El, 

Ground Water Hydrology Division, 
National Institute of Hydrology, Roorkee 



Training Course on "Hydrology of Lakes for Sustainable Human Benefits". 
organised by NIH, Roorkee and Punjab University, Chandigarh, at Chandigarh, June 25-29, 2007 

Modelling of Lake-Aquifer Interaction 

Sushi! K Singh 
Ground Water Hydrology Division 

National Institute of Hydrology, Roorkee-247 667, India 
e-mail:Sukusil@yahoo.com  

INTRODUCTION 

Water bodies are the common features on the land surface and are 
important in respect of various water uses. Keeping in view their importance in many 
hydrologic and economic fields, their hydrologic studies are of much use. Field and 
theoretical studies on the interaction of large water bodies with aquifer are needed based 
on the variability of flow pattern near the boundaries of the water body. Meyboom (1966) 
and Freeze and Witherspoon (1967) are amongst the early investigators who stressed 
upon the groundwater flow pattern around a lake. Winter (1981) has discussed the 
uncertainties in the water balance of a lake. Some insight into the groundwater regime 
and discharge estimates from lakes were provided by Winter (1978), who used two- and 
three- dimensional steady state models for hypothetical groundwater-lake systems. 
McBride and Pfannkuch (1975) used a numerical model to evaluate the vertical 
component of groundwater flow of a lake for a number of hypothetical settings. In spite 
of the early recognition of the lake-water management studies, few attempts (Munter and 
Anderson, 1981; Winter, 1986; Cheng and Anderson, 1993, 1994) have been made 
towards the understanding of the interaction of water bodies with aquifer. Munter and 
Anderson (1981) showed that two- and three-dimensional groundwater flow models 
provide flexible and effective means of calculating flow rates around lakes. They 
observed that the anisotropy ratio of aquifer hydraulic conductivity has a significant 
effect on the simulated head distribution around the lake and magnitude and distribution 
of seepage from the lake. It is observed that no guidelines or method is available for 
estimating the recharge from water bodies. 

In this paper, a diagnostic curve is developed for estimating the recharge 
from a water body, from the groundwater heads near the water body. The diagnostic 
curve is developed using the results of MODFLOW application. Additionally, the 
proposed diagnostic curve can also be used to estimate the aquifer parameters from 
measured values of the groundwater head and recharge. 

DEVELOPMENT OF DIAGNOSTIC CURVE 

MODFLOW (McDonald and Harbaugh, 1988) was used to generate the 
data for developing the diagnostic curve. The water body was assumed to be of square 
cross-section having uniform depth. The aquifer was assumed homogeneous and 
anisotropic. Different sizes of water body and different depths of water in the water body 
were considered. The anisotropic ratio (Kay, Kb = hydraulic conductivity in horizontal 

direction, and lc = hydraulic conductivity in vertical direction) is considered as 1, 10, 
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100, 250, 500, and 750. Variable grid spacing with finer grids near the water body was 
considered. Coarser grids were taken away from the water body. 
The difference between the head at a point and the initial head is designated as Ah and the 
depth of water in the water body is designated as AN. The analysis of data obtained using 
the MODFLOW suggests that the parameter X'S I Tt (X = distance of observation point 
from the water body; S = storage coefficient of aquifer; T = transmissivity of aquifer; t — 
time measured since rise of water level in the water body) and TAhl OR  (QR  = rate of 
recharge from water body) are uniquely related and the relation is found to be the same 
for different values of AN but different for different values of Kh/K„. Figs. 1, 2 and 3 
show such relations (curves) for Kh/K,, = 1, 100 and 500, respectively. The curves for 
different values of Kh/K„ on double logarithmic paper are made to coincide to the curve 
for Kh/K„ = 1 with parallel shift of axes. Thus, a new parameter CX'S I Tt is uniquely 
related to another new parameter TAh l(CQR ) and this relation is the same for different 
values of Kh/K, 
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Fig. 5. Diagnostic curve 

This unique relation between CVS IP and TAI21(CQR ) is termed 

"diagnostic curve" and is shown in Fig. 5. The variation of C with Kh/K„ is shown in Fig. 

4 and is expressed as 

C = 0.997 + 2.74x10-3  Kh (1) 
K, 

DETERMINING RECHARGE FROM A WATER BODY 

The required data are: (1) values of the aquifer parameters T and S; (2) 

anisotropy factor KnIK; (3) measurement of head changes in an observation well; (4) 
distance of observation point from the water body. The procedure to calculate the 

recharge from the water body is: 
Calculate the value of C from Eq. (1) for known value of Kh/K, . 

Calculate the value of the parameter CX'S / Tt . 

Knowing the value of the parameter CX 2SITt, find the corresponding value of the 

parameter TMI(CQR ) from the diagnostic curve shown in Fig. 5. 

Once the value of the parameter TM l(CQR ) is known, the rate of recharge from the 

water body, i.e., QR  is determined. 

Check for CX 2S ITt <10-2. 

DETERMINING AQUIFER PARAMETERS 

The diagnostic curve can be expressed as 
1 TM „ 
--=f(u) 
C QR  

1 Ti 
U =— 

C X 2S 
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Equations (2) and (3) show that a double logarithmic plot of Ah vs t can be 
made to overlap the plot of J(u) vs u (diagnostic curve) on the same scale with a parallel 
shift of axes. Once the graphs are matched, the aquifer parameters can be estimated from 
the dual coordinates of a selected point on the matched portion of the graphs: 

T = CQR 
f (u)  

 
Ah 

T  t 
S= 

CX 2  U 

where m = subscript denoting the values corresponding to selected point. 

CONCLUSION 

A diagnostic curve has been developed for estimating recharge from a 
water body using the groundwater heads near the water body. The proposed diagnostic 
curve can also be used to estimate the aquifer parameters from the measured values of 
recharge. 
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APPENDIX 

Modelling of Lake-Aquifer Interaction 

DESCRIPTION OF MODFLOW 

Mathematical Model 

MODFLOW was originally developed by McDonald and Harbaugh 
(1988). The partial differential equation governing the three-dimensional unsteady 
(transient) movement of incompressible groundwater through heterogeneous and 
anisotropic medium is described by 

(n ah) 
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where x, y, z = cartesian coordinates aligned along the major axes of conductivities IQ, 

1(xx, and Ict; h = piezometric head [L]; W = volumetric flux per unit volume, which 

represents sources and/or sinks [T1 ]; Ss = specific storage of porous material [1:1 ]; and t 

= time [Ti. The variables appearing in Eq. (1) are defined in function forms as 

Ss  = Ss  (x, y, z) 

K = Cxx (x, y,z) 

 

 

K = K y),(x, y, z)  

Kn  = Kn (x, y, z)  

h = h(x, y , z ,t) 
 

W =W (x,y,z,t) 
(2.1) 

Thus, in general, the specific storage and conductivities may be the 
functions of space and the piezometric head and sources/sinks may be the functions of 
space and time. Eq. (1) when combined with boundary conditions (flow and/or head 
conditions at the boundary of the aquifer system) and initial conditions (specified head 
condition s at t = 0) constitute a mathematical model of transient flow of groundwater. 

The analytical solution of Eq. (1) is not feasible for complex systems, 
therefore, numerical methods must be employed to obtain approximate solutions. The 
finite difference approach is one of such numerical methods, wherein, the continuous 
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system described by Eq. (1) is replaced by a set of discrete points in space and time, and 
the partial derivatives appearing in Eq. (1) are replaced by finite differences between 
functional values at these points. Thus, this process leads to a system of simultaneous 
linear algebraic difference equations, the solution of which yields values of piezometric 
heads at specific points and time. These values are an approximation to the time varying 
head distribution that would be given by an analytical solution of the partial differential 
equation governing the flow process. 

Discretization Convention 

For the formulation of finite difference equations, the aquifer system 
needs to be discretized into a mesh of points termed nodes, forming rows, columns, and 
layers. Such spatial discretization of an aquifer system is shown in Fig. 1. An i, j, k 
coordinate system is used to conform to the computer array convention. If an aquifer 
system consists of "nrow" rows, "ncol" columns, and "nlay" layers, then 

i = row index, i = 1, 2, ....nrow; 
j = column index, j = 1, 2, ....ncol; and 
k= layer index, k= 1, 2, ....nlay. 

For example, Fig. 1 shows a system with nrow = 5, ncol = 9 and nlay = 5. With 
respect to the Cartesian coordinate system, points along a row are parallel to the X-axis, 
points along a column are parallel to the Y-axis, and points along vertical are parallel to 
the Z-axis. In this spatial discretization, nodes represent prisms of porous material termed 
cells in a conceptual sense. Within each cell, the hydraulic properties are considered 
constant. Thus, any value associated with or assigned to a node applies to or is distributed 
over the extent of the cell represented by that node. The width of cells along rows is 
designated as Ar., for jth column; width of cells along columns is designated as Ac, for 

ith row; and thickness of layers in vertical is designated as Avk  for kth layer (see Fig. 1). 
Thus the cell with the coordinates (i,j,k)= (5, 3, 2) has a volume of Ar3  tics  Av2  
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COLUMNS (l) 

an< 

EXPLANATION  

- AQUIFER BOUNDARY 

ACTIVE CELL 

o INACTIVE CELL 

at) DIMENSION OF CELL ALONG THE ROW DIRECTION INDICATES THE 
NUMER OF THE COLUMN 

ac, DIMENSION OF CELL ALONG THE COLUMN OIRECT/ON SUBSCRIPT (I) 
INDICATES THE NUMBER OF THE POW 

avK  DIMENSION OF CELL ALONG THE VERTICAL DIRECTION SUBSCRIPTDO 
INDICATES THE NUMBER OF THE LAYER 

Fig. 1. A discretized hypothetical aquifer system 

Configuration of Cells 

There exist two conventions for defining the configuration of cells with 
respect to the location of nodes, viz., block-centered and point-centered formulations. In 
both systems, the aquifer is divided with two sets of parallel lines, which are 
perpendicular to each other. In block-centered formulation, the blocks formed by the set 
of parallel lines are the cells and the nodes are at the center of the cells. In point-centered 
formulation, the nodes are assumed at the intersection points of the set of parallel lines 
and the cells are drawn around the nodes with faces half way between nodes. In either 
case of configuration, the spacing of nodes should be such that the hydraulic properties of 
the system are uniform over the extent of a cell. Both types of grid configurations have 
been shown in Fig. 2. 
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Fig. 2. Grids showing the difference between block- 
centered and point-centered grids 

Finite Difference Equation 

The following development of finite difference equation holds good for both type 
of cell-configurations. The groundwater flow equation may be written in a finite 
difference form by applying continuity equation. Thus, the algebraic sum of all flows into 
and out of cell must be equal to the rate of change of storage within the cell. Under the 
assumption that the groundwater is incompressible, the continuity equation for the flow 
to a cell can be written as 

Ah EQ =5,—AV (3) 
At 

where Q, = inflow to cell [L3  T-1]; Ss = specific storage defined as the ratio of volume of 
water, which can be injected per unit volume of aquifer material per unit change in head 
[1:1]; AV= volume of cell [L3]; and Ah = change in head over a time interval At. 

The right hand side of Eq. (3) represents the volume of water taken into cell-
storage over a time At given a change of head of Ah. Outflow and loss in storage are 
represented by defining outflow as negative inflow and loss as negative gain. 

For a three-dimensional problem, each cell is surrounded by six adjacent cells. 
Fig. 3 show a cell i, j, k along with the six adjacent cells, i -1,j, k; i +1, j, k; i,j -1, k; i,j 
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+1, k; i,j, k-1; and i,j, k +1. The net flow to the cell i,j, kis the algebraic summation of 

the flows into the cell from six adjacent cells. 

oh. 
at, 

Fig. 3. Cell i,j,k and indices for the 
adjacent cells 

Using Darcy's law, the flow from each adjacent cell into the cell i, j, k can be obtained. 

The flow into the cell 1,1, kin row direction from the cell i,j -1, k (see Fig. 4) is given by 

— hi  .k  
= ni.j _1/2* Ae, Ay), 

(4) 
qi,J-1/ 2,k Ark-1/2 

where a ij-1/2,k = volumetric flow discharge through the face between cells 1,], k and i,j - 

1, k [L3  T-1]; KR,, j_1/  2,k  = hydraulic conductivity along the row between nodes i, j, k and 

- 1, k [LT-I ]; Arr112  = distance between nodes i,j, k and i,j -1, k [L]. The index j —1/2 

indicates the space between nodes (Fig. 4). It does not indicate a point exactly half way 

between nodes. For example, I/2,k represents hydraulic conductivity in the entire 

region between nodes i, j, k and i, j -1, k. Since the grid dimensions and hydraulic 

conductivity remain constant throughout the solution process, Eq. (4) may be rewritten by 
combining the constants into a single constant that is termed as "hydraulic conductance" 

or simply "conductance" of the cell. 

2,k = CRij-1/2,k 

where 

Fig. 4. Flow into cell ij,k from cell i,j-1,k 

(5) 
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CRed-112,k 
KR1j-112,k Ac1 Avk (6) 

Ar j-1 2 

The CR,j_I/ 2,k is the conductance in ith row and kth layer between nodes i, j, k 

and i, j -1, k [L2  T-']. Thus, the conductance is defined as the product of hydraulic 
conductivity and cross-sectional area,  of flow divided by the length of flow path. Here, C 

refers for the conductance and R refers for the row direction. 
Equations similar to Eq. (5) can be written approximating the flows into or out of 

cell i,j, k through the remaining five faces. Such equations are written below. 

i d+112,k = CREJ+1124 (hi, j+Lic  — hi/k ) (7) 

= CC;_intoc k_IJA (8) 

i+112,j,k = CC i+112,j,k(hitl,j,k hi/k ) (9) 

id,k-112 = CV id,k-112(hid  ,k-1 hi,j,k) (10) 

id,k+112 = CVi1,k+112(hi,j,k+1 —  hi,j,k) 
(11) 

Eqs. (5) and (7)-(11) represent the flow into the cell i, j, k from all six 
adjacent cells. There may be some flow to the cell i,j, k from external sources. Seepage 
from the streambeds, drains, areal recharge, evapotranspiration and flow from wells are 
sources of external flows. These can be taken care of by additional terms that account for 
the flows into the cell from outside the aquifer. These flows may depend on the head in 
the receiving cell or may be independent of the head in receiving cell but are independent 
of the heads in other cells of the aquifer. The flow from outside the aquifer, which is 
represented by Win Eq. (1), may be represented, in general, as 

a 1,j,k,n = Pi,j,khi,j,k i,j,k,n 
(12) 

. 
where lfk fl  = flow from the nth external source into cell i, j, k [L3 T 1  ]; Pl,f,k = a 

constant [L2  T-1]; q1 f k = a constant [L3  T-1]. For example, consider a well in the cell i,j, 

k with its discharge as q11 1 . In this case, the discharge from the well is assumed to be 

independent of head in the cell i,j, k, hence 0 and 

ai,j,k,I 
(13) 

If a second external source (n = 2) is taken to be seepage from a riverbed, which is 

proportional to the head difference between the river stage (i.e., Re/k ) and receiving cell 

i,j,k (i.e., h,/k ).  Therefore, Eq. (12) takes the form 

a i,j,kCRIVi,j,k,2 he/k ) (14) 
CRIV,,j,k,2hi,j,k CRIV,, j,k,2 i,j, 
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where CRIVI,J,k,2 = 
conductance of riverbed in cell i, j, k [L2  T-1]. The term - 

corresponds to p, JA  .2  and the term CRIV,,k,,R,,JA  corresponds to q J,k.2 Similarly, all 

other external sources or stresses can be represented by Eq. (12). If there are N external 

sources or stresses affecting a single cell, the combined flow is expressed by 

QS i,j,k = Ea  i,j,k,rt 
n=1 

= EPi,j,k,nhi,j i,j,k,n 
(15) 

n-1 n=1 

Qi,j,k 

where 

(16) 

n=1 

= Eqi,j,k,n 
(17) 

n=1 

While writing the continuity equation of the form given by Eq. (3), for the 

cell i, j, k, the tern IQ, consists of flows to the cell from six adjacent cells, and all 

external flow rates to the cell. The flows from six adjacent cells into the cell i, j, k are 

given by Eqs. Eqs. (5) and (7)-(11). The flow from external sources into the cell i,j, k is 

given by Eq. (15). Substituting these equations into Eq. (3), we get 

"0-1/ 

CC H12../ 40" , Lk  

CV1,j,k-112(h1,j,k-1 

Ps,j,k hi,j,k i,j,k 

hi,j,k) a• 1,j+1/2,k(h1,j4-1,k — hi ,j,k) 

+ CC i+11 2k(hi+1,j,k hi,j,k) 

- hi,j,k) CV  • i,j,k+1/2(hi,j,k+1 hi,j,k)+  

Ahid,k  

= SS i,j,kar j Aci Avk At 
(18) 

where Ss  = specific storage of cell i, j, k [1:11; and At; Ac,Avk  = volume of cell i, j, k 

[L3]. The Eq. (18) can be written in the backward difference form by specifying the flow 

terms at time 4„, the end of the time interval, and approximating the temporal derivative 

of head over the time interval t„, _ 1  to t„„ i.e., 

CRI,1-112,k(hj-1,k him,m) + CR i,j+112,k(hrj+1,k himj,k) 

CC ,k (hr_ij,k — <Lk ) + CC i+if 2. j,k (ICL .k  — him,j.k ) + 

CVi,j,k-11 2(him,j,k-1 hk) ± CV  i,j,k+112(him,j,k+1 hk) 
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—h'" 
P. i,j,k + Q ,k  . = SS ijicArj AcAvk 

 

t m t 
(19) 

An equation similar to Eq. (19) can be written for each of the n cells in the 
system. Since there is only one unknown head for each cell, we are left with a system of n 
equations and n unknowns. Such a system of equations can be solved simultaneously to 
get the values of head at all cells. 

Boundary Condition and Initial Condition 

The type of boundaries that may be imposed in the model include constant head, 
no-flow, constant flow, and head dependent flow. Different types of boundaries are 
represented by the different types of cells. Cells may be designated as "inactive cell," 
"constant head cell," and "variable head cell." The variable head cells are those in which 
the head varies with time. Therefore, an equation similar to Eq. (19) is required for each 
variable head cell. The head remains constant with time in the constant head cells and 
these cells do not require an equation similar to Eq. (19), however, the adjacent variable 
head cells will contain non-zero conductance terms representing flow from the constant 
head cell. The "no flow cells" are those to which there is no flow from adjacent cells. 
Neither an equation is formulated for a no flow cell nor the equations for the adjacent 
cells contain a term representing flow from the no flow cell. The use of no-flow and 
constant-head cells to simulate boundary conditions is given in Fig. 5. The constant-flow 
and head-dependent flow boundaries can be represented by a combination of no-flow 
cells and external sources. 

Solution 

In most cases, the actual number of equations of the form of Eq. (19) 
would be less than the total number of model cells. This is because the number of 
equations is only equal to the number of variable head cells. The objective of the transient 
simulation is to predict the head distribution at successive times for the given initial head 
distribution and boundary conditions. The initial head distribution consists of a value of 

k Lk  at each point in the mesh at the beginning of the first time step. The time is 

discretized into a number of discrete time steps for the finite difference process. The first 

step of the solution process is to calculate values of h,2„,„ , i.e., head at the end of first time 

step. Therefore, in Eq. (19), the subscript m is taken as 2 and the subscript m -1 is taken 
as 1. Once such equations are formed for each variable head cells, an iterative method is 

used to obtain the values of h,. k . An iterative method starts with an initial trial solution. 

This trial solution is used to calculate through a procedure of calculations, an interim 
solution that more nearly satisfies the system of equations. The interim solution then 
becomes a new trial solution and this procedure is repeated. Each repetition is called 
iteration. The process is repeated until the trial and interim solutions are nearly equal, i.e., 
for each node, the difference between the trial head values and the interim head values is 
smaller than some arbitrary established value, usually termed as "closure criterion." The 
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interim solution is then regarded as a good approximation to the solution of the system of 
equations under given initial and boundary conditions. 

Fig. 5. Discretized aquifer showing boundaries 
and constant head cells 

Other Applications 

The MODFLOW can also be used to solve the isolated problems of 
groundwater flow, the analytical solutions for which are not available. Singh (1990, 
1997) has made efforts to solve a couple of such problems. 
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