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INTRODUCTION

Water bodies are the common features on the land surface and are
important in respect of various water uses. Keeping in view their importance in many
hydrologic and economic fields, their hydrologic studies are of much use. Field and
theoretical studies on the interaction of large water bodies with aquifer are needed based
on the variability of flow pattern near the boundaries of the water body. Meyboom (1966)
and Freeze and Witherspoon (1967) are amongst the early investigators who stressed
upon the groundwater flow pattern around a lake. Winter (1981) has discussed the
uncertainties in the water balance of a lake. Some insight into the groundwater regime
and discharge estimates from lakes were provided by Winter (1978), who used two- and
three- dimensional steady state models for hypothetical groundwater-lake systems.
McBride and Pfannkuch (1975) used a numerical model to evaluate the vertical
component of groundwater flow of a lake for a number of hypothetical settings. In spite
of the early recognition of the lake-water management studies, few attempts (Munter and
Anderson, 1981; Winter, 1986; Cheng and Anderson, 1993, 1994) have been made
towards the understanding of the interaction of water bodies with aquifer. Munter and
Anderson (1981) showed that two- and three-dimensional groundwater flow models
provide flexible and effective means of calculating flow rates around lakes. They
observed that the anisotropy ratio of aquifer hydraulic conductivity has a significant
effect on the simulated head distribution around the lake and magnitude and distribution
of seepage from the lake. It is observed that no guidelines or method is available for
estimating the recharge from water bodies.

In this paper, a diagnostic curve is developed for estimating the recharge
from a water body, from the groundwater heads near the water body. The diagnostic
curve is developed using the results of MODFLOW application. Additionally, the
proposed diagnostic curve can also be used to estimate the aquifer parameters from
measured values of the groundwater head and recharge.

DEVELOPMENT OF DIAGNOSTIC CURVE

MODFLOW (McDonald and Harbaugh, 1988) was used to generate the
data for developing the diagnostic curve. The water body was assumed to be of square
cross-section having uniform depth. The aquifer was assumed homogeneous and
anisotropic. Different sizes of water body and different depths of water in the water body
were considered. The anisotropic ratio (Kj/K,, Ki = hydraulic conductivity in horizontal
direction, and K, = hydraulic conductivity in vertical direction) is considered as I, 10,
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100, 250, 500, and 750. Variable grid spacing with finer grids near the water body was
considered. Coarser grids were taken away from the water body.

The difference between the head at a point and the initial head is designated as Ak and the
depth of water in the water body is designated as AH. The analysis of data obtained using
the MODFLOW suggests that the parameter XS /7t (X = distance of observation point
from the water body; S = storage coefficient of aquifer; 7 = transmissivity of aquifer; ¢ =
time measured since rise of water level in the water body) and TAh/Q, (Qr = rate of
recharge from water body) are uniquely related and the relation is found to be the same
for different values of AH but different for different values of Kj/K,. Figs. 1, 2 and 3
show such relations (curves) for K,/K, = 1, 100 and 500, respectively. The curves for
different values of Kj/K, on double logarithmic paper are made to coincide to the curve
for Ki/K, = 1 with parallel shift of axes. Thus, a new parameter CX*S /Tt is uniquely
related to another new parameter TAA/(CQ,,) and this relation is the same for different

values of K,/K,..
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Fig. 5. Diagnostic curve

This unique relation between CX 29/Tt and TAR/(CQ,) is termed

“diagnostic curve” and is shown in Fig. 5. The variation of C with K;/K, is shown in Fig.
4 and is expressed as

C:O.997+2.74x103% ' (1)

v

DETERMINING RECHARGE FROM A WATER BODY

The required data are: (1) values of the aquifer parameters 7 and S; (2)
anisotropy factor Kj/K,; (3) measurement of head changes in an observation well; (4)
distance of observation point from the water body. The procedure to calculate the
recharge from the water body is:
1. Calculate the value of C from Eq. (1) for known value of Ki/K, .

2. Calculate the value of the parameter CX Tk

3. Knowing the value of the parameter CX 2§ /Tt , find the corresponding value of the
parameter TAR/(CQ,,) from the diagnostic curve shown in Fig. 5.

4. Once the value of the parameter 7AR/(CQy) is known, the rate of recharge from the
water body, i.e., O is determined.

5. Check for CX2S /Tt <10”.

DETERMINING AQUIFER PARAMETERS

The diagnostic curve can be expressed as

1 TAh
A LOR 2
co. fw) )
1 Tt
2 3
T XS @)
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Equations (2) and (3) show that a double logarithmic plot of A% vs ¢ can be
made to overlap the plot of f{u) vs u (diagnostic curve) on the same scale with a parallel
shift of axes. Once the graphs are matched, the aquifer parameters can be estimated from
the dual coordinates of a selected point on the matched portion of the graphs:

(u)
T= CQRfA—h )
F 4 -
= e 3
CX* ul, 2
where m = subscript denoting the values corresponding to selected point.
CONCLUSION

A diagnostic curve has been developed for estimating recharge from a
water body using the groundwater heads near the water body. The proposed diagnostic
curve can also be used to estimate the aquifer parameters from the measured values of
recharge.
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APPENDIX

Modelling of Lake-Aquifer Interaction

DESCRIPTION OF MODFLOW
Mathematical Model

MODFLOW was originally developed by McDonald and Harbaugh
(1988). The partial differential equation governing the three-dimensional unsteady
(transient) movement of incompressible groundwater through heterogeneous and
anisotropic medium is described by

-Q(ngﬁ]+—a— KW@]+E[KH %)—W:Svéh— (1
ox) 0oy dy) oz 0z ot

where x, y, z = cartesian coordinates aligned along the major axes of conductivities Ky,
K., and K, h = piezometric head [L]; W = volumetric flux per unit volume, which
represents sources and/or sinks [T™']; Ss = specific storage of porous material [L'l]; and ¢
= time [T]. The variables appearing in Eq. (1) are defined in function forms as

S =85(x,»,2) (2a)
K. =K, (x,52) (2b)
K,=K,(x,2) (2¢)
K,=K,(x)y2) (24)
h=h(x,y,z,t) (Ze)
W =W(x,y,2,t) 2

Thus, in general, the specific storage and conductivities may be the
functions of space and the piezometric head and sources/sinks may be the functions of
space and time. Eq. (1) when combined with boundary conditions (flow and/or head
conditions at the boundary of the aquifer system) and initial conditions (specified head
condition s at £ = 0) constitute a mathematical model of transient flow of groundwater.

The analytical solution of Eq. (1) is not feasible for complex systems,
therefore, numerical methods must be employed to obtain approximate solutions. The
finite difference approach is one of such numerical methods, wherein, the continuous
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system described by Eq. (1) is replaced by a set of discrete points in space and time, and
the partial derivatives appearing in Eq. (1) are replaced by finite differences between
functional values at these points. Thus, this process leads to a system of simultaneous
linear algebraic difference equations, the solution of which yields values of piezometric
heads at specific points and time. These values are an approximation to the time varying
head distribution that would be given by an analytical solution of the partial differential
equation governing the flow process.

Discretization Convention

For the formulation of finite difference equations, the aquifer system
needs to be discretized into a mesh of points termed nodes, forming rows, columns, and
layers. Such spatial discretization of an aquifer system is shown in Fig. 1. An i, j, k
coordinate system is used to conform to the computer array convention. If an aquifer
system consists of “nrow” rows, “ncol” columns, and “nlay” layers, then

i=row index, i=1, 2, ....nrow;
j=column index, j =1, 2, ....ncol; and
k= layer index, k=1, 2, ....nlay.

For example, Fig. 1 shows a system with nrow = 3, ncol = 9 and nlay = 5. With
respect to the Cartesian coordinate system, points along a row are parallel to the X-axis,
points along a column are parallel to the Y-axis, and points along vertical are parallel to
the Z-axis. In this spatial discretization, nodes represent prisms of porous material termed
cells in a conceptual sense. Within each cell, the hydraulic properties are considered
constant. Thus, any value associated with or assigned to a node applies to or is distributed
over the extent of the cell represented by that node. The width of cells along rows is
designated as Ar, for jth column; width of cells along columns is designated as Ac, for

ith row; and thickness of layers in vertical is designated as Av, for kth layer (see Fig. 1).
Thus the cell with the coordinates (i, 7, k) = (5, 3, 2) has a volume of Ar,Ac,Av, .
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Fig. 1. A discretized hypothetical aquifer system

Configuration of Cells

There exist two conventions for defining the configuration of cells with
respect to the location of nodes, viz., block-centered and point-centered formulat.ions. In
both systems, the aquifer is divided with two sets of parallel lines, which are
perpendicular to each other. In block-centered formulation, the blocks formed by the set
of parallel lines are the cells and the nodes are at the center of the cells. In point-cente?red
formulation, the nodes are assumed at the intersection points of the set of parallel lines
and the cells are drawn around the nodes with faces half way between nodes. In e_:ither
case of configuration, the spacing of nodes should be such that the hydraulic properties of
the system are uniform over the extent of a cell. Both types of grid configurations have
been shown in Fig. 2.
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Finite Difference Equation

The following development of finite difference equation holds good for both type
of cell-configurations. The groundwater flow equation may be written in a finite
difference form by applying continuity equation. Thus, the algebraic sum of all flows into
and out of cell must be equal to the rate of change of storage within the cell. Under the
assumption that the groundwater is incompressible, the continuity equation for the flow
to a cell can be written as

Ah
>0, —SSEAV (3)

where O, = inflow to cell [L? T'; Ss = specific storage defined as the ratio of volume of
water, which can be injected per unit volume of aquifer material per unit change in head
[L']: AV = volume of cell [L]; and Ak = change in head over a time interval At.

The right hand side of Eq. (3) represents the volume of water taken into cell-
storage over a time Az given a change of head of Ah. Outflow and loss in storage are
represented by defining outflow as negative inflow and loss as negative gain.

For a three-dimensional problem, each cell is surrounded by six adjacent cells.
Fig. 3 show a cell i, j, k along with the six adjacent cells, 7 -1, /, i+l kbj-1, k7
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+1, k; i, j, k—1; and i, J, k +1. The net flow to the cell 7, J, k is the algebraic summation of
the flows into the cell from six adjacent cells.

Fig. 3. Cell i,j.k and indices for the Fig. 4. Flow into cell i,j,k from cell 1,-1.k
adjacent cells

Using Darcy’s law, the flow from each adjacent cell into the cell , /, k can be obtained.
The flow into the cell i, j, k in row direction from the cell i, j -1, k (see Fig. 4) is given by

hl‘,‘,l'-],j( - hl,J R

Arj

qi a2k = KR:,[—i/Z,kAc:Avk )

where ¢, ;06 T volumetric flow discharge through the face between cellsi,j, kand i, ] -
1, kL’ I KR, i vax = hydraulic conductivity along the row between nodes i, /, k and
i,j-1,k[LT"]; Ar,_,, = distance between nodes /., kand i, -1, k [L]. The index j —1/2
indicates the space between nodes (Fig. 4). It does not indicate a point exactly half way
between nodes. For example, KR, ,,, represents hydraulic conductivity in the entire
region between nodes i, j, k and i, j -1, k. Since the grid dimensions and hydraulic
conductivity remain constant throughout the solution process, Eq. (4) may be rewritten by
combining the constants into a single constant that is termed as “hydraulic conductance”
or simply “conductance” of the cell.

G2k = CR, 2k (h:,_;-‘;,k —hy ) (5)

where
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KR 55 AC A
CR!,}—]/Z,I{ = 'JAI:J( i {6)
J-1/2

The CR, ,,,, is the conductance in ith row and kth layer between nodes i, j, k

and i, j -1, k [L2 T™]. Thus, the conductance is defined as the product of hydraulic
conductivity and cross-sectional area of flow divided by the length of flow path. Here, C
refers for the conductance and R refers for the row direction.

Equations similar to Eq. (5) can be written approximating the flows into or out of
cell 7, j, k through the remaining five faces. Such equations are written below.

42k = Clerlek(ht Lk ~ ,k) (7)
Qic1i2,jk = 1 nzjfc(h; -1,k h ) (3)
iz e = 1+1f2 ik (h, —h, jk) ©)
qiji-112 = :;k 1/ 2(h, j k-1 hrjk) (10)
Gijkariz = r_:k+l,’2(h1;k+¥ h;;k) (11)

Egs. (5) and (7)-(11) represent the flow into the cell 7, j, k from all six
adjacent cells. There may be some flow to the cell i, j, k& from external sources. Seepage
from the streambeds, drains, areal recharge, evapotranspiration and flow from wells are
sources of external flows. These can be taken care of by additional terms that account for
the flows into the cell from outside the aquifer. These flows may depend on the head in
the receiving cell or may be independent of the head in receiving cell but are 1ndependent
of the heads in other cells of the aquifer. The flow from outside the aquifer, which is
represented by /¥ in Eq. (1), may be represented, in general, as

a T pi,_,l,k hl’,_;,k T+ Q:,;,k,n (12)

1,/ ,k.n

where a, = flow from the nth external source into cell i, j. k a5t i Boji T8

i,f.k.n
constant [L* T™'); q,,n, = aconstant [L? T"']. For example, consider a well in the cell 7, /,
k with its discharge as g, ,, . In this case, the discharge from the well is assumed to be

independent of head in the cell i, j, k, hence p, ,,, =0 and

a:,_;,k,l = _q:,j,k,l (13)

If a second external source (n = 2) is taken to be seepage from a riverbed, which is
proportional to the head difference between the river stage (i.e., R; ;) and receiving cell

i,j,k(ie., k). Therefore, Eq. (12) takes the form

ik —CRIV ,rkZ(‘Rﬁ,j,k _hr;k)
=_"CR[ijzh +CR[V]"{2R!,_,‘,P’(

(14)

i)k
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where CRIV, ,,, = conductance of riverbed in cell £, J, k [L* T']. The term -CRIV,
corresponds to p, ., and the term CRIV, 2R, ;4 corresponds t0 g, ;. Similarly, all

other external sources or stresses can be represented by Eq. (12). If there are N external
sources or stresses affecting a single cell, the combined flow is expressed by

N
QS',M = Zax,.f,k,n
n=1
N N ;
= Z‘P!,j.k.nhi,,‘,k + an_,‘,k,n (15)
n-1 n=|
= P.',.,',khr_;,k + Qi,;,k
where
N
Pf,j,k = Zpu,j,k,n (16)
n=1
N
Qi,,l',k = thj,k,n (17)
n=1

While writing the continuity equation of the form given by Eq. (3), for the
cell i, j, k, the tem ZQ; consists of flows to the cell from six adjacent cells, and all

external flow rates to the cell. The flows from six adjacent cells into the cell i, j, k are
given by Eqgs. Egs. (5) and (7)-(11). The flow from external sources into the cell i, 7, kis
given by Eq. (15). Substituting these equations into Eq. (3), we get

CRI,;#HZ,& (ht,_jfl,f( - h:‘_,',k ) + CRl',/+lf2,k (hi,,iﬂ,k - hi,j,k ) ¥
CC:-HZ,;‘,k (hi—],j,k - hi,_},n’c ) + CC;‘+].’2,;’,I< (hm,,,,k - h;‘,;,k ) +

CV:,;‘,k—l,‘Z(h;,j,k—l _hi,j,k) + CV:,‘;,k-*-H?.(h:,.;,kH - hi,j,k)+
Ah;

R,J,khi,j,k + Q,_,.',k =5 A’]AC,AW (18)

Si,jk

where Sg = specific storage of cell 7, j, k [L']; and Ar,Ac,Av, = volume of cell i, /, k
[L*. The Eq. (18) can be written in the backward difference form by specifying the flow

terms at time f,,, the end of the time interval, and approximating the temporal derivative
of head over the time interval £, - 1 0 fm, 1.€.,

m m ol m _ m
C‘Rr,,n—lfz,k (hi,;—l‘k _h‘,,;,k) ' CR:‘,,HIIl.k (h:,;+1,k h;,,_k)+

CC{~1J’2,J,R (hlnil,j,k - h:?;,k ) + CCH]IZ,;,J( (h::l,_;,k - hil,l,k ) +
CV:,J,k-IIZ(h:]J,kAI - hr:,k ) + CV:,;‘,k-v-lll( : - h;’:,k ) *

i) k+1

157



Training Course on “Hydrology of Lakes for Sustainable Human Benejits ",
organised by NIH, Roorkee and Punjab University, Chandigarh, at Chandigarh, June 25-29, 2007

m hlmfk = h{"’;}(
Pf‘,f.kh',;,k ¥l = SSJ,J,;(A’]AC,AW _[““T (19)

m m-1
An equation similar to Eq. (19) can be written for each of the n cells in the
system. Since there is only one unknown head for each cell, we are left with a system of n
equations and » unknowns. Such a system of equations can be solved simultaneously to
get the values of head at all cells.

Boundary Condition and Initial Condition

The type of boundaries that may be imposed in the model include constant head,
no-flow, constant flow, and head dependent flow. Different types of boundaries are
represented by the different types of cells. Cells may be designated as “inactive cell,”
“constant head cell,” and “variable head cell.” The variable head cells are those in which
the head varies with time. Therefore, an equation similar to Eq. (19) is required for each
variable head cell. The head remains constant with time in the constant head cells and
these cells do not require an equation similar to Eq. (19), however, the adjacent variable
head cells will contain non-zero conductance terms representing flow from the constant
head cell. The “no flow cells” are those to which there is no flow from adjacent cells.
Neither an equation is formulated for a no flow cell nor the equations for the adjacent
cells contain a term representing flow from the no flow cell. The use of no-flow and
constant-head cells to simulate boundary conditions is given in Fig. 5. The constant-flow
and head-dependent flow boundaries can be represented by a combination of no-flow
cells and external sources.

Solution

In most cases, the actual number of equations of the form of Eq. (19)
would be less than the total number of model cells. This is because the number of
equations is only equal to the number of variable head cells. The objective of the transient
simulation is to predict the head distribution at successive times for the given initial head
distribution and boundary conditions. The initial head distribution consists of a value of

h;,,at each point in the mesh at the beginning of the first time step. The time is

discretized into a number of discrete time steps for the finite difference process. The first
step of the solution process is to calculate values of hf /&> 1.e., head at the end of first time
step. Therefore, in Eq. (19), the subscript m is taken as 2 and the subscript m -1 is taken
as 1. Once such equations are formed for each variable head cells, an iterative method 1s
used to obtain the values of A’ , . An iterative method starts with an initial trial solution.
This trial solution is used to calculate through a procedure of calculations, an interim
solution that more nearly satisfies the system of equations. The interim soluticn then
becomes a new trial solution and this procedure is repeated. Each repetition is called
iteration. The process is repeated until the trial and interim solutions are nearly equal, i.e.,
for each node, the difference between the trial head values and the interim head values is
smaller than some arbitrary established value, usually termed as “closure criterion.” The
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interim solution is then regarded as a good approximation to the solution of the system of
equations under given initial and boundary conditions.

Fig. 5. Discretized aquifer showing boundaries
and constant head cells

Other Applications

The MODFLOW can also be used to solve the isolated problems of
groundwater flow, the analytical solutions for which are not available. Singh (1990,
1997) has made efforts to solve a couple of such problems.
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