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PREFACE

The present study has been carried out in Hirakud reservoir. The reservoir is located
in Upper Mahanadi basin in Odisha state. Efficient reservoir management calls for periodic
assessment of its capacity. Capacity surveys of reservoirs are important to study patterns and
rate of sedimentation for defining appropriate measures for controlling sediment inflow, for
managing the available storage in the reservoir and for optimum reservoir operation schedule
based on realistic assessment of available storage. Data from space platforms can play a
significant role in reservoir capacity surveys. In the recent past, satellite remote sensing has
emerged as an important tool in carrying out reservoir capacity surveys rapidly, frequently
and economically. Multi-temporal satellite data provide information on elevation contour
areas directly in the form of water spread areas. The traditional methodology involves per-
pixel classification approach to delineate the water-spread. One of the limitations of the per-
pixel approach is that the border pixels, containing water with soil and vegetation, are also
classified entirely as water pixels, thereby giving inaccurate estimate of the water-spread
area. The error induced by per-pixel classification approach can be minimized by utilizing the
efficacy of the novel methodology known as the sub-pixel classification approach and super
resolution mapping approach. The best methodology among per-pixel, sub-pixel and super
resolution has been evaluated and identified that the super resolution approach produces less
error than the other two. With the accurately estimated sedimentation in the reservoir,
the dam authorities can go for suitable remedial measures and the reservoir operation
schedule can be planned for optimum utilization of available water.

Odisha region is often experience cyclonic storms and severe monsoon activities in such
situations optical satellite data could not fulfill it’s usefulness due to coverage of clouds over
the study area. To overcome this problem in this study the feasibility microwave data has
been evaluated to quantify the water-spread area and in turn the rate of sedimentation of
Hirakud reservoir as a second task.

The study entitled ‘Sedimentation study of Hirakud Reservoir, Odisha using Optic
and Microwave Remote Sensing Technology’ is carried out by Dr.V.S.Jeyakanthan,
Dr.J.V.Tyagi, Dr.Y.R.Satyaji Rao and Sh.R.Venkataramana of National Institute of
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Abstract

Remote sensing technique provides cost- and time-effective estimation of the live capacity
of a reservoir. Multi-date satellite remote sensing data provide information on elevation
contours, in the form of water spread area, at different water levels of a reservoir. Till date
water-spread area from the satellite data is quantified using per-pixel based approach, this
approach could not classify the periphery pixels of the water-spread area properly due to mixed
in nature of the border pixels and hence land in less accurate results. To eliminate this
inaccuracy a sub-pixel and super-resolution based approach has been used to accurately
quantify the water-spread of the Hirakud reservoir and to identify the best approach among
per-pixel, sub-pixel and super resolution methodologies.

Odisha region is often experience cyclonic storms and severe monsoon activities in such
situations optical satellite data could not fulfill it’s usefulness due to coverage of clouds over
the study area. To overcome this problem in this study it is decided to evaluate the feasibility
microwave data to quantify the water-spread area and in turn the rate of sedimentation of
Hirakud reservoir as a second task.

Landsat-8 and Sentinel-2 which provides frequent and high resolution data has been used
between the water level 183.51 m and 191.84. Band thresholding, fraction images and the
resolution enhanced images has been utilized in the per-pixel, sub-pixel and super resolution
classification approaches for the estimation of water spread area (WSA). The WSA thus
derived has been used to calculate the capacity and the rate of siltation in the reservoir. The
estimated cumulative live storage capacity of the Hirakud reservoir, according to per-pixel,
sub-pixel and super resolution approaches are 4419.60 M.cum, 4431.92 M.Cum and 4451.06
M.Cum respectively for the period 2018-19. The assessment reveals that the rate of siltation in
the live storage capacity of the reservoir is 22.56, 22.39 and 22.09 M.Cum/year according to
per-pixel, sub-pixel and super resolution approaches respectively. Water spread area is the only
input from the satellite used for the estimation of capacity of the reservoir. Therefore the water
spread area arrived using per-pixel, sub-pixel and super resolution approaches has been
validated using high resolution satellite data. The validation reveals that super resolution
produced less error (4.44%) than the per-pixel (5.39%) and sub-pixel (5.02%) classification
approaches. This shows that the super resolution based approach can be applied to estimate the
capacity of the reservoirs with higher accuracy than the per-pixel and sub-pixel based
approaches.




Eleven satellite pass of microwave data (Sentinel 1-SAR) between the water level
181.79m and 190.19m was available for the period 2018-19. The pre-processing techniques
were applied to all the eleven SAR, dual polarized data. From the VV and VH data
thresholiding methodology was utilized to identify the water pixels. It was found that the water
pixels contain values ranging from -40.62db to -21.58db, these pixels were extracted and the
water spread area were estimated. The assessment revealed that the live storage capacity of the
Hirakud reservoir, using microwave satellite data (Sentinel-1A) for the period 2018-19 was
4430.78 M.cum. Hence, the rate of sedimentation in the live storage capacity of Hirakud
reservoir is estimated at 22.41 M.Cum/year. This shows that the amount of sediment deposited
in the Hirakud reservoir is estimated at-par with optic satellite data, therefore the microwave
satellite is a better replacement to the cloud covered optic data.

Originating unit Deltaic Regional Centre, National Institute of
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CHAPTER-1

INTRODUCTION

India is a vast country with high spatial and temporal variability of rainfall. In order to
tap the available water resources and to utilize the water in accordance with the requirements,
a number of river valley projects have been constructed for serving various conservation
purposes, such as water supply for domestic and industrial purposes, irrigation, hydropower
generation, navigation and recreation. One of the principal factors that threaten the life of
such projects is the accumulation of sediments in the reservoirs. Sedimentation reduces the
storage capacity of reservoirs and hence their ability to conserve water for various intended
purposes. Sedimentation also reduces the survival of aquatic and restricts the use of water for
multiple purposes.

Due thought is necessary towards the capacity surveys of the reservoir at the
planning stage and afterwards. Periodical capacity surveys of the reservoir help in assessing
the rate of sedimentation and reduction in storage capacity. Every reservoir will ultimately
silt up but the useful life of the reservoir can be increased if proper remedial measures are
adopted. This is not only necessary for efficient management of reservoir but also helps in
taking a decision about treatment of catchment area, if the rate of sedimentation is excessive.
The analysis of catchment area will help in taking various measures to reduce the entry of silt
in the reservoir.

In order to determine the useful life of a reservoir it is essential to periodically
conduct the surveys and assess the sedimentation rate in a reservoir. Also for proper
allocation and management of water from a reservoir knowledge about the sediment
deposition pattern in various zones of a reservoir is essential. With the correct knowledge of
the sedimentation process going on in a reservoir, remedial measures can be undertaken well
in advance and reservoir operation schedule can be planned for optimum utilization of water.

For assessing the sedimentation deposition pattern in a reservoir, systematic capacity
surveys of the reservoir are conducted periodically. Present conventional techniques of
sediment quantification in a reservoir, like the hydrographic surveys and inflow-outflow
methods are cumbersome, expensive and time consuming. Remote sensing through its spatial,
spectral and temporal attributes can provide synoptic, repetitive and timely information
regarding the water spread area of the reservoir.

For the quantification of capacity of a reservoir, the only thematic information that
has to be extracted from the satellite data is the water-spread area at different water levels of
the reservoir. The different approaches such as maximum likelihood, minimum distance to
mean classification and band threshold method, to delineate thematic information from the
remote sensing digital data adopt the per-pixel based methodology and assign a pixel to a
single land cover type whereas in reality, a single pixel may contain more than one land cover
(known as a mixed pixel). Mixed pixels are common especially near the boundaries of two or
more discrete classes. The boundary pixels of the water-spread area that are mixed in nature,
representing soil, vegetation class with moisture are also classified as water pixels when a
per-pixel based approach is applied, thereby producing inaccurate estimate of the water-
spread area. To accurately compute the water-spread area to the maximum possible extent,
thereby reducing the error in the estimation of capacity of a reservoir, a sub-pixel or linear
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mixture model (LMM) and super resolution approach has been chosen for classifying the
boundary pixels of water-spread area from different water levels of Hirakud reservoir located
in Odisha state of India. The best methodology among the per-pixel, sub-pixel and super-
resolution approaches will be identified to accurately estimate the sediment deposited in the
Hirakud reservoir.

Odisha region is often experience cyclonic storms in such situations optical satellite data
could not fulfill it’s usefulness due to coverage of clouds over the study area. To overcome
this problem in this study it is decided to utilize microwave data to quantify the water-spread
area and in turn the rate of sedimentation of Hirakud reservoir.

1.1 Objectives of the Study

I.  To assess the best approach between
1. per-pixel
ii. sub-pixel and
iii. super resolution classifier for the reservoir sedimentation estimation of
Hirakud reservoir

II.  To evaluate the feasibility of using microwave satellite data for reservoir water-
spread area estimation.



CHAPTER 2
LITERATURE REVIEW
2.1 Studies carried out using per-pixel classification approach

Manavalan et al (1990) carried out the storage capacity of the Bhadra and Malaprabha
reservoirs in the Krishna river basin using Landsat TM and IRS II digital data respectively.
They discuss the possible error limit, due to the omission and commission of mixed pixels
involved while estimating the water-spread area. Otherwise the discrepancy between the
actual water-spread and the satellite water-spread will lead to a misleading conclusion
regarding the rate of sedimentation, especially when there is only marginal deposition of
sediments.

Goel et al (2002) discuss that with the use of remote sensing data in conjunction with a
geographic information system, the temporal change in water-spread area can be analysed to
evaluate the sediment deposition pattern in a reservoir. The reservoir was completed in 1988
and no hydrographie survey has yet been carried out. Under these circumstances, the
sedimentation assessment using satellite data guided them for updating the elevation-area-
capacity table of the reservoir. The images for nine dates from the IRS-1C satellite, LISS-III
sensor have been analysed using the specialized image processing software. The resulting
sedimentation rate in the zone of study was about 229 Mm>/km” of catchment area per year.

Jain et al (2002) carried out a remote-sensing based study for the assessment of reduction in
capacity in Bhakra Reservoir, located on the Satluj River in the foothills of the Himalayas.
They discuss that multi-date remote sensing data (1RS-1B, L1SS II) provided the information
on the water-spread area of the reservoir, which was used for computing the change in
storage capacity of the reservoir and in turn the sedimentation rate. A comparison of the
results shows that the reduction in c apacity assessed using the remote sensing based
approach was close to the results obtained from the hydrographic survey.

Jeyakanthan, V.S., (2002) et al carried out capacity estimation of Poondi reservoir located in
Tamilnadu, India using satellite data. In this study they utilized IRS-1B & 1C of LISS-II (36
m) and LISS-III (23.5m) sensors data, acquired for seven different elevations ranging from
34.67 m and 41.34 m for the period 1999 & 2000. The water-spread area extracted from the
satellite data were used in the trapezoidal formula for the estimation of revised capacity of
the reservoir. The comparison of the results with the year 1983 show that the loss in capacity,
in the zone under study is 5.09 million cubic metre. If uniform rate of sedimentation is
assumed, in 16 years of occurrence of the reservoir then the sedimentation rate in this zone is
0.318 M Cum per year. Comparison of remote sensing results are in agreement with the
ground based of hydrographic survey.

Peng et al (2005) used MODerate-resolution Imaging Spectroradiometer (MODIS) data for
the flood disaster monitoring of Dongting Lake, China. The storage curve of Dongting Lake
for 1995 was obtained using 1:10,000 topographic map data and then a relationship between
water level and the lake area was derived. A new relationship between water level and lake
area was obtained by processing MODIS images of Dongting Lake from April 2002 to April
2003 and the influence of lake area variation on water level was analysed with the
corresponding flood data. It was found that the water level reduction reached 0.64 m for the
1996 flood if the original lake area curve was replaced with the area curve of 2002. This
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illustrates that the flood water level has been considerably reduced as a result of the increased
area of Dongting Lake since the Chinese Central Government’s “return land to lake” policy
took effect in 1998.

Renwick et al (2005) examined recent sedimentation rates in 12 reservoirs in two southwest
Ohio counties. One of the two counties is primarily urban with high local relief, while the
other is primarily agricultural with low relief. In each case a large range of reservoir sizes
was studied (< 1 to > 70 km? drainage area). In the agricultural county sedimentation rates
follow the normal pattern of sedimentation per unit drainage area indicating that the channel
systems in the area are likely functioning as sediment sinks. In contrast, in the urban county
there is no decrease in sedimentation rate with increasing drainage area, indicating that the
channels in that landscape are functioning as efficient conduits and/or net sediment sources.
These trends highlight the need to update our reservoir sedimentation databases to determine
whether the trends are local or widespread.

Rathore et al (2006) discuss that as per the recommendations of working group for National
Action for Reservoir Sedimentation Assessment, Natioanl Institute of Hydrology (NIH) has
carried out study on sedimentation studies on 25 reservoirs all over India. One among them is
Hirakud reservoir in Mahanadhi basin Odisha studied by the author. Linear Imaging Self
Scanning (LISS-III) sensor mounted on the Indian Remote Sensing Satellites (IRS) 1C & 1D
data were used to cover the reservoir elevation between 180.69 and 191.89 m. A rule based
classification was applied to water index and radiance of NIR band to extract water-spread
area. It was found that during 44 (1956-2001) years of operation, the total live storage
capacity loss was 984 Mm® (which is nearly 17% of the original capacity (5826 Mm®) of the
reservoir) at a rate of 0.376% year'. Thus the satellite data is in immense use for the
prediction of rate of sedimentation of reservoirs. Has carried out the capacity survey of
Hirakud reservoir, Orrisa, India. They used the IRS-1A satellite data of 5 optimal dates
corresponding to various water stages from minimum to maximum drawdown levels in
estimating the water spread areas. This was achieved by first thresholding the simple ratio
(NIR/RED) image to identify the water pixels and then verifying with the standard FCC. The
non-water pixels were then identified with the ratioed (GREEN/NIR) image and removed to
have the total water spread. They revised the Elevation — Area curve for Hirakud reservoir
based on the analysis of 1988-89 satellite data and it was estimated that the total storage
capacity of the reservoir was 6151.30 M.Cu.m., indicating a capacity loss of 1953.70
M.Cu.m. The analysis shows that from 1957 to 1989 there is a continuous decreasing trends
in the reservoir capacity.

Bryant Emily S. et.al (1999) studied the Painted Rock Reservoir, southwest of Phoenix,
Arizona, which had a storage capacity of about 2.5 million acre-ft in 1959, when dam
impoundment was made. When a high flood of record occurred in 1993, it was feared that as
much as 500,000 acre-ft of capacity had been lost, and an updated capacity estimate was
needed. Because a proposed conventional reservoir survey turned out to be prohibitively
expensive, it was decided to investigate the use of Landsat Thematic Mapper remotely sensed
data, acquired at multiple reservoir levels, to obtain an updated capacity estimate at a more
reasonable cost. Nineteen Landsat Thematic Mapper scenes from 1993 and 1995 were
obtained, including reservoir elevations ranging from empty to 5 ft above spillway elevation.
Water surface area was determined for each Landsat scene using computer classification of
the digital imagery. Investigation results indicate that the Painted Rock Reservoir lost
approximately 157,000 acre-ft of storage capacity to sedimentation between 1953 and 1993,
significantly less than the 500,000 acre-ft previously feared lost.
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Jeyaseelan, A.T. and Thiruvengadachari,S (1997) studied multi-date IRS LISS-II data of
1988-89 to map the water spread of Malaprabha reservoir at five different stages, and
compared with those of 1972 being adopted by project authorities. At reservoir levels of
620.15m and 623.54m significant reduction in water spread area was observed while
considerable reduction of the order 4 to 9 % was observed at levels 626.53m and 629.98m.
The over all reduction in the reservoir capacity between levels of 620.15m and 632.98m was
estimated at 3.84 % in a span of 17 years. Similar study was attempted in Gattaprabha
reservoir using mulitidata IRS, LISS-II data. The overall reduction in capacity of the
reservoir between levels 635.24m and 662.94m was computed to be 8.6% in a 16 year period
between 1974 and 1900.

Raju et al carried out the field radiometric and satellite data analysis for Upper Lake, Bhopal.
Satellite data used were of TM sensor for the month of February. Synchronous collection of
field data was completed starting two days prior to satellite over pass date. The field data
were collected before noon in all days. Field radiometric data showed high correlation with
Total Suspended Sediment (TSS). TSS was in the range from 38 to 70 ppm. Only one reading
was of 110 ppm. Thus the range of TSS was small for this study. A regression equation was
fitted between radiometric Bands 1 and 2 and TSS. TSS was independent variable in the
equation. The correlation coefficient and error of estimate were respectively 0.8843 and 5.8
ppm. Satellite data were also classified into five classes using supervised method for TSS
concentrations.

Peng Dingzhi et al (2006) estimated storage curve of Fengman reservoir in China based both
on traditional and remote sensing approach. They discuss that there are many different
classification methods or models for extraction of water-spread area of a reservoir such as the
density-slicing approach and the normalized difference water index (NDWI) method. The
comparison showed that the reservoir storage curve estimation based on RS data is
reasonable and economical.

Reservoir sedimentation study using per-pixel approach has been reported by Mohanty
(1986) for the Hirakud Reservoir in India, Vibulsresth (1988) for the Ubolratana Reservoir in
Thailand, Manavalan (1993) for the Malaprabha Reservoir in India, Jeyaseelan and
Thiruvengadachari (1997) for the Kuttiyadi Hydel Reservoir in India, Chandrasekar and
Jeyaseelan (2000) for the Tawa Reservoir in India, Jeyakanthan (2002) for the Poondi
Reservoir in India, Goel (2002) for the Bargi Reservoir in India, Jain (2002) for the Bhakra
Reservoir in India, Magome (2002) for the Yagisawa Reservoir in China and Peng (2006) for
the Fegman Reservoir in China, Pankaj Mani (2007) for the Maithon Reservoir in India.

2.2 Studies carried out using Sub-pixel classification approach

Quarmby et al. (1992) discuss the use of spectral unmixing viz., linear mixture modelling for
crop area estimation. Multi-temporal AVHRR dataset of 9 dates of Northern Greece were
used and the input to the model was obtained using supervised classification of SPOT HRV
images. The proportions of maize, rice, cotton and wheat were correlated with official
statistics from 18 village units for comparison of area of each category and the accuracy was
89% showing the performance of the mixture model. The results showed that the linear
mixture modelling (LMM) has potential for operational crop area monitoring on a regional
scale.



Foody et al (1994) estimated the sub-pixel land cover composition using a LMM and Fuzzy
membership function. For both approach, a significant correlation co-efficients, all >0.,
between the actual and predicted proportions of a land cover type within a pixel were
obtained.

The mapping of land cover components, vegetation, in particular, with the help of NOAA-
AVHRR (Advanced Very High Resolution Radiometer) data was discussed by Shimabukuro
et al (1997). Fraction images of vegetation, soil and water/shade were derived from a set of
six AVHRR images in the Sao Paulo state, Brazil using linear mixing model. Constrained
least squares approach was employed and a global vegetation cover map was available for
comparison. In addition, NDVI values were computed and there was a good correlation
between the NDVI values and the vegetation fraction obtained through unmixing. This paper
gives an insight into the use of linear mixing model for mapping vegetation cover. Though
the aim of the paper was to extract vegetation details, it brings out the importance of soil and
shade fraction images, which aid in a better understanding of the spectral response of the
other land cover types.

Shimabukuro and Novo (1997) proposed a methodology viz., mixing model formapping of
flood habitats in the Amazon basin. Two adjacent scenes of Landsat TM available in digital
format were used for the study. The transformation of digital numbers to spectral reflectance
values and radiometric rectification of images was carried out. Assessment of the rectification
process and the consequent application of mixing model yielded a classified map of the flood
habitats. Three end members were chosen as input for the mixing model and the map thus
obtained was compared with a reference map derived from visual interpretation. Flood
habitats mapping using mixing model yielded a good classification result. Though accuracy
assessment was not carried out, the paper proposes a new methodology namely, mixing
model for the purpose of mapping flood habitats to overcome the limitations of per-pixel
classification.

Casals-carrasco (2000) applied spectral mixture mixture analysis (SMA) for terrain
evaluation using Landsat-TM and Panchromatic images. The author compared the results
obtained by traditional supervised rules such as Maximum Likelihood Classifier (MLC) with
spectral mixture analysis. The results showed SMA was efficient in deriving more
information image data compared to the conventional techniques.

The use of spectral unmixing as a tool for bauxite and laterite mineral targeting and mapping
in the Koraput district, Odisha, India was carried out by Das (2002). End members were
chosen using the PPI technique. The characteristic laterite cappings in the hills containing
bauxite was observed in the Landsat TM image and such region is generally devoid of
vegetation cover. MTMF, which performs partial unmixing based on the end members
supplied by the users, was used to unmix the abundances of laterite/bauxite, vegetation and
red soil. This study has helped in the discrimination of similar regions in the nearby hills of
the Koraput town.

Lu Dengsheng et al (2003) says that many research projects require accurate delineation of
different secondary succession (SS) stages over large regions/subregions of the Amazon
basin. However, the complexity of vegetation stand structure, abundant vegetation species,
and the smooth transition between different SS stages make vegetation classification difficult
when using traditional approaches such as the maximum likelihood classifier (MLC). Most of
the time, the MLC distinguishes only between forest and non-forest. It has been difficult to
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accurately distinguish stages of SS. Therefore the authors applied a linear mixture model
(LMM) approach to classify successional and mature forests using Thematic Mapper (TM)
imagery in the Rondo™nia region of the Brazilian Amazon. Three endmembers (i.e., shade,
soil, and green vegetation or GV) were identified based on the image and a constrained least-
squares solution was used to unmix the image. This study indicates that the LMM approach is
a promising method for distinguishing successional and mature forests in the Amazon basin
using TM data. It improved vegetation classification accuracy over that of the MLC. Initial,
intermediate, and advanced successional and mature forests were classified with overall
accuracy of 78.2% using a threshold method on the ratio of shade to GV fractions, a 7.4%
increase over the MLC. The study implies the LMM approach distinguishes different species
in a forest and therefore more promising results can be obtained than the MLC.

Paintera et al (2003) used an automated model that retrieves sub-pixel snow-covered area and
effective grain size from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data.
The model analyzes multiple end-member spectral mixtures with a spectral library of snow,
vegetation, rock, and soil. They derived the snow spectral end-members of varying grain size
from a radiative transfer model. End-member spectra for vegetation, rock, and soil were
collected in the field and laboratory. The sub-pixel estimates of snow-covered areas were
validated with the fine-resolution aerial photographs. The RMS error for the combined set of
fraction images was 4%. This study shows that the authors have used the high resolution data
to validate the results of sub-pixel output and such validation proves that un-mixing produces
less error.

Lobell and Asner (2004) says that the knowledge of the distribution of crop types is
important for land management and trade decisions, and is needed to constrain remotely
sensed estimates of variables, such as crop stress and productivity. The Moderate Resolution
Imaging Spectro-radiometer (MODIS) data was used by the authors for large scale crop type
mapping. Further the authors say that because of sub-pixel heterogeneity, the application of
traditional hard classification approaches to MODIS data may result in, significant errors in
crop area estimation. Therefore, they developed and tested a linear un-mixing approach with
MODIS that estimates sub-pixel fractions of crop area based on the temporal signature of
reflectance throughout the growing season. In this method, the authors used probabilistic
temporal un-mixing (PTU), technique for the identification of end-member sets. The results
of this study demonstrates the importance of sub-pixel heterogeneity in cropland systems, and
the potential of temporal un-mixing to provide accurate and rapid assessments of land cover
distributions using coarse resolution sensors, such as MODIS.

Richard Fernandes et al (2004) carried out a comparative study using five algorithms for
mapping sub-pixel land cover fractions and continuous fields of vegetation properties in their
study area (Boreas Ecosystem Atmosphere Experiment (BOREAS) region in Canada). The
algorithms include a conventional ‘‘hard’’, per-pixel classifier, a neural network, a
clustering/look-up-table approach, multivariate regression, and linear least squares inversion.
The comparison reveals that the ‘‘Hard’’ classification performed poorly in estimating
proportions or continuous fields. The neural network, look-up-table and multivariate
regression algorithms produced good results. However, all three methods exhibited
substantial biases with the distant treatment due to the characteristics of the training data.
Linear least squares inversion offers a relatively unbiased estimation of sub-pixel proportion
and fraction mapping as it avoids calibration to the a priori distribution of land cover in the
training data.



Simic et al (2004) carried out a study to address the issues related to spatial scaling of net
primary productivity (NPP). The main objective of the study is to develop algorithms for
spatial scaling of NPP using sub-pixel information. NPP calculations were performed using
the Boreal Ecosystem Productivity Simulator (BEPS). The area of interest is near Fraserdale,
Ontario, Canada. It was found from the investigation that lumped (coarse resolution)
calculations can be considerably biased (by +14.9% on average) from the distributed (fine
resolution) case. Based on these results, algorithms for removing these biases in lumped NPP
are developed using sub-pixel land cover type information. The correlation between the
distributed NPP and lumped NPP is improved from r°=0.16 to r°=0.59 after the correction. In
addition, sub-pixel leaf area index (LAI) information is used to reduce the remaining biases.
After the LAI correction, the correlation is further improved to r°=0.90.

Rodrigo Sagardia (2005) used sub-pixel classifier for wetland mapping in the Cuitzeo Lake,
Mexico and mapped the different communities of plants using MODIS images and linear
mixture modeling. It was shown that the fractions present at sub-pixel level could be
estimated with a good degree of accuracy, lying within 25% of the actual values. The
performance of the soft classifier is at least three times higher than a hard classification of an
artificial image of the same pixel size in areas that show mixed pixels.

Peddle and Smith (2005) used spectral mixture analysis (SMA) to quantify the area
abundance of plants, soils and shadows at sub-pixel scales with the aim of improving
extraction of plant biophysical and structural information from remote sensing data. Different
measurement strategies were tested in the field for acquiring reference end-member spectra of
crop vegetation, soil and shadows using a field spectro-radiometer for a set of potato plots in
western Canada. End-member fractions derived from excised leaves, cultivated soil and
shadowed vegetation spectra showed the best agreement with ground truth data, with
differences of only +3.3%. These sub-pixel scale fractions were used in regression analyses
to predict leaf area index, biomass and plant width with an average r* value of 0.85 from
SMA shadow fraction, which was a substantial improvement over the best VI results from
NDVI, NGVI and SR (average 1> = 0.53). Perspectives on SMA at different stages in the
growing season and for different crop types are provided with a recommendation that further
SMA research is warranted for local to regional scale agricultural crop monitoring
programmes.

Mertens et al (2006) say that soft classification techniques avoid the loss of information
characteristic to hard classification techniques when handling mixed pixels. Sub-pixel
mapping is a method incorporating benefits of both hard and soft classification techniques.
They developed an algorithm based on sub-pixel/pixel attractions. The design of the
algorithm is accomplished using artificial imagery but testing is done on artificial as well as
real synthetic imagery. The algorithm was evaluated both visually and quantitatively using
established classification accuracy indices. The resulting images show increased accuracy
when compared to hardened soft classifications.

de Asis and Omasa (2007) used models such as Universal Soil Loss Equation(USLE) and its
subsequent Revised Universal Soil Loss Equation (RUSLE) to generate the quantitative
estimates necessary for designing soil conservation measures. However, large-scale soil
erosion model-factor parameterization and quantification is difficult due to the costs, labor
and time involved. Among the soil erosion parameters, the vegetative cover or C factor has
been one of the most difficult to estimate over broad geographic areas. The C factor
represents the effects of vegetation canopy and ground covers in reducing soil loss.



Traditional methods for the extraction of vegetation information from remote sensing data
such as classification techniques and vegetation indices were found to be inaccurate. Thus,
this study presents a new approach based on Spectral Mixture Analysis (SMA) of Landsat
ETM data to map the C factor for use in the modeling of soil erosion. A desirable feature of
SMA is that it estimates the fractional abundance of ground cover and bare soils
simultaneously, which is appropriate for soil erosion analysis. They used a linear SMA
(LSMA) model and performed a minimum noise fraction (MNF) transformation and pixel
purity index (PPI) on Landsat ETM image to derive the proportion of ground cover
(vegetation and non-photosynthetic materials) and bare soil within a pixel. The end-members
were selected based on the purest pixels found using PPI with reference to very high-
resolution QuickBird image and actual field data. Results showed that the C factor value
estimated using LSMA correlated strongly with the values measured in the field. The
correlation coefficient () obtained was 0.94. A comparative analysis between NDVI- and
LSMA-derived C factors also proved that the latter produced a more detailed spatial
variability, as well as generated more accurate erosion estimates when used as input to
RUSLE model.

Weng Qihao and Lu (2008) carried out a study based upon a spectral un-mixing model for
characterizing and quantifying urban landscape changes in Indianapolis, Indiana, the United
States, and for examining the environmental impact of such changes on land surface
temperatures (LST). Three dates of Landsat TM/ETM+ images, acquired in 1991, 1995, and
2000, respectively, were utilized to document the historical morphological changes in
impervious surface and vegetation coverage and to analyze the relationship between these
changes and those occurred in LST. Three fraction end-members, i.e., impervious surface,
green vegetation, and shade, were derived with an unconstrained least-squares solution.
Correlation analyses were conducted to investigate the changing relationships of LST with
impervious surface and vegetation coverage. Results indicate that multi-temporal fraction
images were effective for quantifying the dynamics of urban morphology and for deriving a
reliable measurement of environmental variables such as vegetation abundance and
impervious surface coverage.

Carola et al (2010) used Landsat overpasses from six different dates and developed a robust
linear model to predict sub-pixel fractions of water cover in the Dofana Biological Reserve,
Spain. The model was applied to a time series of 174 Landsat TM and ETM+ images to
reconstruct the flooding regime of a system of small temporary ponds and to study their
spatio-temporal changes in a 23-year period. The authors tried to differentiate natural
fluctuations from trends in hydrologic variables (i.e., hydroperiod shortening) that may
threaten the preservation of the system. Although medium-resolution remote sensing data
have rarely been applied to monitor the small-sized wetlands, this study evidences its utility
to understand the hydrology of temporary ponds at a local scale using fraction images.

Ruescas et al (2010) estimated the percentage of burnt land at sub-pixel scale using the
Advanced Very High Resolution Radiometer (AVHRR) through a simple approach. This
methodology is based on multi-temporal spectral mixture analysis (MSMA), which uses a
normalized difference vegetation index (NDVI) and a land-surface temperature (LST) image
as input bands. The area of study is located in the Alcalaten region in Castellon (Spain), a
typical semi-arid Mediterranean region. The results have shown an extension of
approximately 55 km’ affected by fire, which is only 5% lower than the statistic reports
provided by the Environmental Ministry of Spain. Further, the authors have included a map
of the area showing the percentage of estimated burnt area per pixel and its associated
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uncertainties. The map was validated through supervised classification of an Airborne
Hyperspectral Sensor (AHS) image. Results have shown a high accuracy, with a mean error
of 6.5%.

Silvan-Céardenas and Wang (2010) carried out a study using sub-pixel classification
techniques based on linear and nonlinear spectral mixture models in order to identify the best
possible classification technique for repeatable mapping of saltcedar (7Tamarix spp.) canopy
cover along the Forgotten River reach of the Rio Grande. The accuracy of sub-pixel canopy
cover was assessed through a 1-m spatial-resolution hyper-spectral image and field
measurements. Results indicated that the accuracy of the fully constrained linear spectral un-
mixing method increased (from 67% to 77%) when the classes were represented with several
image spectra.

2.3. Studies carried out using Super resolution mapping approach

Tatem, A. J. et al (2002) examined that landscape pattern represents a key variable in
management and understanding of the environment, as well as driving many environmental
models. Remote sensing can be used to provide information on the spatial pattern of land cover
features, but analysis and classification of such imagery suffers from the problem of class
mixing within pixels. Fuzzy classification techniques can estimate the class composition of
image pixels. However, their output provides no indication of how such classes are distributed
spatially within the instantaneous field of view represented by the pixel. Techniques to provide
an improved spatial representation of land cover targets larger than the size of a pixel have been
developed, however, the mapping of sub-pixel scale land cover features has yet to be
investigated. We recently described the application of a Hopfield neural network technique to
super-resolution mapping of land cover features larger than a pixel, using information of pixel
composition determined from fuzzy classification, and (was but) now show how our approach
can be extended in a new way (added) to predict the spatial pattern of sub-pixel scale features.
The network converges to a minimum of an energy function defined as a goal and several
constraints. Prior information on the typical spatial arrangement of the particular land cover
types is incorporated into the energy function as a constraint. This produces a prediction of the
spatial pattern of the land cover in question, at the sub-pixel scale. The technique is applied to
synthetic and simulated Landsat TM imagery, and compared to results of an existing super-
resolution target identification technique. Results show that the new approach (was Hopfield
neural network) represents a simple, robust and efficient tool for super-resolution land cover
pattern prediction from remotely sensed imagery.

Foody et al., (2005) discusses methods for mapping the waterline at a subpixel scale from a
soft image classification of remotely sensed data are evaluated. Unlike approaches based on
hard classification, these methods allow the waterline to run through rather than between
image pixels and so have the potential to derive accurate and realistic representations of the
waterline from imagery with relatively large pixels. The most accurate predictions of
waterline location were made from a geostatistical approach applied to the output of a soft
classification (RMSE52.25 m) which satisfied the standards for mapping at 1 : 5000 scale
from imagery with a 20 m spatial resolution.

Nguyen, M. Q et al (2006) explains that superresolution mapping is a set of techniques to
increase the spatial resolution of a land cover map obtained by soft-classification methods. In
addition to the information from the land cover proportion images, supplementary
information at the subpixel level can be used to produce more detailed and accurate land
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cover maps. The proposed method in this research aims to use fused imagery as an additional
source of information for superresolution mapping using the Hopfield neural network (HNN).
Forward and inverse models were incorporated in the HNN to support a new reflectance
constraint added to the energy function. The value of the function was calculated based on a
linear mixture model. In addition, a new model was used to calculate the local endmember
spectra for the reflectance constraint. A set of simulated images was used to test the new
technique. The results suggest that fine spatial resolution fused imagery can be used as
supplementary data for superresolution mapping from a coarser spatial resolution land cover
proportion imagery.

Heltin, G. C. and Vani, K. (2010) discusses that super resolution mapping is a set of
techniques to increase the spatial resolution of a land cover map obtained by soft
classification methods. Linear spectral unmixing have been developed to estimate the class
composition of image pixels, but their output provides no indication of how these classes are
distributed spatially within the instantaneous field of view represented by the pixel. The use
of a Hopfield neural network to map the spatial distribution of classes more reliably using
prior information of pixel composition determined from linear spectral unmixing was
investigated. The output from the linear spectral unmixing which is a set of area proportion
images for each land cover class is given as input to the HNN. The network converges to a
minimum of the energy function which is defined by the goals and constraints of the super
resolution mapping task. The minimum of the energy of the network represents the best guess
map of the given satellite image. The technique was applied to both real and simulated
Landsat images, and the resultant maps provided an accurate and improved representation of
the area under study. The Hopfield neural network represents a simple, robust, and efficient
technique, and results suggest that it is a useful tool for identifying land cover targets from
remotely sensed imagery at the subpixel scale.

Muad, A. M., and Foody, G. M. (2012) carried out the potential of super-
resolution mapping (SRM) techniques for the representation of lakes was evaluated using
both an established and a newly proposed method. Both super-resolution mapping techniques
were typically able to provide representations that were visually and quantitatively more
realistic than standard hard classifications. The new technique was able to represent more
small lakes than the established technique. The results also demonstrate the value of using
a time series of images as input to the super-resolution analysis, enabling researchers to
usefully exploit the typically fine temporal resolution of coarse spatial resolution sensors for
land cover mapping.

Holland, J., & Aplin, P. (2013) explains that the bracken (Pteridium aquilinum) fern is
environmentally significant due to its great abundance and swift colonisation, and its
perception as a problem plant in degrading agricultural or ecologically sensitive land. Various
attempts have been made to map bracken using remote sensing, but these have proved
relatively unsuccessful, often apparently constrained by the lack of spatial detail associated
with medium spatial resolution satellite sensors such as the Landsat series. In this study,
bracken was characterised using a combination of 30 m Landsat sensor imagery and 4 m
IKONOS imagery. Different classification techniques were compared, including hard
maximum likelihood classification and a super-resolution approach comprising soft
classification and sub-pixel contouring. These techniques were applied to a range of image
dates, including summer, winter and multitemporal images. Image analysis was supported by
extensive field data collection, comprising both a land cover survey and stakeholder
interviews. For the hard classified Landsat sensor imagery, the summer image proved least
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able to characterise bracken, due largely to the spectral similarity between (green) growing
bracken and grasses and other vegetation. Following soft classification of the multitemporal
Landsat image, super-resolution sub-pixel contouring was applied to identify the boundary of
bracken patches. Predicted bracken boundaries were assessed against actual boundaries
identified using field observation and IKONOS image interpretation. For comparison, the
bracken boundaries identified through hard classification (i.e. using pixel edges) were also
assessed against the actual boundaries. Overall, the spatial accuracy of the super-resolution
approach proved considerably higher than that of hard classification.

Bouthayna Msellmi, et al., (2016) explains that hyperspectral image has a great ability to
discriminate the ground object by providing a fine spectral resolution image. This progress in
hyperspectral technologies causes some problems including mixed pixel problem, which is a
main issue for hyperspectral image classification and target detection because more than one
class can be detected in a single pixel. In order to identify mixed pixel composition for
different classes, many spectral unmixing methods have been proposed. Even thought
spectral un-mixing methods may estimate the proportions of classes in a mixed pixel, they
failed to describe the spatial distribution of each land cover class within a mixed pixel. In
1997 the technical mapping sub-pixel was been proposed by Atkinson to solve the over
mentioned problem, by transforming fractions images into a high spatial resolution map.
Most proposed sub-pixel mapping methods are based on spatial interpixel dependence; also
the scale factor is selected arbitrarily and beforehand. In our paper we propose an adaptive
sub-pixel mapping algorithm. In order to improve sub-pixel mapping accuracy, we consider
spatial correlation between sub-pixels and we suggest an adaptive choice of scale factor. The
experimental results with synthetic image from USGS spectral library show that the proposed
algorithm successfully constructs the different spatial distributions of classes in a mixed
pixel.

2.4. Studies carried out using Microwave Satellite Data

Bazi et al (2007) stated that thresholding is a key point in the histogram-based approach and
pattern recognition The estimation of the statistical parameters of “object” and “background”
classes by the expectation—maximization algorithm, under the consideration of these two
classes follow a generalized Gaussian (GG) distribution. The adoption of such a statistical
model as an alternative to the more common Gaussian model is motivated by its attractive
capability to approximate a broad variety of statistical behaviors with a small number of
parameters.

Marzano et al., (2011) performed SAR-based estimates of surface water extent which are
confounded by difficulties with wind roughening of the water surface for the wavelengths
used by most existing sensors and also by high rain- fall intensities The experiment
conducted in the year 2011, work was devoted to explore the potential of X-band high-
resolution detection and retrieval of rainfall fields from space using X-SAR signal
backscattering amplitude and interferometric phase, evaluated the effects of spatial resolution
degradation by precipitation and inhomogeneous beam filling when comparing to other
satellite-based sensors.

Gstaiger et al.,, (2012) conducted a simple threshold-based approach with additional
morphological operators which can quickly deliver water masks of very high accuracies.
Since the thresholds are defined empirically until now using histogram information, it is not
always possible to directly choose the thresholds leading to the highest possible accuracy of
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the water mask. A further study of the findings by comparing multiple thresholds revealed
that within a certain interval a deviance from the best threshold resulted in water masks with
very high accuracies. Another important aspect of analyzing the data from remote sensing
was product validation. It was necessary but very difficult to get accurate high-quality
ground-based truth information and also suit the time of over passing the satellite. In the
event of a lack of ground-based reality, reference data can also be manually derived but must
be considered highly dependent on the subjective evaluation The choice of the sensor which
will be used to detect water areas depends on the product being implemented. TerraSAR-X
data provided very high detail and precision water masks but only cover small areas
depending on the acquisition mode. Envisat-1 ASAR's water masks cover a wider area and
are even less affected by threshold variations, but provide less detail because of the lower
spatial resolution.

O’Grady et al., (2013) examined the relationship of C-band radar backscatter from the
Advanced Synthetic Aperture Radar on board the Envisat satellite with the local angle of
incidence, which influenced the received signal, particularly in the modes of sensor operation
that use the full swath of the orbit track. Linear regression is carried out for each pixel
throughout a large time series of SAR data. Class separability analysis shown that the
potential to use the resultant coefficients as an absolute threshold values for distinguish
between classes of vegetation and geology, where cloud cover may preclude the use of
optical data. It is observed that the separability between water and land is greatly higher using
the slope coefficient than using backscatter value, which may be of great benefit in the
remote sensing of water where cloud cover is present from which SAR is highly independent.
This was especially the case when considering the observed overlapping of backscatter values
from water, with values from Aeolian sand and lacustrine and alluvial sediments, rendering
the use of backscatter alone problematic.

Amitrano et al.,(2014)explored the performances and the opportunities in the year 2014
provided by the European satellite Sentinel-1 for water resource management applications in
low-income countries. The analysis was supported by a synthetic aperture radar (SAR)
simulator, which allowed the quantification of the expected characteristics of Sentinel-1
products in three applications: interferometric digital elevation models (DEMs) generation,
land cover mapping and estimation of water volumes retained by small reservoirs. The
obtained results quantitatively shown that Sentinel-1 data characteristics were fully suitable
for most of the small reservoir monitoring application.

Schumann & Moller (2015) conducted detailed analysis on applications of microwave remote
flood inundation sensing, focusing primarily on synthetic aperture radar (SAR) in a variety of
natural and man-made environments and its strengths and limitations are listed such as:
"Image file size is considerably larger than commonly processed SAR images with pixel
spacing typically larger than commonly processed images i.e.,10 m or 30 m, making
computer processing for global classification methods, i.e. algorithms applied to the entire
image swath rather than just a small subset, challenging”and the work concluded with a brief
account on perspectives and emerging technologies.

Duy (2015) suggested a technique called Valley-Emphasis method of automatic water
extraction, employed to identify surface water bodies at three areas, having different
landscapes and covers, using Sentinel-1A IW images widely used automated Otsu method
was performed for extracting surface water bodies to compare proposed method. The results
of proposed method were compared to those of Otsu method and the reference data such as
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Landsat 7, 8 gave the highest Completeness (User accuracy), Correctness (Producer
accuracy) and Quality (Overall accuracies) at 98.8%, 90.7 % and 89.7 %, respectively. The
employed method was straightforward, easy to implement and may be applied for other areas
even at regional or global scales. This method also improves automatic identification level of
surface water bodies, providing essential information for flood disaster research.

Potin et al.(2016) gave an overview of the overall mission status and Sentinel-1A routine
operations activities that started in June 2015 following the operational qualification phase, in
terms of mission achievements, mission observation scenario, ground segment operations,
throughput and data access. It also provided few examples of applications based on Sentinel-
1 data.

Liu (2016) stated various limitations and recommendations which are documented for the
experiment conducted "Analysis of Sentinel-1 SAR data for mapping standing water in the
Twente region" such as "The standing water area in observation is as much as 10 m X 5 m
randomly distributed in the fields. However, the resolution of Sentinel-1 images is 10 m. One
problem would be that the standing water area is relatively small compared to the pixel size
of the SAR observations" and "backscatter derived from a region will cause the signal of
standing water mixed with other surface signals, which will add uncertainty to the
result".“Based on the field-scale backscatter changes, standing water is difficult to delineate
from the Sentnel-1 images due to the uncertainties. Those uncertainties include different
surface conditions in each agricultural field, soil moisture, vegetation characteristics and
agricultural activities. Those factors vary from temporal and spatial scale, like farming
practices and atmospheric forcing”.

Nagler et al., (2016) studied of the impact of polarization, and generated the maps of melting
snow using data of the VV-polarized channel, the VH-polarized channel and a combined VV-
and VH-based channel using a weighting function that accounted for effects of the local
incidence angle. Comparisons were performed with snow maps derived from Landsat images
over study areas in the Alps and in Iceland. The pixel-by-pixel comparisons showed good
agreement between the snow products of the two sensors, with the best performance for
retrievals based on the combined (VV and VH) channel and a minor decline for the VH-
based product. The VV-based snowmelt extent product shows a drop-off in quality over areas
with steep terrain because of the decreasing backscatter contrast of snow-covered versus
snow-free surfaces on fore-slopes. The investigations demonstrated the excellent capability of
the Sentinel-1 mission for operational monitoring of snowmelt areas.

Twele et al., (2016) performed Sentinel-1-based flood mapping by a fully automated
processing chain with an automated Sentinel-1-based processing chain designed for flood
detection and monitoring in near-real-time (NRT) was proposed. Since no user intervention is
required at any stage of the flood mapping procedure, the processing chain allows deriving
time-critical disaster information in less than 45 min after a new data set is available on the
Sentinel Data Hub of the European Space Agency (ESA). aweb-based service that regularly
informs users about the current flood conditions in a given area of interest. The thematic
accuracy of the thematic processor has been assessed for two test sites of a flood situation at
the border between Greece and Turkey with encouraging overall accuracies between 94.0%
and 96.1% and Cohen’s kappa coefficients (k) ranging from 0.879 to 0.910. The accuracy
assessment, which was performed separately for the standard polarizations (VV/VH) of the
interferometric wide swath (IW) mode of Sentinel-1, further indicates that under calm wind

14



conditions, slightly higher thematic accuracies can be achieved by using VV instead of VH
polarization data.

Chauhan & Srivastava (2016) tested the capabilities of the dual polarimetric Envisat-1 ASAR
and Landsat ETM+ data that had been investigated for the land cover mapping. A
comprehensive evaluation of the sensitivity of the cross-polarized (VH)/like-polarized (VV)
Envisat-1 ASAR and optical data for various land cover classes had been done and a class
separability analysis was performed under different band combinations. In order to ensure
maximum information retrieval, the bands Microwave Polarization Difference Index MPDI
and Normalized Difference Vegetation Index NDVI have also been incorporated. The
separability among the class pairs have been analyzed using the Transformed Divergence
procedure while the classification has been carried out using the Maximum Likelihood
supervised classifier. The results of sensitivity analysis indicated that the vegetation is highly
sensitive to the VH band owing to volume scattering while the built-up class could be more
accurately distinguished in the VV band due to the corner reflector effect. The separability
analysis further revealed that with the fusion of optical-VH polarized SAR data and the
introduction of MPDI band to the multi-polarized SAR data, the separability among various
class pairs were greatly improved. The Landsat ETM+ and VH backscatter data fused image
concluded the highest classification accuracy of 91.25% with the kappa coefficient of 0.90
and demonstrated the potential in land cover assessment and monitoring.

Bolanos et al., (2016) analyzed the technical requirements of the Radarsat-2 beam mode,
polarization and resolution by a threshold-based procedure to map locations of non-vegetated
water bodies after the ice break-up is performed and complemented with a texture-based
indicator to capture the most homogeneous water areas and automatically delineated their
extents. Some strategies to cope with the radiometric artifacts of noise inherent to Synthetic
Aperture Radar (SAR) images are also discussed. Results shown that Radarsat-2fine mode
captured 88% of the total water area in a fully automated way. This will greatly improve
current operational procedures for surface water monitoring information and impact a number
of applications including weather forecasting, hydrological modeling, and drought/flood
predictions.

Pham-Due et al., (2017) observed Sentinel-1 SAR observations over the Mekong Delta in
2015 were processed and the derived surface water maps were compared to corresponding
MODIS/Terra-derived surface water maps at 500 m spatial resolution. Temporal correlation
between these two products is very high (99%) with very close water surface extents during
the dry season when cloud contamination is low and this study highlights the applicability of
the Sentinel-1 SAR data for surface water monitoring, especially in a tropical region where
cloud cover can be very high during the rainy seasons.

Garkusha et al., (2017) developed an empirical model to build maps of moisture of the
research study site for different times shown water surface incorrectly and excessively
moistened parts of land are clearly highlighted, where the precipitation quantity was
considerable according to the weather station, the relative humidity of 100% was observed.

Parasad et al., (2018) realized that the SAR data was capable in assessing the sedimentation
in a reservoir. SAR data can be used to extract water spread, which is a prime requisite of
remote sensing approach to assess sedimentation. Moreover, the high repeat period of
Sentinel-1 makes its ideal sensor for mapping water spread at very close interval, which
further improves sedimentation assessment which reduces the error in considering the volume
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between two dates as trapezoid. It was noted that the remote sensing approach can be used as
substitute to hydrographic surveys; however, the capacity or sedimentation assessment will
always be more accurate through hydrographic surveys. Keeping in mind the cost and time
required for the hydrographic surveys, it was recommend that these surveys can be done at
large duration, whereas, sedimentation assessment through remote sensing approach can be
carried out at shorter time interval.

Federico Filipponi Istituto (2019) provided a standard generic workflow to preprocess
Copernicus Sentinel-1 GRD data which aimed to apply a series of standard corrections, and
to apply a precise orbit of acquisition, remove thermal and image border noise, perform
radiometric calibration, and apply range Doppler and terrain correction. Additionally, this
workflow allows spatially snapping of Sentinel-1 GRD products to Sentinel-2 MSI data grids,
in order to promote the use of satellite virtual constellations by means of data fusion
techniques. The presented workflow allows the production of a set of preprocessed Sentinel-1
GRD data, offering a benchmark for the development of new products and operational down-
streaming services based on consistent Copernicus Sentinel-1 GRD datasets, with the aim of
providing reliable information of interest to a wide range of communities.

Chen et al., (2020) investigated the potential use of Sentinel-1 data for monitoring wetland
water level changes in China’s Momoge National Nature Reserve. Interferometric Synthetic
Aperture Radar (InSAR) technique was used for monitoring wetland water levels. However,
its capability in monitoring wetland water level changes with Sentine-1 data was not
thoroughly investigated. The results of water level changes from InSAR processing show no
agreement with in-situ measurements during most growth stages. Based on the findings, we
can conclude that although the interferometric coherence of the Sentinel-1 C-VV data is high
enough, the data is generally unsuitable for monitoring water level changes in marsh wetlands
of China’s Momoge National Nature Reserve.
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CHAPTER-3

STUDY AREA AND DATA USED

3.1 Location

The Hirakud dam is located at the latitude and longitude of 21.57° N and 83.87° E.
The project is constructed across Mahanadi and is located 15 km from Sambalpur in Odisha.
It is a multipurpose project with objective of irrigation, power generation and flood control.
Powerhouses are located at Burla and Chiplima. The reservoir is located in Jharsuguda,
Bargarh and Sambalpur districts of Odisha. Mahanadi deltas in Puri and Cuttack districts of
Odisha are protected from floods by this project. The study area is shown in Fig.3.1.

3.2 Catchment Characteristics

Hirakud Dam was built across the Mahanadi River, about 15 km from Sambalpur in
the state of Odisha in India. The project was completed during 1957 and contains the world's
largest earthen dam. Hirakud Dam is one of the longest dams in the world, about 26 km in
length. It was the first major multipurpose river valley project started after India's
independence. The Hirakud reservoir has a catchment area of 83,400 km? (Figure 3.2) and the
live storage capacity is 5,842 MCM, whereas the gross storage capacity is 8105 MCM.
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3.4 Hirakud Dam
On 15th March 1946, Sir Howthrone Lewis laid the foundation for the construction of the

longest man-made dam in the world which extends 26 Km in length. It was constructed in
between 1948 and 1957 with estimated cost of 1.01 billion. The quantity of earthwork in the
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dam was estimated to be 18,100,000 m® and concrete quantity of 1,070,000 m’® and the area
lost in the construction of the dam was about 596.36 Km®. Top dam level of 195.680 m, full
reservoir level 192.024 m and dead storage level 179.83 meter, the reservoir formed an
artificial lake of 743 Km? (Figure 3.2). The main purpose of the dam was to protect the flood
in Mahanadi deltas and it protects about 9500 Km” of delta area, the secondary purpose being
the irrigation it irrigates 1,08,385 Hectares of Rabi crops and 1,59,106 Hectares of Kharif
crops. Hirakud reservoir’s salient features are given in Table 3.1.

82°0'0"E 84°0'0"E
1 1

24°0'0"N
22°0'0"N

22°0'0"N

20°0'0"N
20°0'0"N

T T
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Figure 3.2 Catchment area of Hirakud reservoir
3.3 Climate

The catchment area is by tropical climate, characterized by high temperature, high
humidity, medium to high rainfall and short and mild winters. The south west monsoon
normally sets in between 5™ June and 10™ June in the coastal plain, by 1% July the whole of
the state is under the full sway of the south-west monsoon. By 15™ October, the south-west
monsoon withdraws completely from the state.

The temperature in this region varies from 14 °C to 40 °C. The average highest monthly
temperature is observed during the months of April to July with 36°C while the average
lowest was observed during December and January months (winter months). The highest
temperature may go up to 45°C in summer. The average monthly pan evaporation of the area
varies from 2.4 cm to 14.6 cm

On the basis of climate type, Odisha has been divided into ten agro-climatic zone. The
normal rainfall of the state is 1451.2 mm. About 75% to 80% of rainfall is received during
June to September. Floods, drought and cyclones occur almost every year with varying
intensity.
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Table 3.1 Salient features of Hirakud Reservoir

Latitude 21°29027.83"N Design flood 1500 000 cusec
discharge
) o " Maximum water level
Longitude 83°55031.04"E (M.W.L) R.L. 192.024 m
. . Full reservoir level
River Mahanadi (FRL) R.L. 192.02 m
. Minimum drawdown
Year of impoundment 1956 level (M.D.D.L.) R.L. 179.83 m
Catchment area 84 78894 k> Dead storage level RL 15240 m
(D.S.L.)
Mean annual rainfall | 155 58 mm Bed level R.L. 150.87 m
Max1mpm annual 1928.42 mm Gross storage capacity 8105 MCM
rainfall
Mean annual run-off 3.313 M-ham Live storage capacity 5843 MCM
Maximum annual run-off |  9.09 M-ham Dead storage capacity 2262 MCM
Minimum annual run-off 1.13 M-ham Water ?EE}? area at 743 km®
Mean annual run-off 3.313 M-ham Water sg)rse a}fl area at 274 km®
Minimum annual run-off 1.13 M-ham Available drawdown 12.192 m

3.4 Soil

Soil in the catchment area afine (44.11%) and clayey (0.74%) in character. The main
soil types found in the catchment are red and yellow soils. The main upstream tributaries are
Seonath, Jonk, Hasdeo, Mand and Ib. During the monsoon period (June—September), flood
control is the main purpose of the dam, with the reservoir being used to meet water demands
or irrigation, power generation, industrial needs, municipal water supply and ecological
requirements during the post monsoon period and the reservoir is used to irrigate about 0.152
million ha as well as facilitating flood mitigation..

3.5. Agriculture

The crops grown in the sub-basin can be categorized as cereals (major crop), pulses,
oilseeds, vegetables, fibres and spices and condiments. Among cereals, paddy is the major
crop in the basin. Other cereals grown in the basin are wheat, small millets and maize. Pulses
include moong, biri, khesari dal, gram and kulthi and oilseeds include groundnuts, soya-bean,
sesame and mustard.

3.6 Optic satellite data used for delineating water spread area
LANDSAT-8

Landsat 8 is an American Earth observation satellite launched on 11 February 2013. It
is the eighth satellite in the Landsat program, the seventh to reach orbit successfully. The
Landsat 8 satellite payload consists of two sensors—the Operational Land Imager (OLI) and
the Thermal Infrared Sensor (TIRS). These two sensors provide seasonal coverage of the
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global landmass at a spatial resolution of 30 meters (visible, NIR, SWIR); 100 meters
(thermal); and 15 meters (panchromatic). The Landsat 8 scene size is 185-km-cross-track-by-
180-km-along-track. The nominal spacecraft altitude is 705 km.

Landsat 8 instruments represent an evolutionary advance in technology. OLI
improves on past Landsat sensors using a technical approach demonstrated by a sensor flown
on NASA’s experimental EO-1 satellite. OLI is a push-broom sensor with a four-mirror
telescope and 12-bit quantization. OLI collects data for visible, near infrared, and short wave
infrared spectral bands as well as a panchromatic band. OLI provides two new spectral bands,
one tailored especially for detecting cirrus clouds and the other for coastal zone observations.
The OLI collects data for two new bands, a coastal/aerosol band (band 1) and a cirrus band
(band 9), as well as the heritage Landsat multispectral bands. Additionally, the bandwidth has
been refined for six of the heritage bands. The Thermal Instrument (TIRS) carries two
additional thermal infrared bands.

SENTINEL-2

SENTINEL-2 is a European wide-swath, high-resolution, multi-spectral imaging
mission. The Sentinel-2 mission comprises a constellation of two polar-orbiting satellites
(Sentine-2A & 2B) placed in the same sun-synchronous orbit. The full mission specification
of the twin satellites flying in the same orbit but phased at 180°, is designed to give a high
revisit frequency of 5 days at the Equator. SENTINEL-2 carries an optical instrument
payload (MSI-MultiSpectral Instrument) )that samples 13 spectral bands: four bands at 10 m,
six bands at 20 m and three bands at 60 m spatial resolution. The orbital swath width is 290
km.

The other details of Landsat8 and Sentinel-2 data used in this study are given in Table 3.2.

Table 3.2 Optic satellite data used for delineating water spread area.

) Reservoir
SI.No. Satellite and Date of Path/Row | Resolution | Water Level
Sensor Pass (m)
1 LANDSAT-8/OLI | 29-Sep-18 141/45 30 m 191.84
2 Sentinel-2A / MSI 23-Oct-18 141/45 10m 191.38
3 Sentinel-2A / MSI 22-Nov-18 | 141/45 10m 190.82
4 Sentinel-2A / MSI 31-Jan-19 141/45 10m 189.78
5 Sentinel-2A / MSI 20-Feb-19 141/45 10m 189.20
6 LANDSAT-8/OLI | 25-Apr-19 141/45 30 m 186.75
7 LANDSAT-8/OLI | 11-May-19 | 141/45 30 m 185.48
8 LANDSAT-8/OLI |27-May-19 | 141/45 30 m 184.22
9 LANDSAT-8/OLI 12-Jun-19 141/45 30 m 183.51

3.7 Microwave satellite data used for delineating water spread area

In comparison to optical remote sensing, radar imaging has some advantages. As an
active system, it is a day/night data acquisition system. Considering the behavior of
electromagnetic waves in the range of RADAR wavelength, it can be seen that atmospheric
characteristics such as cloud, light rain, haze. This makes microwave satellite data an all-
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weather remote sensing system. One such microwave data known as SENTINEL-1 has been
used in this study.

SENTINEL-1

The Sentinel-1 spacecraft, operating in near polar sun-synchronous orbit at 693 km height,
provides accurate pointing knowledge and real time orbit determination, resulting in high
geo-location accuracy of the SAR products. Sentinel-1 consolation has two satellites namely
Sentinel-1A and Sentinel-1B.

Sentinel-1, SAR operates at a center frequency of 5.4 GHz, Inter-ferometric Wide swath(IW)
mode data over Hirakud, adopted for this study, acquired in dual polarization (VV and VH).
The IW mode is, providing a swath width of 250 km at a nominal ground resolution of 5 m X
20 m for single look data and offering enhanced image performance compared to the
conventional Scan-SAR mode.

Level-1 data (swath-based SAR images) are available in two main categories: Single Look
Complex imagery (SLC) and Ground Range Detected imagery (GRD). GRD products consist
of focused SAR data having enhanced spatial resolution of 10m is used in this study. Other
details of sentinel-1 data used are given in the Table No.3.3.

Table 3.3 Sentinel-1 satellite data used for delineating water spread area.

19-Jun-2019 | Sentinel-1A | VV & VH | 27741 19 S0ND
26-May-2019 | Sentinel-1A | vy o vy | 27391 19 189.23
14-May-2019 | Sentinel-1A | vy ¢ vy | 27216 19 188.42
2-May-2019 | Sentinel-1A | vy g vy | 27041 19 187.41
20-Apr-2019 | Sentinel-IA 1 vy & vy | 26866 19 186.66

8-Apr-2019 | Sentinel-1A 1 vy o v | 26691 19 186.17
27-Mar-2019 | Sentinel-1A | vy & vy | 26516 19 185,55
3-Mar-2019 | Sentinel-1A | vy o vy | 26166 19 184.80
26-Jan-2019 | Sentinel-1A | vy g v | 25641 19 183.81
27-Nov-2018 | Sentinel-1A | vy & vy | 24766 19 182,86
10-Oct-2018 | Sentinel-1A 1 vy & vH | 24066 19 181.79
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CHAPTER -4
METHODOLOGY

4.1 Per-pixel Approach:

Water reflects most of the visible wavelengths, but the energy at the near-infrared
(NIR) wavelength is almost absorbed by the water, thus providing a significant
contrast between land and water in the NIR images. This contrast helps in extracting
the water spread area of the reservoir. Different procedures have been adopted by
many researchers for water body identification in wetland areas and reservoirs, each
adopting the per-pixel based approach. Among these procedures, the band threshold
approach is a relatively easy and valid method for identifying the water body. It has
also been suggested that this per-pixel based approach can give acceptable estimates
of the area of the water body if the NIR band is used. Therefore, in the per-pixel based
approach, the band threshold technique would be adopted to extract the water pixels
that correspond to various water levels of the reservoir. The following model equation
has been used in the image processing software to delineate the water spread area of
the reservoir. The adopted algorithm states that:

if
PV-NIR >TL-NIR and (41)

Pvnir < Thnir then
the pixel is in the water spread area, where Py.nr 1s the pixel value in NIR band and
Trnr and Tynir are the lower and higher thresholds for the NIR band.

[ MULTI-SPECTRAL DATA ]

A 4

[ IDENTYFY MIN.& MAX DN VALUES ]

A 4

[ WATER-SPREAD AREA ESTIMATION ]

A 4

[ VOLUME CALCULATION ]

v

[ RESERVOIR CAPACITY ESTIMATION ]

A 4

[ RATE OF SEDIMENTATION ]

Figure 4.1 Flowchart showing the sequence of operations carried out for reservoir

capacity estimation using the per-pixel classification approach.
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4.2 Sub-pixel based approach:

The sub-pixel classifier uses the linear un-mixing technique, that allows in
identifying the “material of interest” and determine its “material part fraction” or cover
percentage, within a pixel.

MULTI-SPECTRAL DATA

\4

END-MEMBER SELECTION

v
SPECTRAL UNMIXING

[ IDENTIFICATION OF MIXED PIXELS

A4

{ ESTIMATION OF WATER-SPREAD AREA

FROM PURE AND MIXED PIXELS

J

\4

[ VOLUME CALCULATION ]

[ RESERVOIR CAPACITY ESTIMATION ]

!

[ RATE OF SEDIMENTATION ]

Figure 4.2 Flowchart showing the sequence of operations carried out for reservoir
capacity estimation using the sub-pixel classification approach

Linear spectral un-mixing is an excellent approximation for calculating the
abundance or fraction of an end-member in an image pixel. This soft classification technique
aims at estimating the proportions of specific classes that occur within each pixel using linear
mixing approach (Bryant 1994, Foody and Arora 1996, Arora and Foody 1997, Bajjouk et al.
1998, Aplin 2001). In this study the peripheral area of reservoir water-spread was estimated
using linear spectral un-mixing approach.

The basic assumption of linear mixture model is that the measured reflectance of a
pixel is the linear sum of the reflectance of the components that make up the pixel. The basic
hypothesis is also that the image spectra are the result of mixtures of surface materials, shade
and clouds, and that each of these components is linearly independent of the other (Quarmby
et al. 1992, Borel et al. 1994, Van der Meer 1995, Bosdogianni et al. 1997, Atkinson 1997,
Robert et al. 1998). Linear un-mixing also assumes that all the materials within the image
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have sufficient spectral contrast to allow their separation. In soft classification, the estimated
variables (the fractions or proportions of each land cover class) are continuous, ranging from
0 to 100 percent coverage within a pixel. Settle and Drake (1993) and Foody and Cox (1994),
proposed a mathematical expression for linear spectral un-mixing. The theory behind this is
the contribution of a series of end-members present within a pixel to its spectral signature.
Hence, the spectral signature of a pixel would be derived from the sum of the products of the
single spectrum of the end-members it contains, each weighted by a fraction plus a residue
which would be explained by the following mathematical model:

Ri= fk Rk + E; (4.2)
where Yh=1 (4.3)
and 0< fk <1 (4.4)
1 =1,..., m(number of spectral bands)
k =1,..., n(number of end-members)

R; = Spectral reflectance of band 1 of a pixel which contains one or
more end-members

f« = Proportion of end-member k within the pixel

Rix = Known spectral reflectance of end-member k within the pixel on
band i

E; = Error for band i (Difference between the observed pixel reflectance

(Rj) and the reflectance of that pixel computed from the model).

Equations 4.2 and 4.3 introduce the constraints that the sum of the fractions are
equal to one and they are non-negative. To solve fi, the following conditions must be
satisfied: (i) selected end-members should be independent of each other, (ii) the number of
end-members should be less than or equal to the spectral bands used, and (iii) selected
spectral bands should not be highly correlated.

In this study, the linear spectral un-mixing is adopted based on the equations
described below to segregate the actual information within a pixel of an image
R1 = Fwater * leater+ FVeg* R1 Veg + FSoil’d{1 Soil T el
R2 = Fwater «R2 water T FVeg* R2 Veg + FSoil"‘}{2 Soil + €2 (45)
R3 = Fwater «R3 water FVeg* R3 Veg + FSoil*R3 Soil T €3
Where,
—>R1, R2 and R3 represent the signal recorded at the satellite in the green, red and
NIR bands of the LISS-III sensor.
> Fuater, Fveg and Fsgji are the fraction of the pixel covered by water,
vegetation, and soil.
2R 1yater, R2yater and R3¢ represent the reflectance of water in each of the three
spectral bands.
2RI veg, R2 veg and R3 v, represent the reflectance of vegetation in each of the three
spectral bands.
2RI soit, R2 gi1and R3 s, represent the reflectance of soil in each of the three spectral
bands.
—¢l, €2 and €3 are the error components of band 1, 2, and 3.
The system of linear equations shown above can be solved by a least square
solution which minimizes the sum of squares of errors.
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4.2.1 Approaches to end-members selection:

End-members are pure pixels representing 100% or almost 100% of a single land
cover class. A LMM is modelled as a linear function of spectral reflectance of end-members
to derive the fractional area of land cover classes. The quality of the fraction images derived
form spectral un-mixing depends on sufficient number and the proper selection of end-
members. It is also believed that exact number of end-members is required to account for the
spectral variability of the scene (Sabol et al 1992). Spectral un-mixing requires accurate,
well-characterised end-members (Milton 1999). Improper choice of end members could
result in erroneous computation of fractions of landcover classes present in an image.
Therefore the concept of a spectral end-member is fundamental to the technique of spectral
un-mixing. The identification and description of the physical and spectral properties of end-
members is thus, of great importance in spectral un-mixing (Tompkins et al 1997, Milton
1999).

A number of approaches exist for the selection of end-members for use in spectral
un-mixing. A few of them are:

1. Laboratory/field reflectance spectra (Boardman 1990).

2. Image pixels modelled as mixtures of library reflectance spectra (Smith et al 1990,
Roberts et al 1993).

3. Automated techniques based on image transform (Full et al 1982, Boardman et al
1995).

4. n-Dimensional interactive visualization tools (Bateson and Curtiss 1996).

Based on the variability of image end-members - MESMA (Roberts et al 1998).

6. End-members based on class average RMSE (CAR) and end-member average RMSE
(EAR), (Dennison and Roberts 2003).

N

Most of these techniques rely on image end-members. The advantage of the using
image end-members in un-mixing is due to the fact that the end-members thus selected can be
accounted for the variability of the scene and it is possible to model the image in a better
fashion. A detailed description of some of the techniques that are widely used is given in the
following sections.

4.2.3 N-Dimensional visualizer (NDV)

The sub-pixel based approach was applied to find out the proportion or fraction of
water class that exits in the periphery pixels of the reservoir. The first step executed in the
sub-pixel approach was, selection of end-members. In general the border pixels of a reservoir
may contain any combination and proportions of water, vegetation and soil classes, therefore
these three classes were chosen to collect the end-members. “N-Dimensional visualizer”
(NDV) and “Pixel Purity Index” (PPI) functions were used to identify the end-members.
The identified end-member spectra were supplied as input to the linear mixture model
(LMM) approach. The out put of the LMM delivers number of fractions images as that of the
end-members selected/feeded into the model. The number of end-members selected should
be less than or equal to the total number availability of bands in an image. In this study only
three end-members have been used and hence the output of the model run would contain
three end-member images known as water, soil and vegetation fraction images and an error
image.
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4.2.4 Pixel Purity Index (PPI) approach

Pixel Purity Index (PPI) is another technique for the delineation of pure pixel,
which involves repeatedly projecting n-Dimensional scatter plots onto a random unit vector.
The highest and lowest reflectance pixels of the projection are scored including any other
pixels located within a specified standard deviation range (i.e., the designated threshold
value). Pixels with extreme values are scored most often and represent the corners (i.e.,
vertices) of the multi-dimensional cloud of data points (Boardman 1993). By understanding
all of the spectral features that lie at the vertices (i.e., ‘pure’ pixels) of the multi-dimensional
cloud, it is possible to understand internal mixtures of those features. PPI allows for spatial
data reduction. The pixels in the image that represent the ‘most pure’ spectral signatures are
identified and subset from the mass majority of pixels representing mixed pixels. The most
spectrally pure pixels typically correspond to mixing end-member. The PPI is typically run
on MNF (Maximum Noise Transform) image data suggested by Green et al 1988, which
determines the intrinsic dimensionality of the image data segregates the noise effect and
reduces computational requirements for use in subsequent processing of the image data
(Boardman and Kruse 1994).

The result of the application of PPI is a PPI score image with bright and dark
pixels, each pixel having a distinct score. The PPI score indicates the purity of the pixel. A
pixel with higher PPI score indicates higher purity and hence, appears brighter in the image.
Pixel with lower score is less ‘spectrally pure’ and appears darker in the PPI image. Pixels
with higher PPI score are usually taken as end-members for use in spectral un-mixing
(Boardman 1993).

4.3 Super-resolution Approach:

In this work, super resolution mapping would be achieved by integrating linear spectral
unmixing and hopfield neural network approach. Hopfield neural network (HNN) is a feed-
forward neural networks, each neuron is modeled using input and a sigmoidal activation
function. It is fully connected recurrent network. The Hopfield network can be used for
energy minimization problems if the weights and biases are arranged such that they describe
an energy function, with the minimum of energy occurring at the stable state of the network.

Mapping the spatial distribution of class components within each pixel is formulated as a
constraint satisfaction problem with an optimal solution determined by the minimum of the
cost function. From the multi-spectral satellite images, a set of proportion images for each
land cover class is obtained by the linear spectral unmixing technique. The super resolved
map for the multispectral images are obtained from the fraction image and by using the
neural network technique.

Each pixel in the input image to the neural network is to be processed by a set of 5 x 5 (25)
neurons. The network for each pixel processing is constructed with 25 neurons, since a zoom
factor of 5 is adopted. The LANDSAT-8/OLI image of 30 m resolution is classified and
enhanced to a 6m super resolved map. The SENTINEL-2A data which have 10m resolution
was enhanced to Sm by processing 2 x2 neurons.

The neurons are given an initial value as follows: If a pixel has an area proportion for a
particular landcover class as 100%, all neurons are given a value of 0.55. Similarly, if a pixel
has an area proportion for a particular landcover class as 50%, 13 neurons are given a value
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Figure 4.3 Flowchart showing the sequence of operations carried out for reservoir
capacity estimation using the super resolution mapping approach.
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of 0.55 and 12 neurons are given a value of 0.45. The concept of spatial order within and
outside a pixel is the basis for determining the energy of the network. The point at which
minimum energy occurs is the stable state of the network. The neuron outputs at this point
determine the best accurate map of the given image. The network energy function given in
Equation (4.6) based on the goal and constraints of the sub-pixel level mapping task is:

E = —Y Y (k1G1 + k2G2 + k3P + k4M) (4.6)

where k1, k2, k3 — constants weighting the various energy parameters taken a value = 1
G1 and G2 — output values for neuron of the two objective (or) goal functions
P — output value for neuron of the proportion constraint
M — output value of the neuron for multi-class constraint,

M = (Z}‘ggal class avgkij) _ 1,
where avg,;; is average output of jth class for sub-pixel at position (i,j).
The first goal function given in Equation (4.7) is aimed to increase the output of the

central neuron to 1 if the average output of the surrounding eight neurons was greater
than 0.5.

G1(G,j) = (ﬂoor(l + tanh(average(surrounding eight neurons output) — 0.5)))\ (neuronoutput(i,j)— 1.0);

(4.7)
If the averaged output of the neighboring neurons is less than 0.5, the goal function evaluates
to 0, and has no effect on the energy function. If the averaged output is greater than 0.5, the
goal function evaluates to 1 and the neuron output controls the magnitude of the negative
gradient output, with only neuron output of 1 producing a zero gradient. A negative gradient
is required to increase the neuron output, when the output = 0 and the mean of surrounding 8
neurons is greater than 0.5.

The second goal function given in Equation (4.8) aims to decrease the output of the central
neuron to 0, given that the average output of the surrounding eight neurons was less than 0.5.

G2(i,j) = (1 — floor(1 + tanh(average(surrounding eight neurons output) — 0.5))) * neuronoutput(i, j);
(4.8)
The tanh function evaluates to 0 if the averaged output of the neighboring neurons is more
than 0.5. If it is less than 0.5, the function evaluates to 1 and the central neuron output
controls the magnitude of the positive gradient output. If the neuron output = 0, the second
goal function produces a zero gradient.

P = floor((1 + tanh(neuronoutput(i,j) — 0.5))) — p(i,j); (4.9)

where p(i,j) is the estimated proportion

A positive gradient is required to decrease the neuron output when the neuron output
=1 and the average of the surrounding 8 neurons is less than 0.5.

When neuron output=1 and average of surrounding 8 neurons >0.5, G1=0

When neuron output=0 and average of surrounding 8 neurons<0.5, G2=0

Energy=G1 +G2=0

This satisfies the objective of the super resolution mapping task, while also forcing the
neuron output to either 0 or 1 to produce a bipolar map of the given image. The proportion
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constraint is used to check whether the area proportion estimate of each pixel of the input
image is maintained during the energy minimization process (super-resolution mapping task).
A positive P value (4.9) is produced if proportion estimate exceeds the actual value and a
negative P value is produced if proportion estimate is less than the actual value. When the
proportion estimate is equal to the actual initial value, P=0 and E=0. The super resolved
fraction or proportion image is obtained for each class. The super-resolved map gives the
information on the spatial distribution of classes within the pixel, which is typical of the
heterogeneous nature of the earth.

4.3 Microwave data

4.3.1 Pre-processing of Sentinel 1-SAR data

A standard generic workflow (Figure 4.4) to preprocess the Sentinel-1 GRD data is
described below. The work flow was created in order to be used within the Sentinel
application platform (SNAP), a common architecture for all Sentinel satellite toolboxes. The
preprocessing steps are designed to reduce the error propagation in the subsequent processes.
Pre-processing steps such as Applying orbit file, thermal noise removal, calibration, Speckle
filtering and geo-metric resampling were carried to analyze the SAR data. These steps are
explained below.

Apply Orbit File

Orbit state vectors, contained within the metadata information of SAR products, are
generally not accurate (Federico Filipponi, 2019). The precise orbits of satellites are
determined after several days and are available days-to-weeks after the generation of the
product. The operation of applying a precise orbit available in SNAP allows the automatic
download and update of the orbit state vectors for each SAR scene in its product metadata,
providing an accurate satellite position and velocity information.

Thermal Noise Removal

Sentinel-1 image intensity is disturbed by additive thermal noise, particularly in the cross-
polarization channel (Park, J.W., et al., 2017). Thermal noise removal reduces noise effects in
the inter-sub-swath texture, in particular, normalizing the backscatter signal within the entire
Sentinel-1 scene and resulting in reduced discontinuities between sub-swaths for scenes in
multi-swath acquisition modes. The thermal noise removal operator available in SNAP for
Sentinel-1 data can also re-introduce the noise signal that could have been removed during
level-1 product generation, and update product annotations to allow for re-application of the
correction. Sentinel-1 level-1 products provide a noise look-up table (LUT), provided in
linear power, for each measurement data set and used to derive calibrated noise profiles
matching the calibrated GRD data (SNAP Software, 2019).

Calibration

Calibration is the procedure that converts digital pixel values to radiometrically
calibrated SAR backscatter. The information required to apply the calibration equation is
included within the Sentinel-1 GRD product; specifically, a calibration vector included as an
annotation in the product allows simple conversion of image intensity values into sigma
nought values. The calibration reverses the scaling factor applied during level-1 product
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generation, and applies a constant offset and a range-dependent gain, including the absolute
calibration constant.

In the proposed preprocessing workflow, a LUT to produce sigma nought values is
proposed, in order to generate radiometrically calibrated SAR backscatter with respect to the
nominally horizontal plane. Sigma specifies the strength of reflection in terms of the
geometric cross section of a conducting sphere, and represents the radar cross section of a
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Figure 4.4 Flowchart showing the sequence of operations carried out for reservoir
capacity estimation using the microwave data (Sentinel-1A).

distributed target over that expected from an area of one square meter. The sigma
nought has a significant variation with the incidence angle, wavelength, and polarization, as
well as with properties of the scattering surface.

Speckle Filtering
Speckle, appearing in SAR images as granular noise, is due to the interference of waves

reflected from many elementary scatterers (Lee, J.S., et al, 1994). Speckle filtering is a
procedure to increase image quality by reducing speckle. When such a procedure is done at
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an early processing stage of SAR data, speckle is not propagated in ongoing processes (i.e.,
terrain correction or conversion to dB). Speckle filtering is not advisable when there is an
interest in the identification of small spatial structures or image texture, since it might remove
such information. The refined Lee filter has been found to be superior, with respect to other
single product speckle filters, for visual interpretation, because of its ability to preserve
edges, linear features, and point target and texture information (Lee, J.S., et al, 1994). More
recently, multitemporal speckle filters have been developed to reduce speckle, taking
advantages from multiple SAR observations in time. The proposed preprocessing workflow
includes a speckle filtering step, which could be skipped by selecting "None' as the filter type.
Currently, one of the following filters is available in the SNAP single product speckle filter
operator: 'Boxcar', 'Median', 'Frost', 'Gamma Map', 'Lee', 'Refined Lee', 'Lee Sigma', TDAN'".

Range Doppler Terrain Correction

SAR data are generally sensed with a varying viewing angle greater than 0 degrees,
resulting in images with some distortion related to side-looking geometry. Terrain corrections
are intended to compensate for these distortions so that the geometric representation of the
image will be as close as possible to the real world. Range Doppler terrain correction is a
correction of geometric distortions caused by topography, such as foreshortening and
shadows, using a digital elevation model to correct the location of each pixel. The range
Doppler terrain correction operator available in SNAP implements the Range Doppler ortho-
rectification method for geocoding SAR scenes from images in radar geometry. It makes use
of available orbit state vector information in the metadata, the radar timing annotations, and
the slant to ground range conversion parameters together with the reference digital elevation
model data to derive the precise geo-location information (SNAP Software, 2019). The target
Coordinate Reference System (CRS) can be selected and optionally set to match the UTM
zone of the overlaying Sentinel-2 granules.

Conversion to dB scale

As a last step of the preprocessing workflow, the unitless backscatter coefficient is
converted to dB using a logarithmic transformation.

After SAR image is preprocessed and its histogram analyzed, threshold value range is
fixed to extract the water pixels from the SAR image using mask manager feature of SNAP.

4.4. Computation of volume between successive water levels

The water-spread area estimated using per-pixel approach was used as an input in the
volume estimation formula to find out the volume at different water levels of the reservoir.
Traditionally the reservoir volume between two consecutive reservoir water levels, has been
computed using the Prismoidal formula, the Simpson formula and the Trapezoidal formulae
(Patra 2001). Of these, the Prismoidal formula has been most widely used for computation of
volume (Rao et al. 1985, Goel and Jain 1996, Morris and Fan 1998, Rathore 2006). In this study,
the volume between two consecutive reservoir water levels was computed using the following
Prismoidal formula.

Prismoidal Formula : V =H/3(Al1+ A2 + VAL *A2) (4.10)
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Where V is the volume between two consecutive water levels. A1 and A2 are the water-spread
area at the reservoir water level 1 and 2 respectively and H is the difference between these two
water levels.

4.5 Computation of storage capacity of the reservoir
The volume computed at different water levels (i.e from Minimum Draw Down Level to
Full Reservoir Level) was added up to calculate the live storage capacity of the reservoir. The

difference between any two capacity survey reveals the amount of sediment deposited in the
reservoir.
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CHAPTER-5
RESULTS AND DISCUSSIONS

This chapter deliberates on the observations recorded while performing the experiments
related to the role of multi-spectral images and multi-spectral information in reservoir water-
spread area and reservoir capacity estimation. This chapter is divided into Part-I and Part-II.
Part-I & II elaborates the assessment of rate sedimentation in Hirakud reservoir using optic
and microwave satellite data respectively. In Part-1 results of three different methodologies
namely per-pixel, sub-pixel and super resolution approaches have been analyzed and effort
has been made to identify the best methodology among the three for the estimation of rate of
sedimentation in Hirakud reservoir. In the first section, the role and implications of the per-
pixel classification approach in estimating the reservoir water-spread areas and in turn the
rate of sedimentation are discussed. In the second and third sections results obtained using the
sub-pixel and super resolution approaches are elaborated. Validation of per-pixel, sub-pixel
and super resolution approaches are explained in the fourth section.

The optical satellite system have many advantages such as high spatial resolution and the
ability to analysis various earth surface features using combination of spectral data. However,
the images obtained from optic sensors is dormant if the area of interest is covered by clouds.
Hirakud reservoir is often affected by cyclonic storms, in such situations it is difficult to get
the clear optic satellite data. To overcome such situations the microwave data is used in this
study and the earth surface details are obtained. Part-II has been devoted for the analysis of
results obtained using microwave satellite data.

Part-I : Assessment of sedimentation using optic satellite data:

In the remote sensing system mostly optic satellite data is used due to its many
advantages such as high spatial resolution and the ability to analysis the earth objects using
different spectral data. The optic satellites namely Lansat-8 and Sentinel-2 have been used in
this study. The spatial and spectral details of these satellites used for classification of water
spread area are given in the Chapter-3 (Data Used). For all the three approaches (per-pixel,
sub-pixel and super resolution), the same satellite images have been used and water spread
areas have been interpreted. The analysis are discussed in the following sections.

The image data used in this study was recorded by the Landsat-8 satellite and its sensor
Operational Land Imager (OLI). The OLI (Path/Row: 141/ 45) provides information of the
land surface though 8 bands with a spatial resolution of 30m. Out of these eight bands, the 3
4™ and 5™ bands which are known as Green, Red and Near Infra-red (NIR) bands have been
used in this study. These three bands spectral resolutions are 0.525-0.600 pum, 0.630-0.680
um and 0.85-0.88 um respectively.

The Sentinel-2 satellite with the sensor namely Multi-Spectral Instrument (MSI) provides the
data in thirteen bands, band 8 (NIR), with a spatial resolution of 10m having central
wavelength 0.832um has been used for extracting the water pixels. OLI sensor have 12 bit
(i.e 2'%) radio-metric resolution, hence the pixels or the image captured by these sensor
contain, Digital Number ranging from 0 to 4095. Whereas, the OLI instrument acquires
measurement in 12 bits. These measurements are converted to reflectance and stored as 16 bit
integers, which have values ranges from 0 to 65,535. The Hirakud reservoir pertaining to
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Sentinel-2 data is covered in four different path. Sentinel-2 satellite captures single day
Hirakud reservoirs water-spread area in four different scenes. Therefore, these four pieces of
images were down-loaded and mosaic operation was performed. This process was carried for
all the Sentinel-2 image data used in this study.

5.1 Estimation of rate of sedimentation by per-pixel classification approach

Nine water levels varying from 191.84 m to 183.51 m of the reservoir were selected based on
the availability of cloud-free satellite data to estimate the water spread of the reservoir for the
period 2018-19. The impoundment FRL and MDDL of the reservoir were 192.02 m and
179.83 m respectively. To extract the water pixels from the images using the per-pixel
approach, the algorithm presented in Equation (1) described in the methodology was used.
This algorithm needs separate minimum and maximum threshold DN values from the NIR
band for the nine satellite images used in the study. With the help of the said algorithm, the
pixels which contain the DN numbers between the identified minimum and maximum
threshold values were labeled as water pixels. The locations of these pixels in the water
spread area were also verified and showed that the pixels with low DN value were positioned
in the deeper and central portion of the water spread area of the reservoir. The extracted
minimum DN values are 336, 139, 272, 220, 231, 340, 270, 274 and 357 for the images
pertaining to January, February, April, May (month have two dates of data), June, October,
November, and September respectively. The lower (139) and higher (357) DN values can be
attributed to the irradiance of the water body during the winter and summer seasons of the
study area. The examination of DN values of the water body shows that the pixel value
increases towards the boundary of the water body and the border pixels have the maximum
DN value. In selecting the maximum value of the water spread area, one must examine the
pixels along the boundary of the reservoir. The extracted maximum pixel values are
900,901,930,988,1160,600,870 and 512 for the images pertaining to the months of January,
February, April, May, June, October, November and September respectively. The pixel
values of 274 and 340 pertain to the winter (November) and summer (June) seasons of the
study area.

The total number of water pixels that were extracted was multiplied by the area 30m x
30m (for Landsat-8 data) & 10m x 10m (for Sentinel-2 data) of a single-pixel to compute the
water spread area occupied by a particular water level. The same technique was adopted to
convert the extracted water pixels into the water spread area in all nine images used in this
study. The satellite image data for various water levels and the extracted water spread areas
are shown in Figure 5.1 and 5.2 respectively.

The water spread area extracted using the per-pixel classification approach for all the
nine water levels are provided in Table 5.1. The cloud free digital image data that could be
captured by the satellites for the year 2018-19, were between the water level 183.51m and
191.84m. Due to presence of cloud, optic satellite data was not available below 183.51 m to
MDDL (179.83 m) and above 191.84 m to FRL (192.02 m). The live storage capacity of the
reservoir ranges from 179.83 m (MDDL) to 192.02 m (FRL).
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Table 5.1. Satellite data derived water spread area using per-pixel classification approach.

Interpreted
Satellite and Reservoir water spread
SI.No. Date of Pass | Water Level | area from the
Sensor )
(m) satellite data
(Ha)

1 LANDSAT-8/ OLI 29-Sep-18 191.84 59881.34
2 Sentinel-2A / MSI 23-Oct-18 191.38 57458.91
3 Sentinel-2A / MSI 22-Nov-18 190.82 54605.93
4 Sentinel-2A / MSI 31-Jan-19 189.78 49587.44
5 Sentinel-2A / MSI 20-Feb-19 189.20 46946.70
6 LANDSAT-8/ OLI 25-Apr-19 186.75 37040.46
7 LANDSAT-8/ OLI 11-May-19 185.48 32700.02
8 LANDSAT-8/ OLI 27-May-19 184.22 28929.94
9 LANDSAT-8/ OLI 12-Jun-19 183.51 27040.78

A second order polynomial equation (6.1) was fitted for the water spread area
estimated from the satellite data using per-pixel classification approach and the revised water
spread areas at regular intervals were calculated and given in Table 5.2.

Water Spread Area in hectare = (168.197* L?) - (59190.3*L) + 5224864 (6.1)

Where L = Reservoir water level in meter
The above said procedures such as fitting of polynomial equation and arriving the water
spread area for the regular intervals have been adopted for all the three sections which deals
the sub-pixel, super-resolution approaches and microwave satellite data methodology to
estimate the rate of sedimentation.

Table 5.2 Water spread area estimated at regular intervals using per-pixel classification approach.

Reservoir Water-spread area
31.No elevation estimated using per-pixel
© 7| above M.S.L approach
(m) (Ha)
1. 192.02 60849
(FRL) (608.49 Mm?)

2. 191 55511
3. 190 50619
4. 189 46062
5. 188 41842
6. 187 37959
7. 186 34412
8. 185 31201
9. 184 28326
10. 183 25788
11. 182 23587
12 181 21722
13. 180 20193
14. 179.83

(MDDL) 19966
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Most of the Indian reservoirs utilize the prismoidal formula to estimate the volume
between two water levels during the impoundment survey. Therefore, in this study also, the
prismoidal formula was used to calculate the volume arises between different water levels
used in the analysis.

The revised water-spread areas that were estimated using per-pixel classification
approach at regular intervals were utilized to compute the volumes between the MDDL and
FRL. The volumes thus calculated have been added up to find out the cumulative live storage
capacity of the reservoir. The estimated cumulative live storage capacity of the Hirakud
reservoir, according to the per-pixel classification approach, for the period 2018-19 was
4419.60 M.cum. Hirakud reservoir’s original live storage capacity during 1956 was 5842.88
M.cum. The difference between the 1956 live capacity and the present live capacity reveals
the amount of sediment deposited during 63 years of operation of the reservoir, which is
estimated at 1423.28 M.cum. Therefore, from the per-pixel approach calculations it is
assessed that 1423.28 M.Cum of sediment has been deposited in the Hirakud reservoir during
the period 1957 to 2019. Hence, the rate of sedimentation in the live storage capacity of
Hirakud reservoir is estimated at 22.56 M.Cum/year. The calculations are given in Table 5.3.

Table 5.3 Reservoir capacity estimation using per-pixel classification approach

Reservoir Water-spread area .
i . : Cumulative
31.No elevation estimated using per- Capacity
7" | above M.S.L pixel approach (Ha-m)
(m) (Ha)
1. 192.02 60849 441960
(FRL) (608.49 Mm?) (4419.60 Mm?)
2. 191 55511 382641
3. 190 50619 329595
4. 189 46062 281277
3. 188 41842 237342
6. 187 37959 197457
7. 186 34412 161286
8. 185 31201 128493
9. 184 28326 98741
10. 183 25788 71693
11. 182 23587 47014
12 181 21722 24366
13. 180 20193 3413.5
14. 179.83
(MDDL) 19966 0
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Fig.5.2 Per-pixel classified water-spread area from the multi-date satellite for the period 2018-19
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5.2 Estimation of rate of sedimentation by sub-pixel classification approach

The per-pixel approach produces single classification out-put, which contains
information about all the landusue/landcover classes in the study area. Whereas, in the Sub-
Pixel Classification (SPC) approach, the classification out-put produces more than one image,
concurrence to the number of end-members used. End-members are the pure pixels of
different land classes used in the classification approach. The out-put images of SPC are
known as fraction images. These fraction images contain a wealth of information about
different end-members used in the model. In this, study the end-members from the classes
such as water, vegetation and soil were used. Therefore, the SPC out-put had three fraction
images known as water, vegetation and soil fraction images, i.e each fraction image
corresponds to a single land cover only. The pixels in the water fraction image provide
information only on the proportion or amount of water it contains. Likewise the vegetation
and soil fraction images provide information on the proportions of the respective classes only.
(The residual error created by the model is depicted by the error image). However, in this
study the interest is only to know about, the amount of water present in every water level of
the reservoir, hence only the water fraction image has been used. The value of the pixels in
the fraction image ranges from 0 to 1. A pixel from the water fraction image having a value
of 0 indicates that there is no water at all in that pixel, whereas a pixel having a value of 0.3
indicates that 30% of the area of the pixel is occupied by water. While a pixel value of 1
indicates that 100% of the area of the pixel is occupied by water (i.e the pixel is fully
occupied by water). Therefore, in the LANDSATS/OLI image data (which contain a spatial
resolution of 30m), a pixel having a value of 0.7, the area of water occupied by that pixel is
630 m’ (0.7 x 30m x 30m). In the case of SENTINEL-2 data (which contain a spatial
resolution of 10m) for a pixel having a value of 0.5, the water area occupied by that pixel is
50 m? (0.5 x 10m x 10m).

End-members are the required input to run the sub-pixel classification model. In this
study the end-members were identified using n-Dimensional Visualizer (NDV) and Pixel
Purity Index (PPI). Each and every image pertaining to Hirakud reservoir used in this study
produced many number of end-members. NDV and PPI allow the analyst to view the spectral
characteristics of these pixels in multiple dimensions. Interactively, the analyst can identify
the pixels with their corresponding DN values in various wavelength bands and then identify
their locations on the image. For instance, the water end-members show very low, moderate
and high DN value in the NIR, Red and Green band wavelengths. Among the NDV and PPI
produced pixels, the pixel which has the lowest DN in NIR and highest value in red and green
bands have been selected as water end-member. In the case of vegetation end-member green,
red and NIR bands show moderate, low and very high DN value. The end-member of the
vegetation class has been selected in the same order as the spectral characteristic of the class,
i.e the pixel which has moderate DN value in the green band, very low DN value in the red
band and very high DN value in the NIR band. The end-member of the soil class has been
selected based on the site characteristics, i.e the pixel which has lowest DN value in green
band and higher DN value in the red and NIR band. As explained above the selected end-
members were used as input in the SPC model and three different fraction images were
obtained as output. The sub-pixel classified images pertaining to Hirakud reservoir for three
different water levels (near FRL, moderate water level and near MDDL) are shown in Figure
5.3 to 5.5. From the three fraction images the water fraction image alone has been utilized to
estimate the water-spread area pertaining to every water level of the reservoir.
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Here it is worth mentioning that, a pixel containing 65% of water may be labelled
as containing 100% of water by the per-pixel approach. Thus the water-spread area is over
estimated. Conversely, in the per-pixel classification approach the pixel containing 40% of
water may not be considered as a water pixel. Hence, the water-spread area is under
estimated. Such errors due to over estimation or under estimation do not occur in the SPC
approach. Thus, the SPC approach reduces the error imposed by the per-pixel classification
approach.

All the nine water fraction images of the Hirakud reservoir were examined and found
that the inner portion of water-spread area contains pixel value of 1. Whereas, the peripheral
or border pixels contain proportions of value ranging from 0.99 to 0.1. It was ascertained that
a small number of the border pixels contain water spread area less than 10%. Hence, a
threshold value of 10% was selected and the pixels containing value of less 0.1 were omitted
from the analysis. The pixels which have value of 1 to 0.1 were used in the estimation of
water-spread area. The pixels representing the peripheral portion of the reservoir, which have
value of 0.99 to 0.1 were isolated from the water-fraction image and the area covered by
water in these peripheral/border pixels were estimated. The number of pixels that contain
100% water were also determined. By summing the area occupied by these two types of
pixels, the total water spread area corresponding to a particular water level of the reservoir
was computed. This exercise was carried out for all the nine images used in the study. Thus,
the water spread areas of all the nine water levels were computed using the sub-pixel
classification approach for the period 2018-19. The interpreted water spread areas using sub-
pixel classification approach is given in Table 5.4.

LANDSAT-8,29 SEP2018

O 1 O 1 O 1

Water Fraction Image Vegetation Fraction Immage Soil Fraction Image

Fig.5.3. Sub-pixel classified output of Hirakud Reservoir for the water level 191.84
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Fig.5.4. Sub-pixel classified output of Hirakud reservoir for the water level 189.20 m

O |1 o 1 O 1

Water Fraction Image

Vegetation Fraction Iimnage Soil Fraction Image

Fig.5.5. Sub-pixel classified output of Hirakud Reservoir for the water level 183.51 m



Table 5.4 Satellite data derived water spread area using sub-pixel classification approach.

Interpreted
. Reservoir water spread
SI.No. Satellite and Date of Pass | Water Level | area froII)n the
Sensor )
(m) satellite data
(Ha)
1 LANDSAT-8/ OLI 29-Sep-18 191.84 59982.34
2 Sentinel-2A / MSI 23-Oct-18 191.38 57559.91
3 Sentinel-2A / MSI 22-Nov-18 190.82 54706.93
4 Sentinel-2A / MSI 31-Jan-19 189.78 49688.44
5 Sentinel-2A / MSI 20-Feb-19 189.20 47047.70
6 LANDSAT-8/ OLI 25-Apr-19 186.75 37141.46
7 LANDSAT-8/ OLI 11-May-19 185.48 32801.02
8 LANDSAT-8 / OLI 27-May-19 184.22 29030.94
9 LANDSAT-8/ OLI 12-Jun-19 183.51 27141.78

As explained earlier, a second order polynomial equation (6.2) was fitted for the water
spread area arrived using sub-pixel classification approach and the revised water spread areas
at regular intervals were calculated and given in Table 5.5.

Water Spread Area in hectare = (168.197* L?) - (59190.3*L) + 5224965 (6.2)
Where L = Reservoir water level in meter

Table 5.5 Water spread area estimated at regular intervals using sub-pixel classification

approach

Reservoir Water-spread

: area estimated

S1.No. clevation using sub-pixel

above M.S.L
(m) approach
(Ha)

1. 192.02 60949.62

(FRL) (609.49 Mm?)
2. 191 55612.46
3. 190 50719.7
4. 189 46163.34
5. 188 41943.37
6. 187 38059.79
7. 186 34512.61
8. 185 31301.83
9. 184 28427.43
10. 183 25889.43
11. 182 23687.83
12 181 21822.62
13. 180 20293.8

14. 179.83

(MDDL) 20067.36
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The revised water-spread areas that were estimated using sub-pixel classification approach at
regular intervals were utilized to compute the volumes between the MDDL and FRL. The
volumes thus calculated have been added up to find out the cumulative live storage capacity
of the reservoir. The estimated cumulative live storage capacity of the Hirakud reservoir,
according to the sub-pixel classification approach, for the period 2018-19 was 4431.91
M.cum. The difference between the 1956 live capacity and the present live capacity reveals
the amount of sediment deposited during 63 years of operation of the reservoir, which is
estimated at 1410.96 M.cum. Therefore, from the sub-pixel approach calculations, it is
assessed that 1410.96 M.Cum of sediment has been deposited in the Hirakud reservoir during
the period 1957 to 2019. Hence, the rate of sedimentation in the live storage capacity of
Hirakud reservoir is estimated at 22.39 M.Cum/year. The calculations are given in Table 5.6.

Table 5.6 Reservoir capacity estimation using Sub-pixel classification approach

) . Water-spread
Reservoir . .
clevation area estlma.ted Cumula.tlve
S1.No. using sub-pixel Capacity
above M.S.L
(m) approach (Ha-m)
(Ha)
1. 192.02 60949.62 443191.5
(FRL) (609.49 Mm?) | (4431.91 Mm®)
2 191 55612.46 383769.5
3 190 50719.7 330622.2
4 189 46163.34 282203.5
5. 188 41943.37 238167
6. 187 38059.79 198181.1
7 186 34512.61 161909.4
8 185 31301.83 129015.2
9. 184 28427.43 99162.14
10. 183 25889.43 72013.59
11. 182 23687.83 47233.11
12 181 21822.62 24484.26
13. 180 20293.8 3430.68
14. 179.83
(MDDL) 20067.36 0

5.3 Estimation of rate of sedimentation using super-resolution modeling approach.

In this study super resolution technique using Hopfield Neural Network which
enhances the resolution of output images was applied. From the multi-spectral satellite image
at 30 m spatial resolution, a set of proportion images for each land cover class was obtained
by the linear spectral unmixing. The super resolved maps of the multispectral images were
obtained from the water fraction image by incorporating the Hopfield Neural Network
algorithm. A single pixel of water fraction image which has a resolution of 30 m
(LANDSAT-8/OLI) was sub-divided and enhanced to super resolved map wherein every
element has pixel size of 6 m. Each pixel of the sub-divided fraction image is an input into
the neural network and processed by a set of 5 x 5 (25) neurons. Since a zoom factor of 5 is
adopted, the network for each pixel processing is constructed with 25 neurons. In the case of
Sentinel-2 data which have spatial resolution of 10 m, a zoom factor of 2 is adopted, hence
the super resolved map, have a pixel size of 5 m. If a super resolved pixel has an area
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proportion for a particular landcover class as 100%, all neurons are given a value of 0.55.
Similarly, if a pixel has an area proportion for particular landcover class as 50%, 13 neurons
are given a value of 0.55 and 12 neurons are given a value of 0.45. The concept of spatial
order within and outside a pixel is the basis for determining the energy of the network. The
point at which minimum energy occurs is the stable state of the network. The neuron outputs
at this point determine the best accurate map of the given image. Thus, prediction of the
spatial pattern of the water bearing pixels is made accurately at the super resolution scale and
finally the exact boundary of reservoir is obtained. The output of super resolved map contains
values only 0 and 1. The value 0 and 1 implies non-water and water pixels respectively. First,
the pixels which have value of 1 were separated out from the super resolved map. Then, the
number of pixels which have value of 1 was multiplied by the size of the super resolved map
size i.e 6 m x 6 m or 5 m x 5 m as the case may be. Thus, the water spread area occupied by a
particular water level has been obtained. Here it is worth mentioning that the super resolved
map produces higher resolution map than the input one, hence the accuracy of classification
increases. Therefore, the accuracy of water-spread area estimated using super resolved map
would have more accurate results than the per-pixel and sub-pixel classified approaches. The
water spread area estimated using super resolution mapping is given in Table 5.7.

Table 5.7 Satellite data derived water spread area using super-resolution approach.

Interpreted
. Reservoir water spread
SI.No. Satellite and Date of Pass | Water Level | area froII)n the
Sensor .
(m) satellite data
(Ha)

1 LANDSAT-8/ OLI 29-Sep-18 191.84 60139.64
2 Sentinel-2A / MSI 23-Oct-18 191.38 57717.21
3 Sentinel-2A / MSI 22-Nov-18 190.82 54864.23
4 Sentinel-2A / MSI 31-Jan-19 189.78 49845.74
5 Sentinel-2A / MSI 20-Feb-19 189.20 47205.00
6 LANDSAT-8/ OLI 25-Apr-19 186.75 37298.76
7 LANDSAT-8 / OLI 11-May-19 185.48 32958.32
8 LANDSAT-8 / OLI 27-May-19 184.22 29188.24
9 LANDSAT-8/ OLI 12-Jun-19 183.51 27299.08

In order to estimate the water spread area at regular water intervals and for the
missing water levels, a second order polynomial equation (6.3) was fitted and the revised
water spread areas were calculated. The water spread areas at regular intervals are given in
Table 5.8.

Water Spread Area in hectare = (168.197* L?) - (59190.3*L) + 5225122 (6.3)
Where L = Reservoir water level in meter
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Table 5.8 Water spread area estimated at regular intervals using super-resolution approach.

Reservoir Water-spread area
elevation estimated using
S1.No. above M.S.L super-resolution
(m) o approach
(Ha)
1. 192.02
(FRL) 61106.62
> 191 55769.46
> 190 50876.7
* 189 46320.34
> 188 42100.37
6.
187 38216.79
186 34669.61
8. 185 31458.83
. 184 28584.43
10 183 26046.43
H 182 23844.83
2 181 21979.62
13. 180 20450.8
14, 179.83
(MDDL) 20224.36

The revised water-spread areas were utilized to compute the volumes between the
MDDL and FRL. The volumes thus calculated have been added up to find out the cumulative
live storage capacity of the reservoir. The estimated cumulative live storage capacity of the
Hirakud reservoir, according to the per-pixel classification approach, for the period 2018-19
was 4451.06 M.cum. The difference between the 1956 live capacity and the present live
capacity reveals the amount of sediment deposited during 63 years of operation of the
reservoir, which is estimated at 1391.62 M.cum. Therefore, from the per-pixel approach
calculations it is assessed that 1391.82 M.Cum of sediment has been deposited in the Hirakud
reservoir during the period 1957 to 2019. Hence, the rate of sedimentation in the live storage
capacity of Hirakud reservoir is estimated at 22.09 M.Cum/year. The live storage capacity
calculations are given in Table 5.9.
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Table 5.9 Hirakud Reservoir’s live storage capacity estimation using super resolution

mapping approach
Reservoir Water-spread area .
. . . Cumulative

31.No. elevation est1mat§d using super Capacity

above M.S.L resolution approach (Ha-m)

(m) (Ha)
1. 192.02 61106.62 445106
(FRL) (611.06 Mm?) (4451.06 Mm?)
2. 191 55769.46 385523.8
3. 190 50876.7 3322194
4. 189 46320.34 283643.7
5. 188 42100.37 239450.1
6. 187 38216.79 199307.2
7. 186 34669.61 162878.4
8. 185 31458.83 129827.2
9. 184 28584.43 99817.01
10. 183 26046.43 72511.41
11. 182 23844.83 47573.88
12 181 21979.62 24667.99
13. 180 20450.8 3457.37
14. 179.83
(MDDL) 20224.36 0

5.4 Validation of per-pixel, sub-pixel and super-resolution approaches

Several researchers (Esimann and Hardie 2005, Lamyaa and Salwa 2010, Haerttel
et al. 2004, Foody 2007) have shown that the information obtained from per-pixel, sub-pixel
and super resolution can be compared to the satellite data that has been obtained at higher
resolution. In line with the above findings, it was decided to validate the water spread
obtained by per-pixel, sub-pixel and super resolution classification approaches with the water
spread of high resolution image data which have a spatial resolution of 5m (Resourcersat-2A-
LISS-IV-Mx). However, concurrent high resolution data was not available for all the nine
images used in the study. Therefore, the validation was carried out with the only available
two image data for the water level 191.84m and 189.20m. The results of experiments carried
out on the validation set are given in the Table 5.10. The Table 5.11 reveals that the super
resolution approach produced very less error (4.44%) than the per-pixel (5.39%) and sub-
pixel (5.02%) based approaches. This shows that the super resolution based approach can be
applied to estimate the capacity of the reservoirs with higher accuracy than the per-pixel and
sub-pixel based approaches.
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Table 5.10 Validation of per-pixel, sub-pixel and super-resolution approaches.

Satellite/Sensor Reservoir Water- | Water- Water- Res-2A-
Date of Elevation spread | spread spread LISSIV (Mx)
Satellite Pass above m.s.] area area area Super- | Water-spread
(m) Per- Sub- Resolution area
Pixel Pixel (Mm?) (5m)
Mm?) | (Mm?) (Mm?®)
20 Sep 2018 Landsat-8
(Validation-1) 30m 191.84 598.81 | 599.82 601.39 620.86
20 Feb 2019 | Sentinel-2A
(Validation2) 10 m 189.20 469.47 | 470.48 472.05 478.27

Table 5.11 Percentage (%) of error between per-pixel, sub-pixel and super-resolution based

approaches.
No. of Validation Processing Approach
Per-pixel Sub-pixel SRM
Validation-1 3.55% 3.39% 3.14
Validation-2 1.84% 1.63% 1.30
Valil + Vali2 5.39% 5.02% 4.44%
Average Error 2.70% 2.51% 2.22%

5.5 Comparison of Elevation- area- capacity of Hirakud reservoir with original and
other surveys.

The results obtained by best capacity estimation (SRM approach) have been compared with
original, hydrographic surveys and Rule Curve Revisions. The comparison is shown in Table
No.12. The comparison reveals that Hirakud reservoir water spread area and the volume at all
the water levels is gradually reducing. The water spread area at the lowest level shows slight
increase. The reason for this is the satellite observation was to the lowest water level
183.51m, which is 3.68 m above MDDL. From 183.51 to 179.83 the estimation was arrived
through regression analysis. The siltation rate obtained by super-resolution based survey
closely agrees with the earlier surveys (Table 5.13) carried out. The comparison between
Original (1956), Rule Curve Revision (2000) and the SRM approach (2019) capacity curve is
given in Figure 5.6.
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Table 5.12 Elevation- area- capacity of Hirakud as per original (1956), 1986, 1995, 2019

surveys and 1988 and 2000 rule curve revisions

Eleva . 3rd cycle Rule Curve Remote sensing . . SRM baseq
. Original . .. Revised ending | Remote sensing
tion . 1956 hydrographic Rey1s1on survey by CWC 2000 survey
in Elgvatlo survey 1986 | Committee 1988 1995 2019 ’

ninm . - . - - .
Area stlc;lr;lege Area stI;gZe Area stI;erZe Area stI:)IrZCge Area stI;gZe Area stlc;lr;lege

feet (02) | haemy | P | haem) | P hamy [ P | haem) | P | hasmy | P | (ha-m)
630| 192.02| 72735|584288| 61930| 510605 61214 537817| 69115| 490152 69507|482361| 61107| 445107
625| 190.50| 65494|479699| 56771| 421230 56114 451100 60815 391209 59900(385212| 53281| 358211
620| 188.98| 582531376792 51590 339645 50994| 365000 53020| 304531| 52586|300753| 46233| 282672
615| 187.45| 52451|300681| 47706| 264875 47154 280504 45729 229349| 44562|227858| 39923| 216851
610| 185.93| 46648|228271| 43333| 196331| 42832 201928 38942| 164894| 37222|166504| 34434 160424
605| 184.40| 41651|157679| 38666 134603| 38219 138772| 32660| 110397| 32099|114476| 29694| 111451
600| 182.88| 36654| 90787| 33515| 80283| 33128| 85113| 26882| 65089 27347| 69868| 25764| 69381
595| 181.36| 32211| 45394| 25197| 36214| 24906] 40706 21609| 28203| 23231| 31916| 22612 32694
590 179.83| 27767 0| 22896 0| 22631 0 17022 0| 19316 0] 20224 0

Table 5.13 Sedimentation rate for live storage for 1957- 1986, 1957- 1995 and 1957- 2019

Sedimentation rate 1957-1986 1957-1995 1957-2019
Reduction in Live Storage (Ha m) 72000 92453 139182.47
(720 Mm?) (924.53Mm”) | (1391.82 Mm°)
Reduction in Live Storage (Ha m/ year) 2400 2371 2209.24
(24.0 Mm’/y) | (23.71 Mm’/y) | (22.09 Mm’/y)
Reduction in Live Storage ( %) 12.36% 15.87% 23.82%
Reduction in Live Storage / year (%) 0.412% 0.407% 0.38%
Reduction in Live Storage (Ha m/100 ) 878 2842 270
sq.km/year)

Elevation (m)
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Fig. 5.6. Comparison of Original (1956), Rule Curve Revision (2000)
and SRM approach (2019) capacity curve.
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Part-II : Assessment of sedimentation using microwave satellite data:
5.6 Estimation of rate of sedimentation by microwave satellite data

The pre-processing steps which are mandatory for any microwave data analysis and to
get the required information are explained in the methodology section. These procedures
have been carried out for all the eleven Sentinel-1A data used in this study using SNAP
platform.

The bimodal histogram distribution of the SAR image (Fig.5.7) reveals that the lower
peak represents the pixels corresponding to specular reflection. The pixels from the specular
reflection mostly pertain to water pixels. The average sigma nought (c0) value of water
pixels in this study ranges from -40.62db to -21.58db (db pronounced as decibel). The higher
peak represents pixels with diffuse reflection (land features) in the study area. The value of
land pixels ranges from -20db to 5db. The pixels pertaining to reservoir water spread area has
been separated out from the land area for further processing. The full image and the separated
water spread area pertaining to the near FRL (190.19m) which is on 10™ October 2018 is
shown in the Fig 5.7.
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Figure 5.7 Histogram of SAR image & extracted water spread area pertaining to 10-oct-2018.

The water features in the SAR imagery are the result of different factors such as
acquisition characteristics (wavelength, incident angle, and polarization), soil moisture, and
soil surface conditions. In SAR image the water pixels have low backscatter as compared to
other landscapes due to specular reflection. Therefore, the water pixels appear darker in color
with respect to other features of the image, which makes the water pixels to be recognized
easily. The previous studies shows that dual-polarization data provides the most informative
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result and the thresholding is viewed an efficient class extraction method form the stable
water. Therefore, in this study the water pixels were extracted using VV or VH polarized data
through thresholding class extraction methodology. The threshold values were identified by
analyzing the image histogram and interacting with the imagery. The identified threshold
values and the extracted water spread area from the respective VV or VH bands are given in
the Table 5.14 and Fig 5.8. With the help of identified threshold values, water pixels were
recognized and their water spread areas were estimated.

Table 5.14. Microwave image data (Sentinel-1A) derived water spread area

Reservoir o Wat;r-spread area
Date of Image Threshold limits estimated using
S1.No. o Water Level .
acquisition (m) (dB) Sentinel-1A data
(Ha)

1 10-Oct-2018 190.19 -34.73 t0 -19.24 51614.14
2 27-Nov-2018 189.23 -34.54 to -20.16 47172.21
3 26-Jan-2019 188.42 -32.48 to -20.12 43665.48
4 03-Mar-2019 187.41 -37.80 to -21.58 39602.07
5 27-Mar-2019 186.66 -36.18 to -19.20 36806.71
6 08-Apr-2019 186.17 -36.80 to -19.54 35082.60
7 20-Apr-2019 185.55 -35.54 to -19.58 33016.83
8 2-May-2019 184.80 -40.62 to -19.70 30690.73
9 14-May-2019 183.81 -40.51to -19.34 27910.03
10 26-May-2019 182.86 -33.61 to -19.25 25551.66
11 19-Jun-2019 181.79 -31.18 to -14.37 23258.93

In order to estimate the water spread area at regular water intervals and for the
missing water levels, a second order polynomial equation (6.4) was fitted and the revised
water spread areas were calculated. The water spread areas at regular intervals are given in
Table 5.15.

Water Spread Area in hectare = (168.197* L?) - (59190.3*L) + 5224955.7 (6.4)
Where L = Reservoir water level in meter

Based on the Sentinel-1A derived water-spread area, a regression analysis has been
used to find out the revised water-spread areas and volumes between the live storage capacity
of the reservoir, 179.83m (MDDL) to 192.02 (FRL). The estimated cumulative live storage
capacity of the Hirakud reservoir, using microwave satellite data (Sentinel-1A) for the period
2018-19 was 4430.78 M.cum. The difference between the 1956 live capacity and the present
live capacity reveals the amount of sediment deposited during 63 years of operation of the
reservoir, which is estimated at 1412.09 M.cum. Therefore, using microwave data it is
assessed that 1412.09 M.Cum of sediment has been deposited in the Hirakud reservoir during
the period 1957 to 2019. Hence, the rate of sedimentation in the live storage capacity of
Hirakud reservoir is estimated at 22.41 M.Cum/year. The calculations are given in Table
5.16.
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Table 5.15 Water spread area estimated at regular intervals using super-resolution approach.

Reservoir Water-spread area estimated
31 No elevation using Sentinel-1A data
©7" | above M.S.L (Ha)
(m)
1. 192.02 60940
(FRL) (609.40 Mm?)

2. 191 55603
3. 190 50710
4. 189 46154
5. 188 41934
6. 187 38050
7. 186 34503
8. 185 31293
9. 184 28418
10. 183 25880
11. 182 23679
12 181 21813
13. 180 20285
14. 179.83

(MDDL) 20058

02-May-2019, Water Level — 184.80 m
’ R Rew i

19-Jun-2019. Water Level — 181.79 m
Figure 5.8 Water spread area extracted from Sentinel-1A data of Hirakud
Reservoir for three different satellite pass.



Table 5.16. Reservoir capacity estimation using microwave satellite data (Sentinel-1A).

Reservoir Water-spread area .
s . . Cumulative
31 No. elevation estqnated using Capacity
above M.S.L | per-pixel approach (Ha-m)
(m) (Ha)
1. 192.02 60940 443078
(FRL) (609.40 Mm?) (4430.78 Mm°)
2. 191 55603 383666
3. 190 50710 330528
4. 189 46154 282118
5. 188 41934 238091
6. 187 38050 198114
7. 186 34503 161852
8. 185 31293 128967
9. 184 28418 99123
10. 183 25880 71984
11. 182 23679 47213
12 181 21813 24473
13. 180 20285 3429.1
14. 179.83
(MDDL) 20058 0
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CHAPTER-6
CONCLUSIONS AND SCOPE OF FUTURE WORK

Water spread area and capacity of reservoirs is important parameters for the reservoir
management authorities. The ever changing environment scenarios affect the amount of
sediment deposited in to a reservoir. Three different optical methodologies have been
employed to identify the best methodology, so that the capacity and amount of siltation in the
reservoir can be precisely estimated. Apart from this the microwave satellite data has also
been utilized to find out its feasibility to assess the capacity of Hirakud reservoir.

In the per-pixel classification approach band threshold technique was utilized to
extract the water pixels from the satellite images. This algorithm needs separate minimum
and maximum threshold DN values from the NIR band. With the help of the said algorithm,
the pixels which contain the DN numbers between the identified minimum and maximum
threshold values were labeled as water pixels. The total number of water pixels that were
extracted was multiplied by the area of a single-pixel to compute the water spread area
(WSA) occupied by a particular water level. This technique was adopted to convert the
extracted water pixels into the water spread area in all the nine images used in this study.
From the per-pixel derived WSA the live storage capacity of the reservoir was estimated and
the rate of sedimentation is arrived at 22.56 M.Cum/year.

The sub-pixel approach has been adopted and applied to all the nine images of the
reservoir. After, selecting appropriate end-members, the SPC resulted in fraction images
which contain sub-pixel level information about the reservoir and its peripheral region.
Information derived from the water fraction image, has been translated in to water-spread
area and the capacity of the reservoir was calculated. SPC derived rate of sedimentation is
22.39 M.Cum/year.

The super resolved maps of the multispectral images were obtained from the water
fraction image by incorporating the Hopfield Neural Network algorithm. The concept of
spatial order within and outside a pixel is the basis for determining the energy of the network.
The point at which minimum energy occurs is the stable state of the network. The neuron
output at this point determines the best accurate map of the given image. Thus, prediction of
the spatial pattern of the water bearing pixels is made accurately at the super resolution scale
and finally the exact boundary of reservoir is obtained. The super resolved map produces
higher resolution map than the input one, hence the accuracy of classification increases. The
output of super resolved map contains values only 0 and 1. The value 0 and 1 implies non-
water and water pixels respectively. The pixels which have value of 1 were separated out
from the super resolved map and the water spread area pertaining to all the nine images were
estimated. From the SRM derived WSA the live storage capacity of the reservoir was
estimated and the rate of sedimentation is arrived at 22.09 M.Cum/year.

The Odisha region is often affected by cyclonic storms and severe monsoon activities,
in such situations optical data cannot be used and therefore usage of microwave data will
provide continuous satellite data for the delineation of reservoir water-spread area. The water
spread area from the Sentinel-1A, SAR data have been delineated after following the
mandatory pre-processing procedures. The average sigma nought (60) value of water pixels
in this study ranges from -40.62db to -21.58db. Water pixels were extracted using VV or VH
polarized data through thresholding extraction method. The analysis reveals that the rate of
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sedimentation in the live storage capacity of the reservoir using microwave data is 22.41
M.Cum/year.

The water spread area from the satellite data is the only input used in the per-pixel,
sub-pixel and super resolution approaches for the estimation of capacity of the reservoir and
the rate of sedimentation. The capacity has been calculated using 30m and 10m resolution
data. The prior studies shows that the information obtained from per-pixel, sub-pixel and
super resolution can be compared to satellite data that has been obtained at higher resolution.
In line with this the water spread area obtained by per-pixel, sub-pixel and super resolution
classification approaches have been validated with the water spread area of high resolution
image data which have a spatial resolution of 5m (Resourcersat-2A-LISS-IV-Mx). The
validation reveals that the super resolution approach produced very less error (4.44%) than
the per-pixel (5.39%) and sub-pixel (5.02%) based approaches. This shows that the super
resolution based approach can be applied to estimate the capacity of the reservoirs with
higher accuracy than the per-pixel and sub-pixel based approaches.

Amount of annual incoming sediment in to the reservoir is assessed, this implies that soil
conservation measures has to be adopted in the catchment area. There are many mathematical
models which estimate, watershed wise sediment yield, with the help of these models the
most vulnerable watershed Hirakud catchment can be identified and appropriate soil
conservation measures would further reduce siltation in the Hirakud reservoir.
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