NATIONAL INSTITUTE OF HYDROLOGY, ROORKEE
WORKSHOP ON
FLOOD FREQUENCY ANALYSIS

LECTURE-6

TESTS OF INDEPENDENCE AND GOODNESS OF FIT

OBJECTIVES :

The objectives of this lecture are to explain :

(i) the tests used for checking the randomness of data series in time and space demain,
and

(ii) the tests used for checking the goodness of fit of known probability distributions
with the empirical frequency distribution.

6.1 INTRODUCTION

Statistical analysis of hydrologic data often assumes certain conditions of the data which
must be tested before proceeding with the analysis under consideration. For instance, flood
frequency analysis is usually carried out assuming that the annual flood data constitutes a random
sample. Strictly speaking one must verify that the flood data is in fact random based on statistical
tests of independence, before doing the frequency analysis of the flood data. Likewise, certain
decisions for filling in missing data or extending short records are based on the degree of cross-
correiation (correlation in space) between two sets of hydrologic data. Thus, it is often necessary
to test whether such cross-correlation between the two samples is statistically significant.

Tests of goodness of fit of known probability models to empirical frequency distributions
are also presented in this lecture. They may be applicable for any probability model under
consideration. In this lecture four tests of independence in time, one test of independence in
space, three tests of goodness of fit and test of skewness for normality are presented.

6.2 TEST OF INDEPENDENCE IN TIME

When a sequence of observations is uncorrelated the population autocorrelation function
for all lags other than zero is theoretically equal to zero. However, when sampling from an
uncorrelated series, the estimated autocorrelation function r, (correlogram) is not exactly equal to
zero, but it has a sampling distribution which depends on the sample size N. This sampling
distribution may be used to test the hypothesis thatr, is not significantly different from zero.
If the hypothesis is accepted the series is uncorrelated, otherwise it is correlated. When the
underlying variable is normal the propeity of independence implies that the series is uncorrelated
and vice versa. Thus, the test of independence is based on the test of the correlogram ry. In
most hydrologic applications the above concept and test is used even if the underlying variable is
not normal. In addition of the correlogram test, three other tests of independence are presented
subsequently based on other properties of the data under consideration.




6.2.1 Anderson’s Correlogram Test

It may be shown (Anderson, 1942) that when the sample size N is large the distribution
of r, is normal with mean zero and variance 1/N. Therefore, the null hypothesisr, = 0, k = 1,
D e , is tested based on the two-sided tolerance limits given by :
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Where, u is the (1 — «/2) quantile of the standard normal distribution, and N is the sample

1—a/2
size.
Anderson (1942) also gives the expected value and variance of r, as :

E(n) = —1/(N—1) (6.2)

Var (r;) = (N — 2)/(N — 1)* (6.3)

which, under the normal approximation, may be used to test the hypothesis p,_o. Yevjevich
(1972 b) suggests to modify eqs. 6.2 and 6.3 by substituting N by N — k - 1 so that they can
be used to test the hypothesis p,=o0.

S0 E(r) =—1/(N—k) (6.4)

Var () = (N —k —1) / (N-k)? (6.5)

Therefore, the ¥ = (1 — «) tolerance limits to test the hypothesis of zero autocorrelation are :

il il — a2 N — k-1 ,j1 +U1__j afz\/m_kj_'iw (6.6)
T, N —k i
The null hypothesis p, = 0, k = 1, ..., M, where M is the total number of lags, should be rejected

if more than x M sample correlation coefficients r, fall outside of the tolerance limits. If the null
hypothesis is accepted, the hypothesis of independence is accepted.

6.2.2 Run Test

Consider the sequence of observationsy; i =1,..., N with N = sample size and the
sample mean = §. A sequence of ones and zeros may be defined as follows :

w; =0 ify,<¥

fori=1,.,,,N. Forexample, for N = 14 a particular one and zero sequence may be formed
as11011110010001. Arunis defined by a consecutive series of zeros or a consecutive

series of ones. In the above example, there are 3 runs of zeros and 4 runs of ones or a total of 7
runs. :
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The run test (Keeping, 1966) is based on the assumption that if a series is independent,
the number of total runs U (runs of zeros and runs of ones) is approximately normal with mean

and variance given by :

2N; N, (6.8)
B

2N, Nj 2Ny Ny — Ny — Ny) (6.9)
Var (U) = =N+ No2 (N, + N, —1)

Where N, is the number of ones in the series w; , and N is the number of zeros. The test statistic
T is computed by :

U—E () (6.10)

T~ (Var @y

Then, the hypothesis of independence is accepted at the ¥ = (1—a) probability level if :
T st a2

where Ui_a/, is the 1—a/2 quantile of the standard normal distribution.

6.2.3 Spearman’s Rank Correlation Coefficient Test

Consider a sample series y;, i=1, 2, ..., N, where N is the sample size and let w; be the
rank of y; when the series of observations is arranged in ascending order. The Spearman’s test
(Keeping, 1966) is based on the rank correlatian coefficient R between the pairs (i, w;) for i=1,
2, ..., N. This coefficient is computed by :

N
B3 (i)t (6.11)
i=1

R=l— i)

If the sample series is independent, the Spearman’s rank correlation coefficient R is
normally distributed, and 1 — R® has a chi square distribution with (N — 2) degrees of freedom.

Then the ratio

Ry N—2" (6.12)
Y=

follows the student t-distribution with N — 2 degrees of freedom. The hypothesis of independence

is accepted at the Y = 1— « probability level if :

T =

Tl S Y a2 4 —2)

where, t (1 — a2, (N—2) isthe 1 — a /2 quantile of the Student's t-distribution with

N — 2 degrees of freedom. Percentile values (ta v) for the t distribution with v degrees of

freedom is given in Appendix V.
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6.2.4 Turning Point Test

For a given series of observations vy, i=1, ......, N, a peak is defined as the occurrence of
a value y; such that,

Yiea < Vi > Yisa
and a trough by
Yieg = Yi < Yin

If the sample series is independent, the total number of peaks and troughs M is approxi-
mately normally distributed with mean and variance given by (Clarke, 1973),

E (M) = 3 (N—2) (6.13)
and
Var (M) = %2_9 (6.14)

respectively, where N is the number of observations.
The test statistic T can be computed by

M—E (M)

T = War (My)ie

(6.15)

Then, the hypothesis of independence is_accepted at the Yy = 1 — « probability level if

where U, —on is the 1—a/2 quantile of the standard normal distribution.

6.3 TEST OF INDEPENDENCE IN SPACE

The test of independence in space is the test of independence between two sets of
hydrologic data. Two of the typical problems in statistical hydrology are is to (i) fill in missing
data and (ii) to extend short records. Most procedures for approaching these problems are usually
based on the degree of (cross) dependence between two or more sets of variables. Under the
normality assumption testing for independence between two variables implies tests for zero
correlation between them and vice versa.

This section provides a test for independence of two data sequences.
Consider the sequences of observations x; ..., xn andy, ..., yn with N = Sample size.

The correlation coefficient between the variables x and y can be computed as,

N
N 2 U= XY )
PR (6.16)
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where % and § are the means of x and v, respectively and s, and s, are the corresponding standard
deviation which are computed by :

5 ;
it \/ 1 i o) s | | (6:17)
Ni=1 ‘ '
and |
N. 2 .. ( 2 7 i}
4= /\/‘I‘\T s (yi— 9)? e } ¢ (6.18)
i=1
It may be shown that the statistic Jnls Tt )
vV N—2 oo
e ' (6.19)

is student’s t-distributed with (N—2) degrees of freedom. A test of independence can be made
by comparing T and t1—a/2 (N—2) which is the 1—a/2 quantile of the t-distribution with N—2

degrees of freedom. Then, the hypothesis of independence is accepted at the y=1—ua probability
level if

I TI< Y g2, (N—2)

6.4 TESTS OF GOODNESS OF FIT

The validity of a probability distribution function proposed to fit the empirical frequency
distribution of a given sample may be tested graphically or by analytical methods. Graphical
approaches are usually based on comparing visually the probability density function with the
corresponding empirical density function of the sample under consideration. In other words
model CDF is compared with empirical CDF. Often these CDF graphs are made on specially designed
paper such that the model CDF plots as a straight line. An example of thisis the Gumbel paper.
If empirial CDF plots as a straiht line on the Gumbel paper it is an indication that the Gumbel
distribution may be a valid model for the data at hand. Often, graphical approaches for judging
how good a model is, are quite subjective. A number of analytical tests have been proposed for
testing the goodness of fit of proposed models. Three of these tests are presented subsequently.

6.4.1 Chi-Square Test

The Chi-square goodness of fit test is one of the most commonly used tests for testing
the goodness of fit of probability distribution functions to empirical frequency distributions.

Assume that it is desired to test the goodness of fit of a probability model, with density
function f, (y, ¢') and CDF F, (v, 6" ). to the empirical distribution of a sample vy, ..., Y. where
N is the sample size, ' = ( 'y, ..., 8',) is the set of parameters estimated from the sample, and p=
number of parameters. The probability space (1009, probability) is divided into m
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intervals  (class intervals) with  probabilities Py, .. Pm in each class interval
such that p; + ... + p»=1. If such probabilities are the same then p;=1/m and the m cumulative

probabilities are 1— % % 1. For the first (m—1) cumulative probabilities the corresponding
m
values of y are determined from the model.  Lety';, ..., Y’ be the set of y’s corresponding to
probabilities1—, Ewl-ﬁ which are also the upper class limits for the first m—1 class intervals.
Now let the sample vy, ..., Yy be arranged in increasing order of magnitude and let N; be
the number of sample values that fall in the j—th class interval forj =1, .... m. Since the

probability is p; for the j—th class interval, the expected number of sample values that would fall
in the j--th interval is equal to p;. N. Then, it may be shown (Benjamin and Corneli, 1970) that

the (test) statistic

5 (N=NERS | (6.20)

C= :
£y TR

is approximately Chi-square distributed with m-1-p degrees of freedom. Since p;=1/m, Eq. 6.20
becomes

N2 —N (6.21)

| M3

The number of classes are selected in such a way that theoretical frequency of each class is
not less than 5. The number of classes should not be less than 6 and more than 20 though these
rules don’t have theoretical basis. The length of class intcrvals should be selected in such a way
that the main characteristic features of the observed distribution are emphasized and chance

variations are obscured.

Eq. 6.20 compares the number of sample values in each interval with the number
to be expected for the given sample size. So, small values of C would indicate a good fit while

large values of C would indicate the contrary.

Eq. 6.20 or 6.21 may be used to test the hypothesis of good fit of a given model
to the empirical frequency distribution of a sample by comparing the computed test statistic C with

o M : i ; T
the tabulated Chi-square statistic x 1—ea, (m=T-p) in which @ is the significance level and (m-1-p)

is the number of degrees of freedom. The, the hypothesis of good fit is accepted at the y=1—«
probability level if

C< X4 _a (m-1-p)

The critical values x? for different probability levels and degrees of freedom are given In
Appendix VI.
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6.4.2 Kolmogorov-Smirnov Test

This is a distribution free test widely used in statistical hydrology. It is based on the
maximum difference between the cumulative empirical distribution F. (y) and the cumulative
probablity distribution being fitted F, (y; ¢'). Consider the Statistic

N
L) e Ma1x (Fo (v) — Fy: (v 67)) (6.22)
|=

where F. (y;) and F, (y; §') represent the empirical and model cumulative distribution, respectively,
corresponding to the observation value y;, i=1,...... . N which has been arranged in increasing (or
decreasing) order of magnitude, N = Sample size and ¢’ is the parameter sat of the model estimated
from the given sample. In the Kolmogorov-Smirnov test, the empirical CDF F. (y;) is based on
the plotting position i/N (Benjamin and Cornell, 1970) although in practice the plotting positions
i/(N+41) is often used (Yevjevich, 1972).

The goodness of fit test of the selected probability model to the empirical distribution is
accepted if :
D <d, (N)

where d_ (N) is the Kolmogorov-Smirnov statistic corresponding to the sample size N and con-

fidence level Y = 1 — a. The statistic d, (N) is listed in Table 6.1.

TABLE—6.1

Kolmogorov-Smirnov Test Statistic da (N)

Sample Size Significance Level
N 0.20 0.10 0.05 0.01
5 0.45 0.51 0.56 0.67
10 0.32 0.37 0.41 0.49
15 027 0.30 0.34 0.40
20 0.23 0.26 0.29 0.35
25 021 0.24 0.27 0.32
30 0.19 0.22 0.24 0.29
35 0.18 0.20 0.23 0.27
40 0.17 0.19 0.21 0.25
45 0.16 0.18 0.20 0.24
50 0.15 0.17 0.19 0.23
Large N 1.07//N 1.22//N 1.36/+/N 1.63//N
(L-6[7 )




6.4.3 General Commenfs about Chi-square and K.S. Test :

Many hydrologists discourage the use of the chi-square and Kolmogorov-Smirnov tests
when testing hydrologic frequency distributions. The reason for this is the importance of the tails of
hydrologic frequency distribution and the insensitivity of these tests in the tails of the distributions.
The sensitivity of the chi-square test can be improved in the tails of the distribution if classes are
not combined to get an expected frequency of 3 to 5. The disadvantage of this is that a single
observation in a class with a low expectation can result in a chi-square wvalue in excess of the
critical value. This single observation can lead to rejecting the hypothesis.

Neither the chi-square test nor the Kolmogorov-Smirnov test is very powerful in the sense
that the probability of accepting the hypothesis when it is infact false is very high when these tests
are used.

6.4.4 D-Index method

In order to compare the relative fit of different distributions to hydrological data, USWRC
(United States Water Resources Council) has suggested the following procedure :

The probability of exceedance of observation is estimated by Weibull plotting position
formula.

P(X>x)=m/(N+1) (6.23)
where, P is the probability of exceedance

m is the rank of the flood values arranged in the descending order of magnitude, and

N is the number of observations.

Flood peaks are estimated for a specified series of recurrence intervals viz., 2, 5, 10, 15,
20 and 30 years. For each recurrence interval, the historical value is obtained by interpolation in
terms of recurrence interval between the two floods of record of adjacent recurrence intervals. The
discharge corrresponding to the same recurrence interval is also calculated on the basis of fitted
distribution. The D index for comparison purposes of the fit of different distributions is given as

6
— = ABS (X;, observed — X;, computed) (6.24)
i=1

D-Index =

| =

in which, X is the mean of the observed series.

Often instead of using flood values corresponding to recurrence intervals of 2, 5, 10, 15,
20 and 30 years, highest six observations/flood values are used, as the aim is to see the fit of the
distribution in the upper tail region. From the studies carried out in NIH, it has been found appro-
priate to use largest six observations and the corresponding values based on the fitted distribution
in calculating the D~Index.

The distribution which gives minimum D index is considered as the best fit distribution.
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6.5 SKEWNESS TEST OF NORMALITY

The test is based on the fact that normally distributed variables have zero skewness. If the
sample comes from a normal distribution, the coefficient of skewness ¢; is approximately normally
distributed with mean zero and variance equal to 6/N (Snedecor and cochran, 1967). Therefore,
the corresponding tolerence limits may be determined by :

6 ST (6.25)
U o

where u1 /2 is the 1—a/2 quantile of the standard normal distribution. If, for a given sample,
)

the coefficient of skewness C; fall within the computed tolerance limits, it is assumed that the
skewness is not significant, and hypothesis of normality is accepted.

Actually the assumption of normality of statistic C; is sufficiently accurate for sample sizes
greater than 150. For smaller sample sizes more accurate results may be obtained by using
tabulated test statistics given in table 6.2. In this case the hypothesis of normality of a given
sample is accepted at the Y = 1—«a confidence level if

c.<g, (N)

Where, g, (N) is the referred table statistic, a function of the significance level « and the sample

size N. Values of this statistic are shown in Table 6.2 for @ = 0.05 and 0.01 and for various values

of N,
TABLE—6.2
Skewness-Coefficient Test Statistic g, (N)
Sample Significance Sample Significance Sample Significance
size level size level size level
N 0.05 001 N 005  0.01 N oo 0.0
_______gfi‘____j—-____;_;———f S DR T A
25 0.711 1.061 70 0.459 0.673 200 0.280 0.403
30 0.662 0.986 80 0.432 0.631 250 0.251 0.360
35 0.621 0.923 90 0.409 0.5696 300 0.230 0.329
40 0.587 0.870 100 0.389 0.567 350 0.213 0.305
45 0.558 0.825 125 0.350 0.508 400 0.200 0.285
50 0.534 0'787 150 0.321 0.464 450 0.188 0.269
55 0.492 0.723 175 0.298 0.430 500 0.179 0.255

( L-6/9)




References :

10.

Anderson, R.L. (1942), ‘Distribution of the Serial Correlation Coefficient’, Ann. Math. Stati.
Vol. 13, No. 1.

Benjamin, J.R. and Cornell, C.A. (1970), ‘Probability, Statistics and Decision for Civil
Engineers’, McGraw Hill, New York.

Clarke, R.T. (1973), ‘Mathematical Models in Hydrology*, Irrigation and Drainage Paper 19,
FAO, Rome.

Haan, C.T. (1977), ‘Statistical Methods in Hydrology’, lowa State University Press, Ames, lowa.

Keeping, E.S. (1966), ‘Distiibution Free Methods in Statistics’, in Proceedings of Hydrology
Symposium No. 5, McGill University, Canada.

Salas, J.D. (1983), ‘Statistics in Water Resources Engineering’, Lecture Notes, C.S.U., Fort
Collins, U.S.A.

Snedecor, G.W. and Cochran, W.G. (1967), ‘Statistical Methods’, The lowa State University
Press, Ames, lowa.

Walsh, E. (1976), ‘Handbook of Nonparametric Statistics’, Vol. 1, Van Nostrand, New York.

Yevjevich, V. (1972 a), ‘Probability and Statistics in Hydrology’, Water Resources Publications,
Fort Collins, Colorado.

Yevjevich, V. (1972 b), ‘Stochastic Processes in Hydrology’, Water Resources Publication, Fort
Collins, Colorado.

(L-6/10)




	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010

