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Abstract Evaluation of weather forecasting systems and

assessment of existing verification procedures are essential

to achieve desirable seamless rainfall prediction. Prediction

of wet and dry spells is quite useful in agriculture and

hydrology but very few attempts have been made so far to

resolve the issue using numerical model output. Perfor-

mance of five state-of-the-art global atmospheric general

circulation models and their ensemble mean has been

examined in predicting the parameters of wet and dry spells

(WSs/DSs) during monsoon period of 2008–2011 over

seven subzones of the Indian region. The number of WSs

across the region is found to be underestimated, while total

duration and rainfall amount of WSs (DSs) overestimated

(underestimated). Start of the first WS is late and ends of

the last WS early in the model forecast. More uncertainty is

noticed in the prediction of DS rainfall and its duration than

that of the WS. The percentage area of India under wet

conditions (rainfall amount over each grid is more than its

daily mean monsoon rainfall) and rainwater over the wet

area is overestimated by about 59 and 32 %, respectively,

in all models.

Abbreviations

AGCMs Atmospheric global circulation models

AI All India

BSdyn Dynamical Bias Score

CBS Commission for Basic System

CC Correlation coefficient

DIFF Mean difference

DMR Daily mean rainfall

DS Dry spell

ECMWF European Center for Medium Range Weather

Forecasting

ETSdyn Dynamical Equitable Threat Score

FARdyn Dynamical false alarm ratio

GDPFS Global Data Processing and Forecasting

System

GFS Global Forecasting System

IMD India Meteorological Department

JMA Japan Meteorological Agency

MEAN Simple ensemble mean

MME Multimodel ensemble

MAPE Mean absolute percentage error

NMSG NCMRWF merged satellite-gauge dataset

NWP Numerical weather prediction

NCEP National Centers for Environmental

Prediction

NCMRWF National Centre for Medium Range Weather

Forecasting

PAI Percentage area of India

pe Percentage error

PODdyn Dynamical probability of detection

RW Rainwater

SMAPE Symmetric mean absolute percentage error

SZ Subzone

TMPA TRMM Multi-satellite precipitation analysis

TRMM Tropical rainfall measuring mission
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UKMO United Kingdom Meteorological Office

WMO World Meteorological Organization

WS Wet spell

1 Introduction

Reliable Rainfall prediction over tropical monsoonal

region is exceptionally challenging task for the numerical

modeling community. During boreal summer, Indian

region receives maximum of its annual rainfall from the

Asia-Pacific monsoon system. Secondary circulations

(convergence of two or more large-scale flows, meander

and cyclone/depression), local eddies, mid-latitude western

disturbances and thunderstorm activities considerably

affect the monsoon rainfall activities. These factors added

complications in numerical rainfall prediction. Develop-

ments in the forecasting systems and observational net-

works consistently contributed to improve short-to-medium

range weather forecasts (Mishra and Krishnamurti 2007;

Mitra et al. 2011). Nowadays, many leading numerical

weather prediction (NWP) centers across the world pro-

duce and deliver wide array of weather forecast products to

the customers, generating from deterministic and ensemble

NWP models. For scientific testing, upgradation and

maintenance of the operational forecasting models, timely

verification and evaluation of the forecast products is an

imperative process. It helps to improve the individual

model and facilitate comparison between different models.

So the development of operational verification started in

operational weather services of numerous countries (Casati

et al. 2008). The verification process involves investigation

of the properties of the joint distribution of the observations

and the forecasts. The properties are characterized in terms

of the relative frequencies of possible combinations of the

observation-forecast values (Murphy and Winkler 1987).

The nature and strength of the association between the

forecast and observation are reflected in terms of skill

scores. Based upon the method of analysis, the forecast can

be deterministic, probabilistic or qualitative and assess

accordingly by various verification procedures. For exam-

ple, deterministic forecast are verified using visual,

dichotomous, multi-category, continuous and spatial veri-

fication methods for assessment of nine different aspects of

the qualities of forecasts (Murphy 1990, 1993). The fore-

casting centers are always looking for application of

appropriate methods to measure forecast performance,

analyze systematic forecast behavior and diagnose model

errors. To provide consistent verification information on

the NWP products by different forecasting centers, the

World Meteorological Organization (WMO) led Centre for

Deterministic NWP Verification defined CBS (Commis-

sion for Basic System) standard verification procedures.

The standard set of CBS verification scores (categorical

and continuous) are routinely produced and exchanged

between the participating WMO Global Data Processing

and Forecasting System (GDPFS) centers for the benefit of

operational forecasters and to help the centers compare and

improve their forecasts (WMO 2010, 2011).

Verification of quantitative precipitation forecast has

been done over wide range of scales and for different

regions across the globe (Mcbride and Ebert 2000; Tiziana

et al. 2002; Kang et al. 2002; Accadia et al. 2005; Basu

2005; Mandal et al. 2007; Mohanty and Mahapatra 2008;

Mitra et al. 2011 and many others). All studies have doc-

umented that the models have good skills in forecasting

low-intensity rain events than heavy events but mostly the

models overestimated the precipitation amounts. Roy

Bhowmik and Durai (2010) have shown the superiority of

the MME (multimodel ensembles) to individual NWP

model for a district level forecast across India. The dif-

ferent verification studies indicated that the NWP model

skills are dependent upon the region and rainfall threshold

used in verification procedures.

Presently, atmospheric general circulation models

(AGCMs) and coupled models provide rainfall forecasts on

various spatial scales (country, state, subdivision, district

and station) and temporal scales (from season to hour). But

the models do not forecast the spatio-temporal features of

the rainfall occurrences such as wet and dry spells (WSs

and DSs), which are the genuine demand of agriculture,

water resources and other water-related sectors. Majority of

verification efforts have calculated the skill scores for

location-specific precipitation forecast of various intensi-

ties. Limited attempts have been made to check model

skills for the prediction of spatio-temporal characteristics

of the rain events. Keeping in view requirement of different

water-related sectors, it is felt imperative to evaluate per-

formance of the operational AGCMs in simulating and

predicting the wet and dry spells of the monsoonal period.

Attempts have been made to evaluate simulation and pre-

diction of wet/dry spells using Markov chain models and

other statistical techniques (Chang et al. 1984; Moon et al.

1994; Sharma 1996; Wantuch et al. 2000; Mathuguma and

Peiris 2011). Few attempted it by the NWP models. Huth

et al. (2000) have studied characteristics of dry spells in

area-averaged and station rainfall series of the Czech

Republic. They found simulated dry spells are too long and

annual cycle of their occurrences distorted. Higgins et al.

(2008) examined the seasonal cycle of number of wet and

dry spells in Climate Forecast System over the USA.

Krishnamurti et al. (1990, 1992, 1995) have studied wet

and dry spells in 1-month forecast of global models over

India, China and Australia. respectively, and found rapid

drop in skill during first 5 days of integration. They noticed

slow rise in amplitude of high-frequency motions that
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contributed to error growth for the low-frequency modes

and deterioration of the month forecasts. Large errors in

rainfall spatio-temporal feature in short- and medium-range

forecasts would lead to serious errors in extended range

and seasonal forecasts. The high-resolution (horizontal and

vertical) atmospheric global models that are used for

operational weather forecasts can resolve high-frequency

components more efficiently and lead to much faster

growth of errors in forecast of the low-frequency modes.

Start, duration and rainfall amount of WSs and DSs are

useful for rain-fed agriculture. In a generalized way, fore-

casting of persistent heavy rainfall that generates ample

runoff is helpful for flood forecasting, disaster warning and

water management purposes. Large-scale, long-period

heavy rain events are important to understand complex

hydrological processes. Present study deals with the errors

and uncertainties in the simulation of wet and dry spell

sequences and their eight characteristics parameters. The

major objectives are as follows.

1. To study characteristics of wet and dry spells in

numerical model outputs for seven subzones of Indian

region;

2. To verify the skills of NWP models in predicting

specified rainfall amounts using newly defined dynam-

ical skill scores; and

3. To understand errors in predicting the area of the

country under wet condition and rainwater over the

area.

2 Observed and model forecast data

National Center for Medium Range Weather Forecasting

(NCMRWF) merged satellite-gauge (NMSG) daily rainfall

product at 1� X 1� latitude–longitude resolution during

1998–2011 for the Indian monsoon region (0�–40�N and

60�–100�E) is used as the observed rainfall dataset in this

study. The NMSG algorithm uses three hourly Tropical

Rainfall Measuring Mission (TRMM), Multi-satellite

Precipitation Analysis (TMPA) estimates accumulated for

24 h (daily) over land and ocean as the first guess (Mitra

et al. 2009). Using successive-correction method, the

mean biases in the TMPA estimates are corrected for each

grid using India Meteorological Department (IMD) rain-

gauge values over land-only areas. The details of the

weights and interpolations are described in more details in

Mitra et al. (2003). The NMSG data product has been

checked qualitatively as well as quantitatively for its

ability to capture large-scale monsoon rainfall pattern over

and across India, Arabian Sea and Bay of Bengal (Mitra

et al. 2009).

Medium range (1–5-day) rainfall forecast products from

five state-of-the-art operational global forecasting models

(European Centre for Medium Range Weather Forecasting

(ECMWF), United Kingdom Meteorological Office

(UKMO), National Center for Environmental Prediction-

Global Forecasting System (NCEP-GFS), Japan Meteoro-

logical Agency (JMA) and National Centre for Medium

Range Weather Forecasting (NCMRWF-GFS) during the

period 2008–2011 are used. The NCMRWF global assim-

ilation-forecast system is an adapted version of the NCEP-

GFS system implemented in year 2007. The NCEP-GFS

model data are from runs at 35 km horizontal grid and 64

vertical layers, the UKMO model data at 40 km horizontal

grid and 50 vertical layers, the JMA model data at 40 km

horizontal grid and 40 vertical layers and the NCMRWF-

GFS model data at 50 km horizontal grid and 64 vertical

layers. The model data have been interpolated on uniform

1-degree latitude–longitude grid cells to represent large-

scale features of the monsoon rainfall. The model simula-

tion was at finer resolution than the daily rainfall consid-

ered here in the analysis. In addition, a Simple (arithmetic)

Ensemble Mean (MEAN) of all the five AGCMs forecasts

is also used. Earlier works (Krishnamurthi et al. 1999,

2000; Mishra and Krishnamurti 2007) showed the con-

current use of various atmospheric global general circula-

tion models for taking simple ensemble mean of the model

outputs or by creating multimodel ensemble (MME) can

reduce errors and increase skills of the forecasts.

Fig. 1 The seven subzones of Indian subcontinent and distribution of

daily mean monsoon rainfall (DMR)
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3 The division of the country into seven subzones

India covers large geographical area (*3.3 million km2)

between meridians of 678–1008E and parallels of 78–378N.

For effective use of model forecasts in agricultural and

hydrological operations, the daily rainfall is considered

over seven subzones (SZs) of the country. Topography,

physiographic features, drainage pattern, annual/monsoon

rainfall distribution, monsoon normal onset and withdrawal

dates and rain-producing weather systems are considered

qualitatively in this division (Fig. 1).

(i) Extreme North India (SZ-1: 298–378N; 738–
828E): Rains occur mainly due to activation of

line-cum-eddy convergences, troughs in the mid-

latitude upper and mid-troposphere westerlies and

the western disturbances in the lower troposphere.

(ii) Northwest India (SZ-2: 218–298N; 698–758E):

Gets rainfall mostly from monsoon flows. Cyclo-

nic circulation in mid-tropospheric level cause

intense rain spells in the area.

(iii) Central India and Indo-Gangetic Plains (SZ-3:

218–298N; 758–888E): Rains occur from line-

cum-meander convergence of monsoon flow with

embedded small-scale eddies and low-pressure

systems (or monsoon trough). Troughs in the mid-

latitude upper and mid-tropospheric westerlies

facilitate tropical–extratropical interactions in a

complex manner and affect rainfall activities over

the Indo-Gangetic plains. The synoptic systems

that develop over the head Bay of Bengal travel

north-northwestward along with large-scale mon-

soon flow contribute to intensification of the

monsoon flows and rainfall activities.

(iv) Northeast India (SZ-4: 248–298N; 918–998E):

Heavy rains frequently occur due to moist con-

vergence caused by westward turning of the

monsoon flows and orographic effect. Cherrapunji

and Mawsynram stations in this area are among

the highest rainfall recording stations

([10,000 mm) in the world.

(v) West Coast of India (SZ-5: 88–218N; 728–778E):

A trough frequently develop in the monsoon flow

off the west coast of Indian peninsula which

produces longer period heavy rain spells. Some of

the stations record 5,000–7,000 mm of rainfall

during monsoon.

(vi) Eastern Peninsula (SZ-6: 88–218N; 778–848E):

Rainfall activities are weak due to rain-shadow

effect. Rains occur from extended north–south

trough in the low-level westerly monsoon flows

along the East Coast and/or intensification of

easterly waves of the northeast trades.

(vii) Andaman Nicobar Islands (SZ-7: 68–148N; 928–
948E): Rainfall occur from circular convergence

that develop due to convergence of low-level

return flows from the deep subtropical highs over

North Pacific, South Pacific, Australia and

Mascarene.

4 Results and discussion

4.1 Characteristics of wet and dry spells in NWP

model output

Time distribution of monsoon rainfall is characterized by

wet and dry spells. Frequency, intensity, areal spread and

duration of the spells exhibit large variations. Some areas

of the country (western and eastern Himalayas, West

Coast, extreme southern peninsula and bay islands) receive

considerable rains during pre- and post-monsoon periods.

Normally, during wet spell persistent rainfall occurs over

relatively large areas, while it is subdued and isolated

during dry spell. Singh and Ranade (2010) have studied

Table 1 Mean of important parameters of wet and dry spells of monsoon period over All India (AI) and seven subzones of Indian region during

1998–2011

Subzones Total no.

of WSs

Total duration

of WSs (days)

Total duration

of DSs (days)

Total rainfall

of WSs (mm)

Total rainfall

of DSs (mm)

Start of

first WS

End of

last WS

Seasonal

rainfall

(mm)

% Contribution

of WSs rainfall

to seasonal total

SZ-1 4.6 53.1 27.3 313.1 57.2 23-Jun 10-Sep 434.0 70.1

SZ-2 4.1 42.6 38.4 417.2 46.3 17-Jun 4-Sep 499.6 81.7

SZ-3 5.3 63.3 29.1 702.4 142.6 16-Jun 15-Sep 937.2 74.4

SZ-4 5.9 54.7 43.4 813.2 293.5 9-Jun 14-Sep 1,252.9 63.6

SZ-5 4.6 50.7 38.2 1,039.3 250.8 8-Jun 5-Sep 1,482.2 68.7

SZ-6 5.2 50.0 45.4 462.6 138.2 14-Jun 16-Sep 684.0 64.5

SZ-7 6.9 50.4 55.9 725.9 217.1 7-Jun 20-Sep 1,059.5 68.0

AI 3.9 60.9 28.7 494.1 145.1 9-Jun 5-Sept 783.3 62.2
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Fig. 2 The NMSG observed and model simulated wet/dry spell sequences over the seven subzones during 2008–2011
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climatological and fluctuation features of 40 parameters of

wet and dry spells and their extremes over 19 subregions of

India during 1951–2007. They have applied local rainfall

climatology as the rainfall threshold for the delineation of

wet/dry spells. According to their studies, on an average,

number of WSs (DSs) varies from 11 (10) over extreme

south peninsula to 4 (3) over north-west India. Total

duration of WSs (DSs) decreases from 101 (173) to 45 (29)

days, and the duration of individual WS (DS) from 12 (18)

to 7 (11) days. Across the country, the rainfall associated

with wet and dry spells contributes 68 and 17 % to the

annual total, respectively. A tendency was noticed for the

first WS to start about 6 days earlier across the country and

the last WS to end about 2 days earlier, giving rise to

longer duration of rainfall activities by approximately

4 days, however, a spatially coherent robust long-term

trend was not seen in any of the parameters of spells. With

the continuation of this exhaustive study of WSs/DSs, an

attempt has been made to study them using current gen-

eration NWP model outputs for their reliable prediction.

A wet spell is defined as continuous period with daily

rainfall more than daily mean monsoon rainfall (DMR) of

the area under consideration (Singh and Ranade 2010). The

criterion has been applied on daily NMSG 1-degree grid-

ded rainfall of June through September to understand fea-

tures of wet and dry spells over the seven subzones during

1998–2011. The DMR used is the daily mean rainfall of the

fixed monsoon period across the country (June to Sep-

tember) based upon the data 1998–2011 (Fig. 1). It varies

from *2 mm (SZ-2) to *40 mm (SZ-4 and SZ-5).

Yearwise area-averaged daily rainfall sequence of each

subzone during monsoon period has been prepared by

simple arithmetic mean of NMSG data of that particular

subzone. The computational steps to demarcate yearwise

wet and dry spells in the area-averaged rainfall sequence

are as follows (Singh and Ranade 2010).

(i) Normalize daily monsoon rainfall sequence by

diving it with DMR of respective subzone

(ii) Apply nine-point Gaussian low-pass filter

(iii) Identify continuous period in the filtered

sequence with the value greater than or equal to

1.0 as wet spell (WS) and less than 1.0 as dry

spell (DS).

Features of the following eight parameters of actual wet

and dry spells have been described.

(i) Number of wet spells

(ii) Total duration of wet spells

(iii) Total duration of dry spells

cFig. 3 Spatial distribution of the dynamical probability of detection

in forecasting the rainfall amount equivalent to DMR in day-1, day-3

and day-5 by the AGCMs
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(iv) Total rainfall of wet spells

(v) Total rainfall of dry spells

(vi) Start of the first wet spell

(vii) End of last wet spell and

(viii) Percentage contribution of wet spells rainfall to

the seasonal total

The mean of the parameters of the wet and dry spells for

seven subzones and All India (AI) during 1998–2011 is

given in Table 1. For the country as whole, 4 WSs (3 DSs)

occurs with the duration of 60.9 days (28.7 days) and total

rainfall of 494.1 mm (145.1 mm). The first WS started

around 9th June and ends around on 5th September by

contributing 62.2 % to the seasonal total (783.3 mm). On

subzonal scale, number of WSs varies from four over the

SZ-2 to about seven over the SZ-7. Total duration of the

WSs is 42.6 days (minimum) over the SZ-2 and the

63.3 days (maximum) over the SZ-3, while that of DSs

from 29.1 days over the SZ-3 to 55.9 days over the SZ-7.

Total rainfall of the WSs is highest (1,029.3 mm) over the

SZ-5 and lowest (313.1 mm) over the SZ-1. Contribution

of the DSs is lowest (46.3 mm) over the SZ-2 and highest

(293.5 mm) over the SZ-4. The start of the first monsoonal

WS is the earliest (8 June) over the SZ-5 and latest (23

June) over the SZ-4. The last WS ends earliest (4 Sep-

tember) from the SZ-2 and latest (20 September) from the

SZ-7. The start and end dates of the WS are well matched

with the normal summer monsoon onset and withdrawal,

respectively, across Indian region. The percentage contri-

bution of the WSs to the seasonal total varies from 63.6 %

(SZ-4) to 81.7 % (SZ-2).

The objective criterion with the same DMR

(1998–2011) as threshold has been applied to identify wet

and dry spells in the forecasted rainfall of day-1, day-3 and

day-5 lead times by the five models during 2008–2011.

Figure 2 presents schematic of yearwise wet and dry spells

of MEAN forecast of five models for day-1 and day-5 lead

times over seven subzones along with their observed spells.

In the schematic, an arbitrary value 0.5 is assigned for each

day of the dry spell and 1.5 for the wet spell. The wet and

dry spells forecasted by the individual models matched

qualitatively with the actual pattern over the different

subzones. However, the MEAN wet and dry spells fore-

casted by the five models showed a satisfactory match with

the observed pattern (Fig. 2). Error in the parameter of the

forecasted MEAN wet and dry spells has been examined by

calculating symmetric mean absolute percentage error

(SMAPE) which is based upon the formula of mean

absolute percentage error (MAPE).

MAPE ¼ 1

n
P

PEj j ; in which PE ¼ F �Oð Þ
O

� 100 ð1Þ

where F is forecasted value, O observed value and n

number of observations. In SMAPE, the percentage error

(PE) is calculated differently.

SMAPE ¼ 1=n
X

PEj j; in which PE ¼ ðF � OÞ
ðFþO

2
Þ � 100

ð2Þ

This measure is adopted because it is scale-independent.

Major disadvantage of equation (2) is that the PE and the

MAPE are infinite or undefined for O = 0. In addition,

these measures have only positive values and no upper

binds, and the PEs possess highly right-skewed asymmetry

(Smith and Sincich 1988). However, the symmetric MAPE

(SMAPE) can deal with some of the limitations of the

MAPE (Makridakis 1993). The SMAPE has an upper limit

of 200 % providing a wide range to judge the level of

accuracy and not severely influenced by extreme values.

Further, it corrects the computational asymmetry of the PE.

During 2008–2011, on an average four wet spells (three

intervening dry spells) occurred over the country with total

duration 70 days (31.3 days) and total rainfall 564.4 mm

(157.6 mm). The first wet spell was started on 5th June and

ended around 13th September. The WSs contributed 69 %

to total monsoon rainfall of 807.9 mm. In day-1 forecast,

only two WSs occurred over the country with total duration

of 98.8 days and one DS of 24 days. The WS started on 4th

June and ended on 16th September. The total rainfall of the

WSs is 894.1 mm which contributed 87.8 % to the mon-

soon total rainfall of 1,016 mm (Table 2). A brief account

of the errors in selected parameters of the MEAN wet and

dry spells forecasted by the five models for day-1, day-3

and day-5 lead time over the seven Indian subzones is in

order (Table 2).

• Number of WSs: Number of WSs in the day-1 forecast

varies from two over the SZ-3 to five over the SZ-5.

The average SMAPE for the seven subzones for day-1

and day-5 forecast is 40 % with lowest error for the SZ-

1 (*16.7 %) and highest for the SZ-3 (*2.6 %). The

number of wet spells is underestimated in the SZ-3 and

the SZ-4. Overall, number of wet spells is often under

forecasted across the country.

• Total duration of WSs: Total duration of WSs in day-1

forecast is shortest (54.5 days) over the SZ-2 and

longest (89.3 days) over the SZ-4. The average SMAPE

for the country for day-1 and day-5 forecasts is 27.9 %

with lowest error (*11.2 %) for the SZ-2 and highest

(*60.8 %) for the SZ-4. The duration is longer in day-

1 forecasts but shorter in day-3 forecasts.

b Fig. 4 Spatial distribution of the dynamical false alarm ratio in

forecasting the rainfall amount equivalent to DMR in day-1, day-3

and day-5 forecasts
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• Total duration of DSs: Total duration of DSs is shortest

(6.5 days) over the SZ-3 and longest (42 days) over the

SZ-5. The average SMAPE for the country for day-1

and day-5 forecasts is 69.1 %, least error (*16.6 %) is

for the SZ-5 and most (*117.7 %) for the SZ-3. Total

duration of DSs is shorter in day-1 forecasts but longer

in day-3 forecasts.

• Total rainfall of WSs: Total rainfall of WSs in day-1

forecasts varies from 393 mm (SZ-1) to 1,347 mm (SZ-

4). The average SMAPE is about 32.9 %. The least

error is *12.2 % for the SZ-1 and most *67.2 % for

the SZ-4. The total rainfall is lower in day-1 forecasts

(except over subzones SZ-5 and SZ-2) and higher in

day-3 forecasts.

• Total rainfall of DSs: Total rainfall of DSs for day-1

forecasts is highest 361 mm for the SZ-5 and lowest

35.7 mm for the SZ-3. The average SMAPE is 67.5 %

with least error (*24.7 %) for the SZ-5 and highest

error (*111.2 %) for the SZ-4. The total rainfall is

lower in day-1 forecasts over most of the subzones and

higher in day-3 forecasts.

• Start of first WS: In day-1 forecasts, start of first wet

spell is earliest (4 June) over the SZ-4, the SZ-6 and the

SZ-7 and latest (19 June) over the SZ-3. The average

error in day-1 to day-5 forecasts is 2.2 % with least

error (*0.4 %) over the SZ-3 and highest (* 5.3 %)

over the SZ-1. Start of the first WS is marginally late in

day-1 forecasts and early in day-3 and day-5 forecasts.

• End of last WS: End of last wet spell is earliest (10

September) from the SZ-5 and latest (22 September)

from the SZ-7 in day-1 forecasts. The average error is

1.0 %, the minimum is *0.3 % for the SZ-3 and the

SZ-2 and maximum *2.1 % for the SZ-6. End of last

WS is normally earlier in day-1 forecasts but later in

day-3 forecasts.

• Percentage contribution of WSs to seasonal total:

Monsoon total rainfall in day-1 forecasts varies from

501.5 mm (SZ-1) to 1,456.6 mm (SZ-5). The average

SMAPE noticed in day-1 to day-5 forecasts is 18.2 %

with least error (*9.6 %) for the SZ-1 and most

(*32.9 %) for the SZ-4. Seasonal rainfall is lower in

day-1 forecasts (except SZ-5) and higher in day-3 and

day-5 forecasts. Percentage contribution of the WS

rainfall to seasonal total in day-1 forecasts is highest

(89.6 %) over the SZ-3 and lowest (63 %) over the SZ-

5. The average error (SMAPE) in the percentage

contribution is 16.6 % error. It is least (*5.8 %) for the

SZ-2 and highest (*36.4 %) for the SZ-4. The

percentage contribution is higher in day-1 forecasts

for most of the subzones and lower in day-3 forecasts.

On subzonal scale, start of first WS and end of last WS

is better forecasted for the SZ-3 (central Indo-Gangetic

plains). Uncertainty is large in forecast of total duration of

WSs over the SZ-4 (northeast India) and that of DSs over

the SZ-3. Forecast of total rainfall during WSs and that

during DSs and total monsoon rainfall is more uncertain

over the SZ-4 than the other subzones. More uncertainty is

seen in forecast of rainfall and duration of DSs than those

of WSs. Uncertainty is least in forecast of start of first WS

and end of last WS and most number of WSs. Further,

forecast of rainfall during WS or DS is more uncertain than

total rainfall during whole season.

4.2 Prediction of area under wet condition

and rainwater

It is well known that skills of NWP models drastically

reduce higher rainfall amounts. In the verification of NWP

forecasts, generally few arbitrary rainfall amounts are

uniformly used across entire area of interest as threshold.

Significance of any rainfall amount varies drastically

across different climatic regions (desert, arid, semiarid, dry

subhumid, moist subhumid and perhumid). Rainfall over

particular area depends upon type, intensity and frequency

of weather systems (line convergence, trough-meander,

cyclone, eddies, thunderstorm etc.) given the role of

orography, ocean, continent and Coriolis force. Numerical

models are expected to take into account these factors.

Local rainfall climatology as DMR values (Ranade and

Singh 2014) has been used to verify forecast of the area of

country under wet condition and rainwater over it by five-

selected NWP models and their ensemble MEAN for day-

1, day-3 and day-5 lead times. The DMR for 1-degree grid

cells is based on observed NMSG dataset for the period

1998–2011.

During monsoon period (June through September) of

2008–2011, a grid cell is identified under wet condition if

actual rainfall equaled or exceeded its DMR. Well-known

dichotomous skill scores such as Bias Score (BS), Proba-

bility of Detection (POD), False Alarm Ratio (FAR) and

Equitable Threat Score (ETS) have been calculated using

spatially variable rainfall threshold (DMR) rather than

fixed rainfall amount. For the sake of differentiation, the

skill scores are referred to as dynamic and denoted as

BSdyn, PODdyn, FARdyn and ETSdyn. The spatial distribu-

tion of the skill scores suggests mismatch between

observed and forecasted daily rainfall equal to the DMR.

Spatial distribution of PODdyn and FARdyn are as shown in

Figs. 3, 4 respectively, for day-1, day-3 and day-5 forecasts

by the five NWP models and their MEAN. These scores

determine the proportion of observed ‘yes’ events fore-

casted correctly and proportion of forecasted events that

failed, respectively. They complement each other and

b Fig. 5 Spatial distribution of the dynamical ETS score in forecasting

significant amount of rainfall in day-1, day-3 and day-5 forecasts
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therefore considered simultaneously. For perfect predic-

tion, the PODdyn should be 1.0 and the FARdyn zero. The

PODdyn for the five models is higher ([0.8) over oceanic

areas and 0.6–0.8 over the land areas. Most of the models

raise false alarms ([0.4) over most part of the country, but

lesser FARdyn (\0.2) is seen over the West Coast. The

PODdyn decreases and the FARdyn increases with increase

in the lead time indicating poorer performance of the

models in correctly predicting observed yes/no events for

longer lead time. The skill is more for the MEAN forecast

than the individual models indicating reduction in

uncertainties in prediction of observed ‘yes’ events and

false alarms in the ensemble MEAN. The ETSdyn repre-

sents percentage improvement over reference forecast

(here threat score). It is shown in Fig. 5 calculated for the

five models and their MEAN. The variation in ETSdyn

across the country is between 0.2 and 0.4. However, it is

impractical to assess skill of the forecasting systems with

the ETS score alone but in conjunction with the bias score.

The forecasts with larger bias tend to have higher ETS

(Hamill 1999; Mesinger 2008). We have calculated the

BSdyn (Fig. 6) in order to correctly judge the performances

of the models. The BSdyn represents number of events

correctly predicted from the number of events actually

realized, and it is a measure of relative frequency of rainfall

forecasts and observations. Its value greater than 1.0

b Fig. 6 Spatial distribution of the Dynamical Bias Score in forecast-

ing the significant amount of rainfall in day-1, day-3 and day-5

forecasts

Fig. 7 Daily variation in PAI calculated from the NMSG observed precipitation and day-1, day-3 and day-5 forecasts of the five AGCMs and the

MEAN during 2008–2011
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indicates over forecast by the model and lowers than 1.0

under forecast. Most of the models overpredicted the

rainfall frequency particularly over extreme north and

northeast India, Myanmar and major part of the oceanic

region, but a few models under predicted over Pakistan,

Afghanistan region. Forecasted frequency of significant

Table 3 The difference (DIFF) between forecasted and observed percentage area of India under wet condition (PAI) by different models; and

their MEAN, the mean absolute percentage error (MAPE) and the correlation between observed and forecasted PAI during 2008–2011

Models Day-1 forecast Day-3 forecast Day-5 forecast

DIFF (%) MAPE (%) CC DIFF (%) MAPE (%) CC DIFF (%) MAPE (%) CC

ECMWF 12.01 47.75 0.92 12.26 49.72 0.87 13.24 54.20 0.82

NCEP-GFS 10.29 43.66 0.86 7.74 34.96 0.79 7.75 36.85 0.71

JMA 19.65 78.03 0.86 13.74 55.34 0.83 12.44 51.93 0.76

NCMRWF-GFS 14.46 59.41 0.83 13.64 56.91 0.77 13.62 58.77 0.66

UKMO 16.51 65.98 0.88 15.39 62.94 0.83 14.11 59.07 0.78

MEAN 21.28 83.18 0.90 20.11 79.14 0.85 20.70 82.53 0.80

Fig. 8 Daily variation in RW calculated from the NMSG observed precipitation and day-1, day-3 and day-5 forecasts of the five AGCMs and

MEAN during 2008–2011
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Table 4 The difference (DIFF)

between forecasted and

observed rainwater (RW) by the

models; and their MEAN, the

mean absolute percentage error

(MAPE) and the correlation

between observed and

forecasted RW during

2008–2011

Models Day-1 forecast Day-3 forecast Day-5 forecast

DIFF

(bcm)

MAPE

(%)

CC DIFF

(bcm)

MAPE

(%)

CC DIFF

(bcm)

MAPE

(%)

CC

ECMWF 6.92 20.94 0.91 5.23 22.36 0.85 7.90 27.81 0.79

NCEP-GFS 17.37 39.72 0.87 11.83 34.04 0.79 12.43 37.42 0.72

JMA 12.33 28.76 0.77 5.25 20.93 0.82 9.02 25.70 0.69

NCMRWF-GFS 20.72 45.73 0.86 18.24 45.65 0.75 16.84 47.49 0.62

UKMO 14.52 33.28 0.90 10.77 32.17 0.80 7.41 30.76 0.74

MEAN 12.68 28.97 0.91 5.97 24.02 0.85 4.38 25.47 0.78

Fig. 9 The Dynamical Bias

Scores in day-1 forecast

calculated for specified rainfall

thresholds over the seven

subzones

A verification of spatio-temporal monsoon rainfall 57

123



rainfall is in close agreement with observed value over

most part of peninsula and some part of northwest India.

Different models show higher ETSdyn over oceanic areas

(Fig. 5) but simultaneously biases are also higher. In

addition, the NMSG observed rainfall over oceanic regions

are only multi-satellite estimates. In such situation, any

conclusion regarding accuracy of the models in predicting

rainfall over oceanic areas would be ambiguous. For the

ECMWF model, the ETSdyn is higher and the BSdyn is

lower especially over northwest India for all the forecast

lead times. The performance of the ECMWF is better

compared to others. In general, the ETSdyn decreases with

lead time. The skill scores computed above jointly provide

the qualities of the models for rainfall forecast. The

ensemble MEAN showed better skill in the prediction of

significant amount of rainfall than any individual model.

Ranade and Singh (2014) have studied percent area of

India (PAI) under wet condition during 1951–2007 to

understand spatial features of rainfall occurrences over the

country. They documented that, normally each day only

26.3 % (SD = 2.5 %) area of the country occurs under wet

condition with the intensity 26.3 mm/day (SD = 1.2 mm/

day), during the main monsoon wet spell (18 June–16

September). In this study the PAI calculated from

Fig. 10 The dynamical ETS

scores in day-1 forecast

calculated for specified rainfall

thresholds over the seven

subzones
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forecasted rainfall is verified with the observed value

during 2008–2011. Area of the grids with forecasted daily

rainfall greater than or equal to the respective DMR has

been totaled and expressed as percentage of total geo-

graphical area of the country to obtain PAI. The observed

PAI during 2008–2011 varied from 5.3 to 52.3 % with

mean and standard deviation being 27.25 and 7.95 %,

respectively. The forecasted daily PAI by the five models

and their MEAN for day-1, day-3 and day-5 lead times is

considerably higher than the observations (Fig. 7). The

mean absolute percentage error (MAPE) for the difference

(DIFF) between forecast and observation is given in

Table 3. The mean MAPE (2008–2011) is 43.66 to

83.18 % for day-1, 34.96 to 79.14 % for day-3, and 36.85

to 82.53 % day-5 forecasts. The minimum error is for the

NCEP-GFS forecast and maximum for the ensemble

MEAN. The observed and forecasted daily PAI is, how-

ever, highly correlated. The correlation coefficient (CC) is

0.83–0.92 for day-1, 0.77–0.87 for day-3 and 0.66–0.82 for

day-5 forecasts (Table 3), which in general shows decrease

with lead time. The highest CC is for the ECMWF model

and lowest for the NCMRWF-GFS.

Rainwater (RW: rainfall multiplied by the area) is

directly useful information in hydrology and water

resources. During 2008–2011, daily RW over the country

varied from 6.9 bcm (billion cubic meters) to 130.8 bcm

with mean 58.77 bcm and standard deviation 22.2 bcm.

The forecasted RW is higher in all the cases compared with

observation (Fig. 8). The mean difference between forecast

and observation and the MAPE is given in Table 4. The

mean MAPE is from 20.94 to 45.73 % for day-1, 20.93 to

45.65 % for day-3 and 25.47 to 47.49 % for day-5 fore-

casts. Least error is for the ECMWF model and most for

the NCMRWF-GFS. However, the forecasted and observed

daily RW is highly correlated, the CC is 0.86–0.91 for day-

1, 0.75–0.85 for day-3 and 0.62–0.79 for day-5 forecast

(Table 4). The highest CC is for the ECMWF and lowest

the NCMRWF-GFS model. It seems overprediction of RW

is essentially due to overprediction of area of the country

under wet condition. Though moderate and heavy rainfall

are under predicted by the models (Ebert and McBride

2000; Mandal et al. 2007; Roy Bhowmik and Durai 2010),

light rains are frequently predicted over larger dry areas of

the country.

4.3 Sensitivity to rainfall threshold

Heavy precipitation events can affect model performances

drastically. This is demonstrated by calculating skill scores

for a range of rainfall thresholds over the seven subzones.

The standard statistical skill scores especially defined for

the areal coverage (Anthes 1983; Schaefer 1990) analogous

to that defined for precipitation amount are used. The

rainfall thresholds considered are of multiples of the DMR

of the individual grids. The BSdyn is the ratio of forecasted

area to observed area for specified rainfall threshold. The

ETSdyn measures the skill in predicting the area with

specified rainfall amount to a random (no skill) control

forecast. The BSdyn and ETSdyn for variable rainfall

threshold in day-1 forecast over seven subzones are shown

in Figs. 9, 10 respectively. The biases are larger for higher

rainfall intensities for all the subzones. In general the

models have a tendency to overpredict the rainfall fre-

quency for higher rainfall thresholds. Overprediction is

higher for NCEP-GFS especially for higher rainfall inten-

sities (more than 15 times of DMR) compared with other

models. The ETSdyn scores of the models drastically reduce

and become zero for higher thresholds (more than seven

times of DMR). The models show similar variations in the

ETSdyn scores with change in rainfall threshold. The scores

decrease gradually for day-3 and day-5 compared with day-

1 forecasts (figures are not shown). For lower rainfall

thresholds, bias scores of different models are analogous

compared with that of higher rainfall thresholds. Thus, the

models can be more accurate at lower rainfall thresholds.

The ETSdyn is higher for the ECMWF model and the

MEAN followed by the JMA and the UKMO models for

forecasts of different lead times.

The AGCMs are developed independently using differ-

ent assimilation systems and physical parameterization

schemes. But uncertainties in representing the dry and wet

spells and other spatio-temporal features of rainfall vari-

ability are comparable to the models. Therefore, it is rather

difficult to attribute the errors and inaccuracies to any

specific physical process or data assimilation technique.

Since precipitation is computed in the models from the

atmospheric water vapor, adequate modeling of different

components of water cycle is an essential in order to

improve the results. Incorporation of proper coupling

scheme for land-surface models is an important require-

ment. Cumulus convection plays a central role in most of

the interactions between physical processes (dynamical

processes, hydrological processes, radiation and chemical

processes, boundary layer processes etc.). Krishnamurti

et al. (2007, 2008) have attempted numerous cloud radia-

tive transfer algorithm and cumulus parameterization

schemes in different models in order to assess the best

algorithm. They found large systematic errors in all

schemes. This occurs not only due to the scheme itself but

because of interaction of the scheme with the model

structure. In addition to parameterization of physical pro-

cesses, Arakawa (2004) suggested statistical behavior of

small-scale processes to be formulated in order to under-

stand large-scale phenomenon. Day to day fluctuations of

rainfall seem to depend on interaction of cloud processes

with the large-scale flows, but predictability of intra-
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seasonal components are part of large-scale low-frequency

oscillations.

5 Conclusions

The medium rainfall forecasts (1- to 5-day) during

2008–2011 by five AGCMs and their ensemble MEAN

have compared against the TRMM-gauge-merged data to

understand skills of models in forecasting parameters of

wet and dry spells, area under wet condition and rainwater

over and across the Indian region. The main findings of the

study are as follows.

1. During 1998–2011, on an average four wet spells

(three intervening dry spells) with duration *61 days

(*29 days) with total rainfall 494.1 mm (145.1 mm)

occurred over the country. The first wet spell started on

9 June and ended around 5 September. The wet spells

contributed 62.2 % monsoon total rainfall (783.3 mm).

2. Number of wet spells is under predicted (40 % less) by

MEAN forecast of five models. While start of the first

WS is marginally late and end of the last WS

marginally early in day-1 forecasts while opposite is

true in day-3 and day-5 forecasts. The start of the first

WS and end of the last WS are better simulated over

the Central Indo-gangetic plains (SZ-3).

3. Total duration and total rainfall of WSs (DSs) and

seasonal rainfall are overestimated (underestimated) in

day-1 forecasts but opposite situation found in day-3

forecasts. Uncertainty is larger in the prediction of the

DS rainfall and its duration compared with the WS

rainfall and its duration. The percentage contribution

of WSs rainfall to the seasonal total is predicted by

models with the mean error of 16.6 %.

4. The ensemble MEAN shows better skill in the

prediction of rainfall amount equivalent to the respec-

tive area (grid) DMR.

5. The observed daily PAI under wet condition during

2008–2011 is 27.25 %. The forecasted PAI by the

different models is considerably higher (*59 %). The

error is least in the NCEP-GFS forecasts and most in

the ensemble MEAN. However, the observed PAI

shows high correlation of 0.86 with corresponding day-

1 forecasts that of 0.82 with corresponding day-3

forecasts and that of 0.76 with corresponding day-5

forecasts. The CC deteriorates with lead time.

6. The observed daily mean RW (2008–2011) over the

area of the country under wet condition is 58.77 bcm.

The forecasted RW by different models is considerably

higher (*32 %). The error is least in ECMWF

forecasts and most in NCMRWF-GFS. However,

the correlation coefficient between observed and

forecasted RW for day-1 is 0.87, day-3 0.81 and day-

5 CC = 0.72.

7. Most of the models show tendency to overpredict

rainfall frequency for higher thresholds. The skill of

different models drastically reduces and becomes

negligible with increase in rainfall threshold. The

ECMWF and ensemble MEAN show higher ETSdyn

followed by the JMA and the UKMO models. How-

ever, performance of all the models deteriorates with

the forecast lead time.

Critical examination and real-time monitoring of the

global distribution of the anomalies in atmospheric and

oceanic parameters is essential to understand the intensity

of monsoon circulation, formation of rain-producing sys-

tems and localized weather systems. Verification of model

forecasted atmospheric circulations, particularly type,

location and intensity of rain-producing weather systems,

seems essential to understand overprediction of area under

wet condition and rainwater and errors in the parameters of

the wet and dry spells which can be done in separate

research program.
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